FACTORIZATIONS OF INFINITELY DIFFERENTIABLE FUNCTIONS
AND SMOOTH VECTORS

JACQUES DIXMIER AND PAUL MALLIAVIN

ABSTRACT. Let G be a real Lie group. Let D(G) be the set of compactly supported, infinitely
differentiable functions on G. We show that if f € D(G), then f is a finite sum of functions
of the form g * h, where g € D(G),h € D(G). Question: can f be written as g * h, where
g € D(G),h € D(G)? Answer: yes, for a large class of groups (including for example the
semi-simple groups with finite center), no for G = R

Let E be a Fréchet space, m a continuous representation of G on E. We show that every

smooth vector for 7 belongs to the Garding space.

1. INTRODUCTION

Let G be a (real) Lie group, f an element of D(G), i.e. an infinitely differentiable complex
valued function on G with compact support. For any integer n > 0, we have that f is a
finite sum of functions of the form g * h, where g € D(G) and h is n times differentiable with
compact support([3], p. 199; [1], p. 251; [4], p.23). In fact, we show that f is a finite sum of
functions of the form g * h, where g € D(G), h € D(G) (th. 3.1). For G = R", this result was
established in [12].

Let E be a Fréchet space, m a continuous representation of G on F, E, the set of smooth
vectors of E for w. To show that F is dense in E, one introduces classically the Garding
space B of E, the set of linear combinations of vectors of the form 7 (f){ where f € D(G)
and £ € E. In fact, we prove that Fo, = E* (th. 3.3).

These results can be qualified as theorems of “weak factorization”. One wonders if there
exists a “strong factorization”, i.e. every element of D(G) is of the form g * h, where g €
D(G),h € D(G). The question, for G = R, was posed by L. Ehrenpreis ([7], p. 584). A
negative answer for G = R? was given by L. Rubel, W. Squires and B. Taylor [12]. We will
see that the answer is positive for a large class of groups containing for example the semi-
simple groups with finite center (th. 4.9), and that the answer is negative for G = R? and
hence for all G which admit R? as a quotient (th. 6.1 and 6.3). The groups which form the

main obstacle to a general solution of the strong factorization problem are R and the universal
1
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covering of SL(2,R). We will also obtain a strong factorization result for smooth vectors (th.
4.11).

We will establish variants of the preceding results for simply-connected nilpotent G (th.
7.1, 7.3, 7.4). These variants will be used to define a unitary representation of G' on the space
of rapidly decaying distributions on G (cor. 7.5). These distributions were considered recently
(9], [10]), but the corresponding operators have not been defined for central distributions and
certain representations.

We thank J.-P. Kahane and P. Lelong for useful conversations.

Notation. We use the notation of L. Schwartz, D, D¥, £, D', £’. For example, D*(R™) is the
set of complex valued functions on R™ which are k times continuously differentiable with
compact support, and D(R™) = D*(R™). If a € N, we denote by D® the corresponding
partial differentiation operator on R™. If f € DF(R™), we let || f||x = 2_0<|a|<k SUP [ D f].

If T e &(R™), we denote by supp (T) the support of T, and by co (T') the convex hull of
supp (7).

If X is a topological space and A C X, we denote by adhx A the closure of A in X.

If z is a point in a locally compact space, we denote by d,. the Dirac measure at x. We denote

n)

by & the Dirac measure at the origin in R, and by &,...,6( ... its successive derivatives.

If G is a nilpotent, simply-connected Lie group, we identify it with its Lie algebra by the
exponential map, and hence one can define S(G), §'(G), OL(G) (always with the notation of
L. Schwartz); eventually we will also consider O.(G) (cf. [8], chap. II, p. 131 for the definition
of O, for R™). We denote by S(Z) the space of sequences of complex numbers indexed by Z
which are of rapid decay.

We denote by e the identity element of a group.

2. CONSTRUCTION OF CERTAIN AUXILIARY FUNCTIONS

2.1. Until 2.4 , we fix a strictly increasing subsequence
A= (A0, ALy ey Apyenn)

of the sequence (1,2,...,2% ...). For an integer j > 0, one has

0 ey (1-3) 2 (-2 0-%)0-F)

> ep(2(k ) e 2k
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2
(2) 1--5>3 ifk<j—1.
)‘k

2.2. For z € R, let

0 2
or(z) = H <1 + /\2) (z) = pa(z) 7L

k=0

The function @) is even and extends to an entire function on C, again denoted by ¢,; its
zeros are at +i)\; and they are simple. The function y is even and extends to a meromorphic
function on C, again denoted by x; its poles are at +i¢A; and they are simple; the residue of

X at i\ is

-1
(3) 7@ 2@&1‘[(1) .

By (1), (2), (3), one has

1
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An elementary calculation shows that, for x,t € R, one has
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2.3. The function ¢y on R increases faster than any polynomial at infinity, hence y) is of
rapid decay. For y € R, let

U (y) :/ eiQimyx,\(x)dx :/ e2i”myx,\(x)daz.

—o0 —o0
Then vy is even and infinitely differentiable on R. Let t € (Mg, Akt1). By (5) and (6), the

calculation of residues gives

o0 o0 k
/ eQimpyX/\(x)dx . / 62i7r(a:+zt) X)\ x + Zt Z 727r)\jy’
—00 —o0 j=0 j
i.e.
0o k
Ualy) = e‘zﬂy/ ez“mym\(x + it)dx + Z T e~ 2mAY,
oo = #'iN)

Suppose y > 0. Let t = t;, = (A\xAp41)"/?, and let k approach co. By (6), one obtains

[ee]

1
Ua(y) = 72Ny for y > 0.
A %)
Formally, one deduces
d"ihx — 1 —2mAsy
(7) y"——= = (—2m)" Alye 4T (y > 0).
dy jgo @' (ir;) 7

2w\

The maximum of y™e *"Y for y > 0 is attained when y = m/27)\;, and it is equal to

(m/e)™(2mA;)~™. However, for m > n+ 1, one has

n—m

- J
]z;; (i

by (4). Hence, if m > n + 1, the series (7) converges uniformly for y > 0 and it gives the value
of y™ " 1/&
dy
Therefore, one has ¢y 6 S(R) and consequently x, € S(R).

— 0 at infinity.

2.4. Recall the equality

d"px - )‘? —2m)\;
= (—27)" ;Y
e M L

where the series converges uniformly for y > yo > 0 by (4). One then deduces

< (2%)” Z] 0)\?+1 =27\

< (27r) Z;i 9(n+1)jo—2127

d’n
®) Supy1 |G

It is important to note that this last expression is independent of the choice of the sequence

A
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2.5. Lemma: Let (5o, 51, 52,...) be a sequence of positive numbers. Then there exists a
sequence of positive numbers (g, a1, s, ...) and functions f € S(R), g € D(R), h € D(R)
such that
(1) cpy < By, forn>1,
(2) S0 _ o (—1)", 6@ % f — 5 in S'(R) as p — oo,
(3) 3P _o(—1)" 6™ 5 g — 5+ R in E'(R) as p — oo.

We continue to use the notation in 2.1-2.4. Fix a function w € D(R) such that w is even,
equal to 1 in [—2,2] and supported in [—3,3]. Let wy = ¢y - w

By (8), there exists a sequence (FPp, Py, ...) of positive numbers such that for any sequence

A one has
d'fl
sup w)“ < P,.
y>1| dy”
Suppose Ag, A1,...,Ag—1 are chosen such that in the expansion
2 2
x
Z V2™ of <1 + )\2> (1 + )\2>
n>0 q-1
one has
1 1 1
< inf , ) e
T (ﬁn n2Pon” n%Popy1 n2P2n+n>
for n =1,...,q. Then, one can choose \; such that in the expansion
2 2
x
2%172” of (1 + )\2> <1 + )\2>
n>0 0
one has
1 1 1
! .
< inf , ) e
T = (ﬂn n2Pon” 1% Pyt n2P2n+n>
forn=1,...,¢+1. Continuing this way, one obtains a sequence A such that in the expansion
Y >0 a,z?" of py one has
1 1 1
an < inf , , ey for n > 1.
"= <ﬁn n2P2n n2p2n+1 n2P2n+n> -

For all z € R, one has 0 < (3P _, a,2®)xa(z) < 1, and

p

O ane®)xa(z) = 1
n=0

as p — oo. Hence (3P _, cn2®™)xa(z) — 1 in S'(R) as p — oo. Similarly,

P 5(2n)
Z(—nnan(%) x1hy — 0

n=0

in S'(R) as p — 0.
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The proof will be finished by showing that

P D
0y = Z(—l) an, o) * Wy,

n=0

whose support is contained in [—3, 3], converges, in &'(R), to a distribution of the form § + h,
where h € D(R). It is enough to consider the restrictions of 6, to (—2,2), (1,4), (3,00). We
have 6, =0 on (3, 00), and

P L
Ol = { D1 an e ) |

n=0

hence 6, converges to ¢ in D’((—2,2)). Finally, for y > 1, one has

5(2n+p)

< anP2n+p < if n > p,

n2

hence

p L 5@n)
Z(_ ) a”(27r)2” O ‘(1,4)

n=0

has a limit in £((1,4)) as p — oc.

2.6. Remark: 1t is clear that, for any € > 0, one can require functions g, h of Lemma 2.5 to

have their supports contained in [—¢, €].

3. WEAK FACTORIZATION OF INFINITELY DIFFERENTIABLE FUNCTIONS AND SMOOTH

VECTORS

3.1. Theorem: Let G be a Lie group, V a neighborhood of e in G, and ¢ € D(G). Then ¢ is
a finite sum of functions of the form 1y x 19, where 11,19 € D(G),supp(1p1) C V,supp(2) C
supp().

(1) Let g be the Lie algebra of G. One can choose a basis (x1,...,%,,) of g satisfying the
following property: if ¢ denotes the map

(tla cee 7tm) = (eXp tlxl) T (eXp tmxm)

from R™ to G, the restriction of ¢ to (—1,1)™ is a diffeomorphism of (—1,1)™ onto an open
set  of G.

Let 8 be a left Haar measure of G and fq its restriction to 2.

(2) Let (uq,us,...) be a basis of the enveloping algebra U(g) of g. If u € U(g), u defines a
right invariant differential operator D, on G, and one has ux ¢ = D, (¢); that being recalled,



FACTORIZATIONS OF INFINITELY DIFFERENTIABLE FUNCTIONS AND SMOOTH VECTORS 7

let

9) sup |(uixai"xp)(s)] = M.
seG
Let € € (0,1/2). By 2.5 and 2.6, one can choose ag, a1, 2,... > 0 and g,h € D(R) whose

supports are contained in [—¢, ] such that

(10) Z anMy; < oo for all 4
n=0
and
P
(11) Z(—l)"ancs(%)*g — 0+h in &'(R) as p — co.
n=0

The map t; — exptiz; from R to G transforms the measures g(t1)dt1, h(t1)dt; on R to

measures (i, v oni G. One obtains from (11) that

P p
[ * Z(—l)”anw%n = Z(—l)”anx%" kU — e+ v

n=0 n=0
in &(G) as p — oo. Hence

p
P> (D) anzi o = o+ px

n=0
in £'(@) as p — oo. Furthermore, because of (9) and (10), Y7 _(—1)"a,, 23" x ¢ converges in
D(G) to an element ¢ € D(G). Then px1) = ¢+ v*p. So, ¢ is a sum of functions of the form
& * x, where x € D(G), supp(x) C supp(y), and where ¢ is the image under ¢; — expt;x; of
a measure of the form f(¢1)dt; with f € D(R) and supp f C [—¢,¢].

(3) Continuing in this way, one deduces from (2) that ¢ is a finite sum of functions of the
form & *&a*. .. % &y *x X, where x € D(G), supp(x) C supp(y), and where &; is the image under
t; — expt;x; of a measure of the form f;(¢;)dt;, with f; € D(R) and supp f; C [—¢,¢]. But
& k& * ... x &y is the image of £ ® & ® ... ® &, under the product map G X ... x G — G.

Hence &1 % & * ... % &, is the image under ( of the measure

fl(tl) - fm(tm)dtl coodty,

on R™. The function (t1,...,tm) — fi(t1) -+ fm(tm) belongs to D(R™) and its support is
contained in [—¢, g]™.

The image of the restriction of dty - - - dt,, to (—1,1)™ under ( is the product of Bo with a
function in £(Q). Hence &; ... x &, is the product of § with a function in D(G). If ¢ is small

enough, this function of D(G) will have its support contained in V.
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3.2. If H is a Hilbert space, and p € (0,00), let £L(H) denote the Banach space of continuous
endomorphisms of H, and LP(H) denote the Banach space of compact elements T' € L(H)
such that > A2 < oo, where (\,) is the sequence of eigenvalues of T x T (counted with
multiplicity). For example, £L2(H) (resp. L'(H)) is the set of Hilbert-Schmidt operators
(resp. trace class operators) on H.

Corollary: Let G be a Lie group, H a Hilbert space, m a continuous unitary representation
of G on H. Assume that there exists a p € (0,00) such that w(yp) € LP(H) for every ¢ € D(G).
Then, for every ¢ € D(G), the sequence of eigenvalues of w(p) * w(p) in decreasing order
(counted with multiplicity) is of rapid decay.

Let ¢ € D(G). By 3.1, for any integer n > 0, 7(y) is a finite sum of products of the elements
in £P(H), hence 7(p) € LP/"(H) ([6], p. 1093, lemma 9c). This proves the corollary.

(With the preceding hypotheses, the linear form ¢ +— tr7(¢) on D(G) is a distribution (the
“character” of m); in fact, the map ¢ — 7(yp) is continuous from D(G) to L(H), and hence
continuous from D(G) to L1(H) by the closed graph theorem.)

3.3. Theorem: Let G be a Lie group, V a neighborhood of e in G, E a Fréchet space, m a
continuous representation of G on E, Eo the set of smooth vectors of E for m, and £ € E.
Then & is a finite sum of vectors of the form w(p)n where ¢ € D(G), supp(v) C V and
N E Fy.

We proceed as in the proof of 3.1. We continue to use the notation for (x1, ..., zy,), (u1, ue, ldots)

of 3.1. Let (p1,p2,...) be a sequence of semi-norms defining the topology of E. Let
pj(m(ui)m(21)"§) = Mus;.

Let € € (0,1/2). Choose agp, a1, az,... > 0, g,h € D(R) with supports contained in [—¢,¢]
such that

Z anMpy;; < oo for every 1, j,
n

P
Z(—l)”ané(%) xg—0+h in&'(R)asp— oo.
n=0
Define p,v as in 3.1. One has

p p

() Y (1) anm(@1)*"€ = m(ux Y (=1)"anai") € = €+ m(v)E

n=0 n=0

in E with the weak topology. Furthermore, one has

> pj(w(us)anm(@1)*"€) < oo,
n=0
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for every i, j, hence Y7 _ (—1)"ay,,m(x1)?"¢ converges in the Fréchet space Eo to an element

1 in Es. One then deduces that

T = € + w(W)E.

The proof is then achieved inductively as in 3.1.

4. STRONG FACTORIZATION OF INFINITELY DIFFERENTIABLE FUNCTIONS AND SMOOTH

VECTORS

4.1. Lemma: Let C be a closed subset of S(Z). Then there exists (0n)nez € S(Z) such that
(a) 6, > 0 for all n,
(b) for any (en)nez € C, one has |ep| < 8y, for every n.

For p € Z, let

dp = sup |gpl.
(en)eC

If k is a positive integer, one has
sup sup (|ep|(1+ [p|*)) < oo;
(en)eC pEZ

hence

sup 0,(1 + |p|*) < oo,
pEZ

which proves that (d,,) € S(Z). The condition (b) is easily verified. By a slight modification

of (6,), one can show that condition (a) also holds.

4.2. Lemma: Let U be an open subset of R™, ¢ an infinitely differentiable map with
compact support from U to S(Z). For any u € U, let p(u) = (pn(v))nez. Then
(i) there ezists B = (Bn)nez € S(Z) such that 5, > 0 for all n, and that, for any a € N™,

one has

sup | D%pn(u)|B,% < o0,
ueUneZ

(11) suppose B = (Bn)nez satisfies the properties in (i) and v = (yp)nez € S(Z) is such that
Yo > Bn for all n. For allm € Z and u € U, let P,(u) = v, on(u). One has ¥(u) =
(Vn(w)nez € S(Z), p(u) =v(u) for allu € U and ) is an infinitely differentiable map from
U to S(Z).

(i) For any o € N™, the image I, of U in S(Z) under D%y is compact. Let (Ag)aecnm be

a family of positive numbers (which exists) such that the union C of A1, is closed in S(Z).
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Lemma 4.1 then provides us with (0, )nez € S(Z). If we let 3, = (571/2 for n € Z, then property
(1) is satisfied.
(ii) Let 8= (Bn), ¥ = (), ¥(u) = (¢¥p(u)) be as in (ii). One has

(12) [ ()] < By on(u)l < 87167 = B,

where ¢ is independent of u and n; hence ¥ (u) € S(Z). It is clear that ¢(u) = yp(u) and
that 1) has compact support. We now show that ¢ is infinitely differentiable. We equip S(Z)
not only with the strong topology but also with the weak topology defined by the dual space
S'(Z) of the slowly increasing sequences; if w = (wy)nez € S'(Z), one has
(W(u),w) =D bn(w)wn
nezZ

Let o € N™. Then

(13) [ D*Yn(u)] < b,

where c is independent of u and of n (this is proven as in (12)). Since }_, .z Bnlwn| < o0,
D*(¢p(u),w) exists and is equal to ) ., D9y (u)w,. Hence D*y exists when 1) is considered
with values in weak S(Z). Moreover, DY) (u) = (D%Yp(u))nez. Each DY, is a continuous
map from U to S(Z) and as a result of (13), D% is a continuous map from U to strong S(Z).
Hence 1), considered as a map from U to strong S(Z), is infinitely differentiable ([3], 2.6.1).

4.3. Lemma: Let U be an open subset of R™, ¢ an infinitely differentiable map with
compact support from U to D(T). Then

(i) there exists B = (Bn)nez € S(Z) such that B, > 0 for all n and that, for all « € N, the
Fourier coefficients Aon(u) of D¥p(u) satisfy

sup ‘)\an(u)W;Q <0
uelUneZ

(ii) let B = (Bn)nez be as in (i). Let
v = (Mm)nez € S(Z)

be such that v, > B, for all n. Let x be the element of D(T) whose Fourier coefficients are
Yn- Then there exists an infinitely differentiable map v from U to D(T) with compact support
such that p(u) = x *x Y (u) for allu e U.

This lemma follows from lemma 4.2 by an application of the Fourier transform.
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4.4. Lemma: Let P be a smooth principal T-bundle, with the group T acting on the left on
P. Let ¢ € D(P). Then there exists (Bp)necz € S(Z) such that B, > 0 for all n, and satisfying
the following property:

if (Yn)nez € S(Z) satisfies vy, > By for all n and if x is the element of D(T) whose Fourier
coefficients are 7y, then there exists 1) € D(P) such that ¢ = x * .

(a) Suppose that the fiber P is trivializable and that its basis is an open subset U of the
space R™. Then P can be identified with T x U and ¢ can be identified with an infinitely
differentiable map with compact support from U to D(T). It suffices to apply lemma 4.3 to
®.

(b) Now consider the general case. Let B = P/T be the basis of P and 7 : P — B be the
canonical map. There exist open sets By, ..., B, of B with the following properties: (1) each
B; is diffeomorphic to an open subset of the space R™i, (2) each m~!(B;) is trivializable, (3)
supp ¢ C 7 H(B1)U...Un 1(B,). Then ¢ = @1 + ... + p, with

1 € D(mH(By1)) C D(P),...,¢0q4 € D(n~(B,)) C D(P) .

Part (a) of the proof, applied to ¢1,. .., ¢, produces ¢ elements of S(Z). Let (,)necz be the
sum of these ¢ elements. Let (7,) and x be as in the statement of the lemma. Then there
exist 1 € D(r Y(B1)),...,%, € D(n 1(B,)) such that o1 = x *¥1,...,0, = X * g, and
hence ¢ = x * (Y1 + ... 4+ ).

4.5. Lemma: Let (Bn)nez € S(Z) be such that B, > 0 for all n. Let V' be a neighborhood
of 0 in 'T. Then there exists ¢ € D(T) satisfying the following properties:

(a) suppp C V,

(b) let (Yn)nez be the Fourier coefficients of p; then ~, > By for all n.

Let W be a closed symmetric neighborhood of 0 in T such that W+ W C V. Let ¢ be the
element of D(T) whose Fourier coefficients are 571/ 2. One can write P as asum P + ...+ Y,
where, for every i, 1; is an element of D(T) whose support is contained in a translate of W. Let
(Bin)nez be the sequence of Fourier coefficients of ;. Put w; = 9; * W (where &z(t) = m
for all ¢t € T). Then supp w; C W + W C V. The Fourier coefficients of w; + ...+ w), are the

numbers
5n = |/81n’2 + -+ |ﬁpn|2 .
One has

ﬁn = (ﬁ1n+ s ‘|‘/8pn)2 Sp(|ﬂln|2 + -+ |6pn|2) :pén
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and it suffices to choose ¢ = p (w1 + -+ - + wp).

4.6. Let G be a Lie group, g be its Lie algebra. An element z of g is called toroidal if the
one-parameter subgroup of G generated by z is closed and isomorphic to T. (This definition
depends not only on g but also on G.) Let g’ be the vector subspace of g generated by the
toroidal elements of g; since g’ is stable under the adjoint representation of G, g’ is an ideal of
g. The notations G, g, g’ are fixed until 4.8.

Let ﬁ(l R) denote the universal covering of SL(2,R). If G is simple and is not isomorphic
to 5’1(2, R), then the compact maximal subgroup of G is not trivial, hence g’ # 0 and therefore

g=g

4.7. Lemma: If G is compact, then there exists a basis of g consisting of toroidal elements.
In fact, any element of g generates a subgroup with a parameter whose closure is a torus

T", hence is the limit of toroidal elements in g.

4.8. Lemma: Let L be a Levi subgroup of G. Suppose that: (1) g = [g,9]; (2) L is not
contained in a distinguished subgroup isomorphic to 5‘1(2, R).

Then there exists a basis of g consisting of toroidal elements.

Let [ be the Lie algebra of L, [ = [; X --- X [, x my X --- X my be the decomposition of [ into
simple ideals, where m; are isomorphic to s[(2, R) and [; are not isomorphic to s[(2, R). Let L;,
M; be the analytic subgroups of G corresponding to I;, m;. By 4.6, each [; contains an element
toroidal relative to L;, and hence relative to G. By hypothesis (2) of the lemma, each M; is
a finite covering of PSL(2,R); consequently, each m; contains an element toroidal relative to
M;, and hence relative to G. This thus proves that the ideal g’ of g contains [. Therefore
g/g is solvable. If g/g’ is non-zero, g has an ideal g” D g’ such that g/g” is commutative and

non-zero, which is a contradiction since g = [g, g]. Hence g = ¢, which proves the lemma.

4.9. Theorem: Let G be a Lie group, g its Lie algebra. Suppose that there exists a basis of
g consisting of toroidal elements (see 4.7 and 4.8 for examples of such groups).

Let ¢ € D(G), V a neighborhood of e in G. Then there exist 1,192 € D(G) such that
¢ =1 %12 and supppy C V.

Let (x1,...,2m) be a basis of g consisting of toroidal elements. Let ¢ be the map

(t1y... tm) — (exptiz1) - - - (eXp tmTm)

of R™ to G. Let ¢ > 0 be such that the restriction of ¢ to (—&,&)™ is a diffeomorphism of

(—e,e)™ onto an open subset of G. Let &’ € (0,¢).
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Let T7 = exp Rx1, which is isomorphic to T. Let dt; be a Haar measure on 7. By 4.4
and 4.5, there exist fi € D(Ty) and x € D(G) such that supp f1 C exp([—¢,&']z1) and

¢ = (frdt1) * x.
By induction, as in the proof of 3.1, one can deduce that ¢ = 11 * 19 where 11,19 € D(G)

and where
supp ¢1 C exp([—¢’,&'|a1) - - - exp([—¢’, &'wm) ;

and consequently, supp 11 C V if € is small enough.

4.10. Remark: Let G and V be as in theorem 4.9. Let K be a compact subset of D(G).
Then there exist ¢; € D(G) and a compact subset Ky of D(G) such that supp 11 C V and
K =11 % Ks.

This result is proven by adapting the preceding reasoning starting from lemma 4.2: in this
lemma, instead of considering an infinitely differentiable map with compact support from U
to S(Z), we consider a compact subset of D(U,S(Z)); similarly modify lemmas 4.3 and 4.4;
the details are left to the reader.

4.11. Theorem: Let G,V,E 7, Ey and £ be as in 3.53. Suppose that G satisfies the same
condition as in 4.9. Then there exist v € D(G) and n € Es such that suppy C V' and

§=m(¥)n.
There exist ¢1,...,¢, € D(G) and 11, ...,n, € Ex such that

§=m(p1)m + m(en)nn

(th. 3.3). By the remark 4.10, there exist 1,1, ...,%, € D(G) such that supp ¥ C V and
Y1 =Y *xY1,...,0n = *Y,. Then

E=m()* (m(b)m + - + 7(Pn)nn)

which proves the theorem.

5. SOME LEMMAS

The main goal of this chapter is to prove the lemmas 5.3, 5.4, 5.5, which will be useful in

chapter 6.
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5.1. Lemma: Let P € C[X,Y] be a polynomial. Let T' be the curve in C? whose equation
is P((1,C2) = 0. Suppose that

(1) if Ay is the line with equation (1 = 0 in C2, there exists a1 € I' N Ay such that T is not
tangent to A1 at aq;

(2) if Ay is the line with equation (3 = 0 in C2, there exists az € T' N Ay, ag # a1 such that T
is mot tangent to As at as;

(3) P is irreducible and I' is non-singular.

Let Vp be the set of (21,22) € C? such that P(e*,e?) = 0. Then Vp is a (non-singular)
complex analytic subvariety of C2, and is convex.

Let 6 be the map (z1,22) — (e, e*2) from C? to C?; this map is of rank 2 at every point,
and defines C? as a covering of C2 — (A1 U Ay). Since I is non-singular, Vp is a non-singular
complex analytic subvariety of C2, and 6|y, defines Vp as a covering of I'—(A;UAs). Therefore
I'—(A1UAy) is connected. The lemma will be proven by showing that two arbitrary coverings
of Vp can be joined in a continuous way.

Let z = (z1,22) € Vp and ¢ = 0(z). Consider a path t — ((1(t),(2(¢)) in ' — (A1 U Ag)
which starts at (, goes to a point near a;, turns around a;, and comes back to ( in the opposite
direction; one can arrange so that the argument of ¢ (t) is increased by 27¢(q € Z) and that
the argument of ((t) takes the same value. This path lifts uniquely to a continuous path =
in V, starting from z and ending at (21 + 2imgq, 22). Reasoning in the same way for ag, one

obtains the result wanted.

5.2. Lemma: We use the notation Vp of 5.1. Let Py, be the set of elements of C[X,Y] of
degree < n. Then there exists an open dense subset Op of P, such that, for all P € O,, the
conditions of 5.1 are satisfied.

This is well-known.

5.3. We denote by M the set of measures of R? satisfying the following properties:
(a) the support of y is a finite subset of Q?; it follows then that the Fourier transform ({1, (2)
of 1 is of the form

62i7r(a1C1 +a2§2)P(6—2i7raC1 , e—2i7ra(2)

)

where a1, a2, € Q and P € C[X,Y];
(b) the polynomial P satisfies the conditions listed in 5.1; it follows then that 2~%(0) is a

connected non-singular complex analytic subvariety of C2.
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Let T denote the triangle in R? whose corners are the points

) ()

Let j be the positively homogeneous gauge function on R? such that T = {z : j(z) < 1}. We
denote by B(0,r) the ball 7T centered at 0 and of radius r associated to this gauge.
Lemma: Let A be a finite subset of Q> N B(xg,7), v be a measure on R? whose support
is contained in A, and € > 0. Then there exists a measure y € M such that ||[v — u|| < e and
A C supp(p) C B(xo,T).
By homothety and translation, one can suppose that A C N2.
Let v = Z(k,l)EA ai(k,)- We will search for p to be of the form
Z Btk »
(k)eA
where S; are non-zero complex numbers. One has
AL, G) = Z Bype2imhCL o= 2imlCz
k+l<r!

It is necessary that Z(k,l)eA |Bri — ar| < € and that the polynomial Zk+l<r, B X Y satisfies
the conditions of 5.1. This is possible by 5.2.

5.4. We choose a function & € D(R?) such that [g.h = 1. For any 5 > 0, let hy,(&) =
n~2h(én™1) so that h, € D(R?); hy’s form an approximate identity.

Lemma: Let 1) € D*(R?),z9 € R%,7 > 0 such that supp ) C B(xg,7). Let ng > 0, > 0.
Then there exist n € (0,m0) and p € M (see 5.3) such that

([ 5 o = ke < e,
co(yp) C co(p) C B(xo,r +n).

The approximate identity defines a convolution operator on D¥(R?) which converges strongly

to the identity. Hence there exists n € (0,70) such that

€
|y % — 1 < 3

In addition, let vy be the discretization of :

(7L1+1))\ (n2+1))\
Uy = Z 6(n1/\,n2/\)/ / ¥,
niA na A

(n1,n2)€Z?
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where A > 0, € Q. One then has co(vy) C co(y) + B(0,3)X). The evaluation of mean
values(?) gives

I 0= 5l < Mlallesa | 101
Fix A < 1/3 such that the second term is < ¢/3. Let A be a finite subset of Q? whose convex
hull contains co()) and co(vy), and is contained in B(xy,r+n). There exists u € M supported
on A such that

€ —
lox = pll < 5 ([1Plle)

(lemma 5.3). Then u possesses all of the properties listed in the lemma.
5.5. If r > 0, let (see chap. 1 for the notation)
I, = {fecDR?)|3xg such that co(f) D B(zo,7)},
A, = {feD°(R?)|Iyo such that co(f) C B(yg,r)}.

Recall that, if f1, fo € D°(R?), one has

(14) co(fxf2) = co(f1)+co(f2).

Lemma: Let fi, fo € D°(R?). Let r,r’ be such that 0 <1’ <r. Then
(i) if f1 = fa € Ty and f1 € A, one has fo € Ty
(ii) if fi * fa € Ay and f1 € I'yr, one has fo € Ap_pr.

(i) By translation, one can suppose that co(f1 * f2) D B(0,7) and co(f1) € B(0,7’). By
(14), one then has

B(0,7) C B(0,7") + co(fa).
Suppose that co(f2) 7 B(0,7 — r'). Then co(f2) has a support line intersecting the triangle
(r—rT. If
L ={l € (R*)*; maxeer1(§) = 1},

one can find [ € L and € > 0 such that

co(fa) C{&1(E) <r—r'—e}.

Using the identity
sup({(A + B)) = sup(l(A)) + sup(I(B)),
one deduces
sup [(B(0,7") +co(fo)) <7/ +r—1" —e=r—¢,

which is a contradiction.
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(ii) The proof reduces to the case where
B(0,7) D B(0,7) + co(fa).
Suppose co(f2) ¢ B(0,r — r'); then there exist [ € L and € > 0 such that
supl(co(fo)) =1 —1"+¢;
supl(B(0,7") +co(fo))=r+r—1"+e=r+e.
6. GROUPS WITH STRONG FACTORIZATION

6.1. Theorem: There exists a function in D(R?) which is not the convolution product of
two functions in D(R?).

(a) The theorem 6.1 is proven using a contradiction: suppose that D(R?)*D(R?) = D(R?).
By (14), we then have

(15) D1(R?)*D;(R?) D Dy (R?)

(we denote by D (R?) the set of ¢ € D(R?) such that supp ¢ C B(0,1); the notation DY (R?)
is defined similarly). For any integer n > 0, with the notation of 5.5, let

Fo = {peDiR*)NTyyy | el <n},
F, = {peDVR)NA_q/m) | llgllo <n}.

(b) We establish the following result:
There exist k, ng € N, € > 0, and g € D1(R?) such that

Q={p e DIR?)|ll¢ — wollx <&} C F},, * F},.
By (15), one has Dl(RQ) C Up>1F, * Fy,. Let
B, = (F, * F,) N D1 (R?).

By the Baire theorem, there exists ng such that adhp, (R2)(Bno) contains a non-empty open

subset of D;(R?). Hence there exist k € N,e > 0 and ¢o € D(R?) such that

adhp, (r2)(Bn,) D { v € Di(R?) | [l — wollk < e},
and
adhprrz) (Bre) O {0 € DI(R?) | o — ¢olle < e} = Q.
Let ¢ € Q. Then % is the limit in D¥(R?) of a sequence (p,) where ¢, € B, for all p. One

has ¢, = up * v, where u,,v, € F,,. By Ascoli’s Theorem, we can replace the sequences (u,)
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and (v,) with uniformly convergent subsequences. Let u,v (resp.) be the limits of (uy), (vp)
(resp.) in DY(R?). Then ¢, converges uniformly to u * v, where ¢ = u *v. By 5.5 (ii), one

has up, € Ay_(1/ng)> Up € A1_(1/ny)- Since

supp(u) C liminf(supp(up)),

one deduces that u € Ay_(q /). Similarly, v € A;_(1/p,), so that ¢ € F) *x F .
(c) There exist p € (0,1/ng) and ¢ € Q2 such that co(yp) = B(0,1 — p).
Using 5.4 and its notation, one can find € (0, p) and p € M such that

hy * € 9, co(u) D B(0,1— p).

Since Q C F) * F),

1o there exist u,v € Fy, such that hy x p = u * v.

Then 40 vanishes on the connected complex analytic variety 2~!(0); by interchanging u

and v if needed, we can suppose that

(d) Define L as in 5.5. Let g(1) = infeer 1(€).
If [ € L, denote by ! the image of the measure x on R under the map z + I(x); similarly,
denote by u' the image of the measure u(z)dz under the same map.

If 6 is a non-zero measure on R with compact support, and if r > 0, let

Np(r) = the number of zeros of (), counted with multiplicity, in the disk {¢ € C | [¢] < r};

Nj(r) = cardinality of the set 6~1(0)N{¢ e C|[¢] <r}.

By a classical result ([2], p. 114-116 and [11], p.13), one has

(16) lim 1Ng(r) = length of co(#).

rT—0o0 T

(e) Let Ly be the set of [ € L such that the support lines of co(u) associated to +I intersect
co(u) at only one point. Let Lo be the set of | = (a1, a) € L such that g # 0,01 /a0 € Q.
We now establish the following results:
(i) if I € Ly, one has co(u') D (1 — p)[g(1), 1];
(ii) if I € Lo, one has N:l (r) = Nu(r) +O(1) as 7 — oo.
The assertion (i) results from the fact that co(u) D B(0,1 — p) and by the definition of L;.
Let | = (a1, a2) € La. The system
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can be written as

P(G, ) =0, (G P, + eGP, )(C1, G2) =0,

(= ez‘m(’ G = eiazc’

where P is an irreducible polynomial (see the definition of M). The first two equations are

not satisfied by a finite number of points ({1, (2). Since the map
C — (eialc’ eiaz()

from C to C? is injective, (ii) is established.

(f) Let I € Ly N La. Suppose u! # 0. If k(1) = 1 — g(I), one has

(1= p)k(l) < Tim ~N,(r), by (16) and (e), (i)

roocor M

— lim SN0, by (o), (i)

r—oor M

1
< limsup =N (r) by (c)

r—oo T

1
< lim =Ny (r).

r—oo 1

Now, u € Aj_(1/ny), hence co(u') C [1 — (1/n0)][g(1), 1] and therefore, by (16)
1 1
.1 <(1_ 1L .
lim ~N,(r) < (1 no)k(l)

We thus obtain a contradiction when p < 1/ng. Hence ut =0 for all I € Ly N Le. By
continuity, u! = 0 for all [, and hence & = 0, v = 0, and hy * p = 0. This is absurd when

co(u) D B(0,1— p).

6.2. Lemma: Let G be a Lie group and H a closed distinguished subgroup of G. Suppose
that D(G) = D(G) * D(G). Then

D(G/H) = D(G/H) * D(G/H).

Let # : G — G/H be the canonical map. For all ¢ € D(G), let Ap be the element of
D(G/H) defined by

(Ap)(mz) = /H p(zy)dy

for all x € G (dy denotes a left Haar measure on H). Then for ai suitable choice of Haar

measures on G and G/H, A is a homomorphism of D(G) onto D(G/H), and hence the lemma.
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6.3. Let G be a Lie group. It results from 6.1 and 6.2 that, if G admits a quotient group
isomorphic to R?, then D(G) # D(G) * D(G). This is the case when G is simply connected

nilpotent of dimension > 2.

7. THE CASE OF SIMPLY CONNECTED NILPOTENT GROUPS

7.1. Theorem: Let G be a simply connected nilpotent Lie group and ¢ € D(G). Then there
exist x € D(GQ) and i € S(G) such that ¢ =1 = x and supp (x) C supp(y).

Let g be the Lie algebra of G. Let (go,g1,.-.,0m) be an increasing sequence of ideals of g
of dimensions 0,1,...,m = dimg. Let x; € g; be such that x; ¢ g;+1. The map

C:(try...,tm) — (exptizy) - - (eXptmTm))

from R™ to G is then a diffeomorphism from R™ onto G; moreover, ¢ transforms S(R™) to
S(G) and the Lebesgue measure on R™ to the measure P - 3, where § is a Haar measure on
G and P is a polynomial on G.

Reasoning as in theorem 3.1, one constructs a function f € S(R) and positive numbers

ap, a1, qa, ... such that, denoting the image of the measure f(¢;)dt; by p, one has

P
1 * Z(—l)”anx%" o — ¢ inS'(Q),

n=0

P
Z(—l)"anx%” xp — 6 in D(G).
n=0
Then ¢ = p* 6 and supp (0) C supp(p).

Continuing this way, one obtains ¢ = &1 - - - * &, * X, where

x € D(G), supp(x) C supp(p)

and where ¢; is the image under the map t; — exp t;z; of a measure of the form f;(¢;)dt;, with
fi € S(R). The function (t1,...,tm) — fi(t1) - fm(tm) on R™ belongs to S(R™), hence
&1 % - x &y is of the form £PB, where £ € S(G). However, (P € S(G), and this proves the

theorem.

7.2. Theorem: Let G be a simply connected nilpotent Lie group, V a neighborhood of e in
G, and p € S(G). Then

(i) ¢ is a finite sum of functions of the form %1, where 1 € D(G), 12 € S(G), supp(¢1) C
V', supp(¢2) C supp(e);

(ii) ¢ is of the form x1 * x2 where x1,x2 € S(G),supp(x2) C supp(y).
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The proof proceeds analogous to the proofs of 3.1 and 7.1.

7.3. Corollary: Let 7 be an irreducible continuous unitary representation of G, ¢ € S(G)
and (\,) the decreasing sequence of the eigenvalues of w(p) *mw(p) (counted with multiplicity).
Then the sequence (\y,) is of rapid decay.

It is known that 7(¢p) is of trace-class. The rest of the proof proceeds as in 3.2.

7.4. Theorem: Let G be a simply connected nilpotent Lie group, E a Hilbert space, ™ a
continuous unitary representation of G on E, E the set of smooth vectors in E for m, and
€ € E. Then there exist n € Ex and ¥ € S(G) such that § = w(¢)n.

Adopting the proofs of 3.3 and 7.1 yields the theorem.

(This result is mentioned briefly in [9] when 7 is irreducible. The general case does not

seem to simply reduce to the irreducible case.)

7.5. Corollary: Let G,E,7,Ex be as in 7.4, and v € OL(G). Then there exists a unique

linear map A : Es — Eo such that

A(m(¥)n) = m(v =),

for every ¢ € S(G) and n € E. The map A is continuous when Es is equipped with the
Fréchet topology.

The uniqueness of A results at once from theorem 7.4.

Let (vn) be a sequence of elements in &'(G) converging to v in OL(G). Recall (see for
example [4], p. 24) that m(v,) : Foo — Eo are defined and continuous. We show that 7(vy,)
converges pointwise to a limit. Any element of E, can be written as 7(¢)n where ¢ € S(G)

and n € E (th. 7.4). For any u € U(g), the vector

() (va)m () = m(u* vn x )1

converges in E to w(u % v % 1)n (note that u v *x 1 € S(G)). Hence m(vy,)m(1))n converges in
Eo to (v *)n.
By Banach-Steinhaus theorem, there exists a continuous linear map A : Fy, — Eo such

that 7(v,) converges pointwise to A; with the previous notation, one has

Am()n = (v * ).
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7.6. We continue using the notation in 7.5. It is natural to denote the endomorphism A by

m(v). One then has
m(v)m (i) = m(v* )

for any v € OL(G) and any ¢ € S(G). This definition of 7(v) extends the current definition
for v € £'(G) and v € §(G).
One can show that O/(G) is an algebra under the convolution, and that v — 7(v) is a

homomorphism of algebras.
7.7. We still use the notation in 7.5. Recall that, for
v € E(Q),€ € Ey,

one has

(17) wwxmwaéw@xmwwﬁ

the integral being defined when the function s — (7(s)¢ | () belongs to £(G).

It would have been natural to define to also define w(v) for v € OL(G) by the equation
(16). However, OL(G) does not have a canonical duality with the space O.(G) of infinitely
differentiable, very slowly decaying functions ([8], loc. cit.). Now, the function s — (7(s)£|()
on G (while being slow decaying) is not in general very slowly decaying, as one can see via
an example. The fact that one can nevertheless define 7(v) means that we have a summation
procedure for the integral (17).

Take G to be the 3-dimensional Heisenberg group. We identify it with its Lie algebra by
the exponential map; and by R?; the product in G is defined by

1
(,y,2) (@, ¢, ) = (95 +talyty 42+ gy - yﬂf’)) :
There exists an irreducible unitary representation m of G in L?(R) defined by
(m(,y,2)£)(0) = ' CTVOHA2m) (6 4 1)

for ,5,2,0 € R and f € L?(R). The smooth vectors for 7 are the elements of S(R). Let
f € S(R) be such that f(#) =1 on [1,2]; let g € L?(R) be the characteristic function of
[0,1]. Then

<ﬂa%@fmw:/emﬂ““vaw+mm<M&
R
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Let a(x,y, z) be this integral. If x € [—1,1], one has
1
Oz(.%', v, Z) _ / ei(z+y9+(l/2)xy)d9
0

_ie1/2ap €Y = 1
iy

I

hence

_ 2—n(iy)n—leiz(eiy _ 1)

"a(0 1o\" e¥—1
a( ’y7z) — 7/Ly ezze .
ox™ 2 iy
Therefore, for every k > 0, there exists an n such that the function
—k 8na($’ Y, Z)
ox™

does not approach 0 at infinity. This proves that o does not decay very slowly.

(1+2° +9y° +2%)

APPENDIX

We now explain how the results in section 2 can be extended to functions invariant on balls
on R".

For z € R™, let r = ((21)?+ - - - + (z,)?)"/2. Using the notation of 2, we let ¥, (z) = x(r).
Since ) is an even function, it follows that y, is the restriction to R™ of a meromorphic
function on C™.

On the other hand, by 2.3, yn» € S(R) and using the theorem on composite functions,
Xx € S(R™). We denote the Fourier transform of x by 1.

Let go be the Gevrey class and di be the distance function for the restrictions of functions

in go to K:
-2 0%
Ox™

Given a compact set K not containing the origin, di(0,1)) is bounded independent of \.

dg(0,f) = sup H(m') f(x)Hl/m where |a] < m.

rze K,meN
Using a partition of unity, it suffices to bound dx (0, uy) where u € go, fized, support(u) C
[ {zx > 0}; then the Fourier transform v of u satisfies that
lv(z1 —in,xe, ..., xn)| < c1 exp(—en — CQHle/Q) (e,c0 > 0).
The bound at infinity of v % x) depends only on the bound of
) = | oz~ %)z (where |l = sup o))
lz—zl<1/2fl]]

Suppose x1 = ||z||, and let z = (21, 2), z1 € R, Z € R"! and integrate with respect to z; ;

we obtain

3/2x1
h(e,2) = / sl + 2
1/2x1
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where py(a) = xa(a¥/2).
Complexify the variable 21 : 21 — ( = & 4+ in and let

1 3
I'= {CeC;n>0,£€ {536175961}};

the function py(||Z]|? + ¢?) is holomorphic in I', and one can write h; as an integral along the
two vertical sides of T', where the bound |hy(z, 2)| < c3exp(—ca|z]|'/?) is conserved under
integration with respect to Z.

It then results by theorem 3.1 that, if G = R", the ‘finite sum’ can be reduced to a sum of

two terms (this improves [12]).
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