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Abstract. The two-dimensional rook theory can be generalized to three dimensions by assum-
ing rooks attack along planes. With this generalization, there exists a family of three-dimensional
boards whose rook numbers correspond to the unsigned Genocchi numbers of even index. Using
this family and how rooks attack, we create a triangle generating the Genocchi numbers. We
prove this triangle generation in two different ways.

Introduction

Using a generalization of rook polynomials to three dimensions, Alayont and Krzywonos de-
scribe a family of three-dimensional boards, called Genocchi boards, for which the numbers of
ways of placing the maximum number of non-attacking rooks correspond to Genocchi numbers
[1]. In this paper, we describe a triangle generation of Genocchi numbers using a recurrence
relation for the number of rook placements on these Genocchi boards obtained from how one
board embeds into one larger size board. In [1], the Genocchi boards are defined to be com-
plementary to the triangle boards, another family of boards whose rook numbers correspond
to central factorial numbers. Due to the two boards being complementary, the rook numbers
of Genocchi boards can be expressed in terms of central factorial numbers. As a special case,
the maximum rook numbers can also be expressed in terms of central factorial numbers. The
correspondence between the Genocchi and central factorial numbers is then used to prove that
the maximum rook numbers of the Genocchi boards are the Genocchi numbers [1]. In this paper,
we provide two proofs for the recurrence relation generating the triangle for Genocchi numbers.
The first is a combinatorial proof using the Genocchi boards. The second is an algebraic proof
using the expression of rook numbers of Genocchi boards in terms of central factorial numbers.

We begin the paper with a background on the Genocchi and triangle boards in three dimen-
sions. We then provide the recurrence relation for the rook numbers of Genocchi boards using
the rook theory. In the last section, we include an algebraic proof of this relation using the
expression of these rook numbers in terms of central factorial numbers.

1. Rook Theory in Three and Higher Dimensions

In this section, we recall the generalized rook polynomial theory. A board in d dimensions is
a subset of [m1]× [m2]× · · · × [md] with cells corresponding to d-tuples (i1, i2, . . . , id) satisfying
1 ≤ ij ≤ mj. A full board is the whole set [m1] × [m2] × · · · × [md]. In three and higher
dimensions, rooks attack along hyperplanes which consist of cells with one fixed coordinate. In
particular, in three dimensions, when we place a rook in cell (i1, i2, i3), we can no longer place a
rook in another cell with i1 in the first coordinate, i2 in the second coordinate, or i3 in the third
coordinate.

In three dimensions, we use walls, slabs, layers to denote the planes of cells with the first,
second, third (respectively) coordinate fixed. Pictorially, we label layers from top to bottom.
We continue to use the words rows and columns to refer to the rows and columns in each layer.
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These are represented pictorially as rows and columns are represented in matrices. We say that
the cells with fixed first and second coordinates form a tower.

In two dimensions, when rook numbers of triangle boards are considered, we obtain the se-
quence of Stirling numbers of the second kind. These triangle boards are generalized to three
dimensions in [1] as follows. The size 1 triangle board is simply one cell. The size 2 triangle
board is obtained by placing a 2×2 layer below the size 1 triangle board. Continuing recursively
in a similar way, the size m board is obtained by adding an m × m layer at the bottom of a
size m− 1 triangle board. In terms of coordinates, the cells included in the size m triangle are
(i, j, k) with 1 ≤ i, j ≤ k and 1 ≤ k ≤ m. Size 5 triangle board in three dimensions is depicted
below.

The rook numbers of these boards can be expressed in terms of central factorial numbers.
Recall that the central factorial numbers are defined recursively by

T (r, s) = T (r − 1, s− 1) + s2T (r − 1, s)

with T (r, 1) = 1 and T (r, r) = 1.

Theorem. [1] The number of ways to place k rooks on a size n triangle board in three dimensions
is equal to T (n + 1, n + 1− k), where 0 ≤ k ≤ n.

Given a board B in d dimensions, we define the complement of B inside [m1]× [m2]×· · ·× [md]
to be the set [m1]× [m2]× · · · × [md]\B. We let B̄ denote the complementary board.

Theorem (Complementary Board Theorem). [1] Let B̄ be the complement of B inside [m1] ×
[m2]× · · · × [md] and RB(x) =

∑
i ri(B)xi the rook polynomial of B. Then the number of ways

to place 0 ≤ k ≤ mini mi non-attacking rooks on B is

rk(B̄) =
k∑

i=0

(−1)i
(
m1 − i

k − i

)(
m2 − i

k − i

)
· · ·
(
md − i

k − i

)
(k − i)!d−1ri(B).

An interesting result is obtained when the complements of the three-dimensional triangle
boards are considered. The picture below shows the complement of a size 4 triangle board inside
[5]× [5]× [5]:

The number of ways to place the maximum number of rooks in this board is the unsigned 6th
Genocchi number of even index (sequence A110501 in [4]). More generally, we let the complement
of the size n− 1 triangle board inside [n]× [n]× [n] to be the size n Genocchi board, denoted by
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Γn. By convention, the Genocchi board of size 1 consists of a single cell. We find that Γn has
the following set definition in terms of the cell coordinates:

Γn = {(i, j, k) : 1 ≤ k ≤ n and 1 ≤ i or j ≤ k}.
The number of ways of placing n rooks on Γn is given by the (n + 1)th unsigned Genocchi

number of even index, which we denote by Gn+1 [1]. This result is found using the complementary
board theorem and the relationship

Gn = (−1)n
n−1∑
j=1

(−1)j+1j!2T (n− 1, j)

between the Genocchi numbers and the central factorial numbers.

2. A recurrence relation for the rook numbers of Genocchi boards

Note that Γn includes the smaller board Γn−1 by realizing Γn−1 as

Γn−1 = {(i, j, k) : 2 ≤ k ≤ n and 2 ≤ i or j ≤ k}.
Recall that we number the layers from top to bottom. The difference Γn\Γn−1 consists of one
outside slab corresponding to the first row of each layer in Γn and one outside wall corresponding
to the first column of each layer in Γn. These two outside planes share a common tower at the
corner.

Using this relationship between the two consecutive size Genocchi boards, we can obtain a
recursive formula for the rook numbers of the Genocchi boards as given in the following theorem.

Theorem. Let rk(Γn) denote the k-rook number of the size n Genocchi board. Then rk(Γn)
satisfies the recurrence relation

rk(Γn) = rk(Γn−1) + (2(n− k) + 1)(n− k + 1)rk−1(Γn−1) + (n− k + 2)(n− k + 1)3rk−2(Γn−1)

where by convention we let rk(Γn) = 0 for k < 0.

Proof: Consider the number of ways of placing k rooks in Γn. There are three possible cases:
when all k rooks lie in Γn−1 realized inside Γn, or when there are exactly k− 1 rooks in Γn−1, or
when there are exactly k − 2 rooks in Γn−1.

In the first case, there are rk(Γn−1) possible placements.
In the second case, there are rk−1(Γn−1) possible placements for the k − 1 rooks. Once these

rooks are placed, the planes corresponding to these k − 1 rooks in all three coordinates become
unavailable on the outside wall and slab. After removing k − 1 layers from the initial n layers,
we have n − k + 1 layers available for the last rook. On each layer, the outside wall and slab
together contain 2n − 1 initial cells, corresponding to the first row and first column. However,
by placing the k − 1 rooks in Γn−1, 2k − 2 cells among these will become disqualified, leaving
2n− 2k + 1 positions. Therefore, there are (2(n− k) + 1)(n− k + 1)rk−1(Γn−1) ways to place k
rooks in Γn so that k − 1 rooks are in Γn−1.

The last case is similar to the second case. We have rk−2(Γn−1) ways to place k − 2 rooks
in Γn−1. Note that we cannot place any of the remaining 2 rooks on the corner of the outside
slab and wall, but that one rook must be in the slab and the other in the wall. Once the k − 2
rooks are placed, there are n − k + 2 layers and n − 1 − (k − 2) columns available on the slab
corresponding to the first row. Hence there are (n − k + 2)(n − k + 1) ways to place the rook
on that slab. When we move to the wall corresponding to the first column, there are n− k + 1
layers and n− 1− (k − 2) rows available, which gives us (n− k + 1)2 ways to place the rook in
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that wall. Therefore there are a total of (n− k + 2)(n− k + 1)3rk−2(Γn−1) ways to place the k
in Γn so that k − 2 rooks are in Γn−1.

Putting together all these three cases gives the recurrence relation in general. When k < 2,
one or more of these cases do not exist, however, the recurrence relation still holds due to the
fact that rk(Γn) = 0 for k < 0. 2

The resulting triangle consisting of rk(Γn)’s is as follows:
n\k 0 1 2 3 4 5 6

1 1 1
2 1 7 3
3 1 22 69 17
4 1 50 507 959 155
5 1 95 2227 13964 18077 2073
6 1 161 7252 106720 468053 445671 38227

We can see from the triangle that rn(Γn)’s correspond to the unsigned Genocchi numbers.

3. Algebraic proof of the recurrence relation

We now provide an algebraic proof of the recurrence relation using the complementary board
theorem.

Lemma. Let Γn denote the Genocchi board of size n. Then

rk(Γn) =
k∑

i=0

(−1)i
(
n− i

k − i

)3

(k − i)!2T (n, n− i).

where T (r, s) are the central factorial numbers.

Proof: Recall that the Genocchi board of size n is the complement of the triangle board of
size n− 1 inside [n]× [n]× [n]. The proof then follows immediately by using the complementary
board theorem and the theorem on the rook numbers of triangle boards. 2

Corollary: rn(Γn) =
n−1∑
i=0

(−1)i(n− i)!2T (n, n− i).

Proof: From the lemma,

rn(Γn) =
n∑

i=0

(−1)i
(
n− i

n− i

)3

(n− i)!2T (n, n− i).

However, the term for i = n vanishes due to T (n, 0) not being defined. 2

We now prove the recurrence relation on rk(Γn) using cases. For cases where 2 ≤ k ≤ n− 1,
all three terms in the recurrence relation survives, so we prove those cases all together.

The case k = 0 is trivial since the recurrence relation becomes

1 = r0(Γn) = r0(Γn−1) = 1.

The case k = 1 reduces to

r1(Γn) = r1(Γn−1) + (2n− 1) · n · r0(Γn−1) = r1(Γn−1) + (2n− 1)n

which follows immediately since r1 of any board is equal to the number of cells in that board.
The case k = n reduces to proving

rn(Γn) = rn−1(Γn−1) + 2rn−2(Γn−1).
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Using the lemma and its corollary, this is equivalent to showing

n−1∑
i=0

(−1)i(n− i)!2T (n, n− i) =
n−2∑
i=0

(−1)i(n− 1− i)!2T (n− 1, n− 1− i)+

2
n−2∑
i=0

(−1)i(n− 1− i)3(n− 2− i)!2T (n− 1, n− 1− i).

Noting that (n− 1− i)3(n− 2− i)!2 can be rewritten as (n− 1− i)(n− 1− i)!2, we obtain

n−1∑
i=0

(−1)i(n− i)!2T (n, n− i) =
n−2∑
i=0

(−1)i(n− 1− i)!2T (n− 1, n− 1− i)+

2
n−2∑
i=0

(−1)i(n− 1− i)(n− 1− i)!2T (n− 1, n− 1− i).

Combining the two summations on the right hand side, we reduce the equality to

(1)
n−1∑
i=0

(−1)i(n− i)!2T (n, n− i) =
n−2∑
i=0

(−1)i(2(n− i)− 1)(n− 1− i)!2T (n− 1, n− 1− i).

Using the recurrence relation on central factorial numbers, we have

T (n, n− i) = T (n− 1, n− 1− i) + (n− i)2T (n− 1, n− i),

where the first term vanishes for i = n − 1 and the second term vanishes for i = 0. Therefore,
the left hand side of the equality (3) can be rewritten as

n−2∑
i=0

(−1)i(n− i)!2T (n− 1, n− 1− i) +
n−1∑
i=1

(−1)i(n− i)2(n− i)!2T (n− 1, n− i)

By making a change of variable in the second summation, we obtain

(2)
n−2∑
i=0

(−1)i(n− i)!2T (n− 1, n− 1− i)−
n−2∑
i=0

(−1)i(n− 1− i)2(n− 1− i)!2T (n− 1, n− 1− i)

Note that

(n−i)!2−(n−1−i)2(n−1−i)!2 = (n−1−i)!2((n−i)2−(n−1−i)2) = (n−1−i)!2(2(n−i)−1).

Therefore, (2) can be rewritten as

n−2∑
i=0

(n− 1− i)!2(2(n− i)− 1)T (n− 1, n− 1− i)

which is exactly the same as the right hand side of (3). Therefore, the recurrence relation holds
for k = n as well.



6 FERYAL ALAYONT AND NICHOLAS KRZYWONOS

In the case of 2 ≤ k ≤ n− 1, using the lemma, the recurrence relation translates into

k∑
i=0

(−1)i
(
n− i

k − i

)3

(k − i)!2T (n, n− i) =
k∑

i=0

(−1)i
(
n− 1− i

k − i

)3

(k − i)!2T (n− 1, n− 1− i)

+ (2(n− k) + 1)(n− k + 1)
k−1∑
i=0

(−1)i
(
n− 1− i

k − 1− i

)3

(k − 1− i)!2T (n− 1, n− 1− i)

+ (n− k + 2)(n− k + 1)3
k−2∑
i=0

(−1)i
(
n− 1− i

k − 2− i

)3

(k − 2− i)!2T (n− 1, n− 1− i)

On the right hand side, we can combine the terms in the summations for 0 ≤ i ≤ k − 2. By

rewriting each combination in terms of

(
n− 1− i

k − 1− i

)
, we find that the general term is

(−1)i
(

(n− k)3

k − i
+ (2(n− k) + 1)(n− k + 1) + (n− k + 2)(k − 1− i)

)
(3)

·
(
n− 1− i

k − 1− i

)3

· (k − 1− i)!2T (n− 1, n− 1− i)

On the left hand side, by using the recurrence relation for central factorial numbers as before,
we obtain
k∑

i=0

(−1)i
(
n− i

k − i

)3

(k− i)!2T (n− 1, n− 1− i) +
k∑

i=1

(−1)i
(
n− i

k − i

)3

(k− i)!2(n− i)2T (n− 1, n− i)

As before, by making a change of variable in the second summation, we can combine the two
summations. The term corresponding to 0 ≤ i ≤ k − 1 in the combined summation then is

(4) (−1)i
(

(n− i)3

k − i
− (n− i− 1)2

)(
n− 1− i

k − 1− i

)3

(k − 1− i)!2T (n− 1, n− 1− i)

Therefore, to prove the recurrence relation all we need is to show the equality of (??) and
(4). This follows algebraically by showing that the rational expressions are equal, which is a
straightforward calculation.

For i = k − 1, k, the remaining terms on both sides are

(−1)kT (n− 1, n− 1− k) + (−1)k−1(n− k + 1)3T (n− 1, n− k)

on the left hand side, and

(−1)kT (n−1, n−1−k)+(−1)k−1(n−k)3T (n−1, n−k)+(2(n−k)+1)(n−k+1)(−1)k−1T (n−1, n−k)

on the right hand side. It can be easily checked that these two expressions are equal.
Therefore, this finishes the algebraic proof that the recurrence relation holds.
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