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Abstract. In the following I present the material of a one semester work done for my senior
project under supervision of Okan Tekman. The work contains basic definitions and results
needed to set the theory of zeta functions on adeles and ideles, and the results on zeta functions
are used in the approach to Dirichlet L-function theory.

Contents

Introduction 1
1. The field of p-adic numbers 2
2. Characters 3
3. Haar Measure 5
4. The Fourier Transformation 6
5. Local Zeta Functions 7
6. Adeles and Ideles 10
7. Global Zeta Functions 12
8. Poisson Summation Formula 14
9. Dirichlet L-functions 15
References 16

Introduction

The purpose of this senior project is to study the methods introduced by Tate in his thesis
[T] to prove the analytic continuation of classical ζ-functions and Dirichlet L-functions. Due
to time limitation, we considered only the case of Q instead of an arbitrary number field.
Although, in this case, the results can be easily obtained using the classical methods, our aim
was to understand Tate’s approach, and this is important for two reasons: On the one hand, the
main tool in this approach is the local zeta functions, and the local computations are essentially
the same in the case of an arbitrary number field as in the case of Q. In fact, this is the real
power of the method. On the other hand, even when restricted to Q, Tate’s work leads to a
new way of looking at the classical modular functions and beyond [Gel].

In the first section, we define the field of p-adic numbers and consider their topological
properties. In Section 2, we define unitary characaters of locally compact abelian groups.
The Haar measure is introduced in Section 3 as a preparation for the next section, where the
necessary tools from the Fourier analysis are reviewed. Section 5 contains the definition of local
zeta functions and proves analytic continuation. Adeles and ideles are discussed in the sixth
section, leading to the definition of the global zeta functions and their analytic continuation in
Section 7. The next section contains the Poisson Summation Formula, the crucial ingredient
of analytic continuation. The last section explains the connection between größencharacters
and the Dirichlet characters, proving the analytic continuation of Dirichlet L-functions as a
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corollary of the analytic continuation of the global zeta functions. In this work, convergence
results are generally omitted since they need a deeper examination and hence more time.

1. The field of p-adic numbers

A function | | : Q→ R+ is called an absolute value on Q if for all r, s ∈ Q
1) |r| = 0 iff r = 0.
2) |rs| = |r||s|.
3) |r + s| ≤ |r|+ |s|.

Examples:

1) The usual absolute value is an absolute value on Q. We denote it by | |∞.

2) For a prime number p, we define | |p, the p-adic absolute value of r ∈ Q as follows:

|r|p =

{
p−n if r = pn · a

b
, (ab, p) = 1

0 if r = 0 .

In fact, | |p satisfies the non-Archimedean property:

|r + s|p ≤ max{|r|p, |s|p}
which is stronger than (3).

Note that we have the following equality for r ∈ Q:∏
2≤p≤∞

|r|p = 1 .

Any absolute value | | defines a metric on Q by d(r, s) = |r − s| for r, s ∈ Q. Two absolute
values are said to be equivalent if they induce the same metric topology on Q. By Ostrowski’s
Theorem we have: Every nontrivial absolute value | | on Q is equivalent to | |p for some prime
p or p =∞.

Qp is defined to be the completion of Q with respect to | |p. In particular, Q∞ = R.
For the rest of this section, we assume p <∞. We now define Zp, the ring of p-adic integers

as
Zp = {x ∈ Qp : |x|p ≤ 1}

and Up, the group of p-adic units as

Up = {x ∈ Qp : |x|p = 1} .
For x ∈ Qp, there exist unique ai ∈ {0, 1, ..., p− 1} such that x =

∑∞
i=−∞ aip

i with ai = 0 for
all i ≤ N , for some N . This can be seen as follows: Let xn ∈ Q and limn→∞ xn = x. Then each
xn has a finite p-adic expansion

∑
i anip

i. Since (xn) is Cauchy, (ani)n is eventually constant.
If we let ai to be this constant, then

∑∞
i=−∞ aip

i converges to x in Qp.

Note that |x|p = limn→∞ |
∑n

i=−∞ aip
i| = p−k where k = min{i : ai 6= 0}. So for x ∈ Zp, x =∑∞

i=0 aip
i, and for x ∈ Up, x =

∑∞
i=0 aip

i, a0 6= 0. Any x ∈ Qp can also be written as x = p−k ·u
where u ∈ Up.

Let us now consider the topology of Qp: We can take the balls of radius p−n around a ∈ Qp,
n ∈ N as a neighborhood basis at a. B(a, p−n) = a + pnZp is both open and closed since
B(a, p−n) = {x ∈ Qp : |x − a|p ≤ p−(n+1)}. Qp is a group, so it will suffice to look only for
the case a = 0 to understand the general case. pnZp’s are in fact compact. Being in a metric
space with pnZp’s closed, we only need to show pnZp’s are totally bounded. We now take Zp
particularly. For a given ε > 0, we have to find a finite cover of Zp with ε-balls. Observe that
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Zp = ∪p
k−1
m=0 (m+pkZp), so for p−k < ε, Zp ⊂ ∪p

k−1
m=0B(m, ε). Similarly, pnZp = ∪p

k−1
m=0B(pnm, pnε).

Now for any a ∈ U ⊂ Qp, U open, we have a ∈ a + pnZp ⊂ U for some n, and a + pnZp is
compact. So the condition for Qp to be locally compact is satisfied. Furthermore, Qp is totally
disconnected. This follows from the fact that a + pnZp is both open and closed for all n and
hence contains any connected set which contains a.

So we have:

Theorem . Qp is locally compact and totally disconnected.

2. Characters

Let G be a locally compact Hausdorff abelian group. A (unitary) character χ of G is a
continuous homomorphism χ : G→ C× and |χ(g)| = 1 for all g ∈ G.

We define Ĝ to be the set of all characters of G. Ĝ can be made into an abelian group by
defining the product by pointwise multiplication. We define a topology on Ĝ by defining a
neighborhood of the identity character 1 as U(K, ε) = {χ ∈ Ĝ : |χ(x) − 1| < ε for x ∈ K},
where ε > 0 and K is a compact subset of G.

Theorem . 1) (Pontryagin Duality Theorem) The map r : G → ˆ̂
G given by r(g)(χ) = χ(g)

for all χ ∈ Ĝ is a topological isomorphism of groups.
2) If G is compact, Ĝ is discrete. If G is discrete, Ĝ is compact.

3) Let H be a closed subgroup of G. Then H⊥ = {χ ∈ Ĝ : χ(H) = {1}} is a closed subgroup

of Ĝ and we have

Ĝ/H ∼= H⊥ and Ĝ/H⊥ ∼= Ĥ .

Examples:

1) Let G = Z/nZ, the cyclic group of order n. For any 0 ≤ m < n, there is a unique homomor-

phism χm : Z/nZ→ T given by χm(1) = e2πim/n. So we have Ĝ = {χm : 0 ≤ m < n} ∼= Z/nZ.
For any finite abelian group G, we can write G as a direct sum of finitely many cyclic groups

and ̂G1 ⊕ · · · ⊕Gk
∼= Ĝ1 ⊕ · · · Ĝk, we have Ĝ ∼= G.

2) Let G = R. Define χ∞ : R → C× , χ∞(x) = e−2πix. Then for any y ∈ R, the homo-
morphism x 7→ χ∞(yx) is a character of R. Also for any character χ : R → C×, we can
show that χ = χ∞(y·), for some y ∈ R. Since χ(0) = 1 and χ is continuous, for some

h > 0, c =
∫ h
0
χ(t) dt 6= 0. We can write

χ(x)

∫ h

0

χ(t) dt =

∫ h

0

χ(x+ t) dt =

∫ x+h

x

χ(t) dt .

So we have

χ′(x) = c−1(χ(x+ h)− χ(x)) = Cχ(x), C = c−1(χ(h)− 1) .

Hence χ(x) = eCx and since |χ(x)| = 1, C can be chosen as C = 2πiy, y ∈ R. With this

identification R̂ ∼= R.

3) Let G = T = {z ∈ C : |z| = 1} ∼= R/Z. We have T̂ ∼= R̂/Z ∼= Z⊥. Now χ∞(yn) = 1

for all n ∈ N =⇒ e−2πiyn = 1 for all n =⇒ y ∈ Z. Hence Z ∼= T̂.

4) Let G = Qp. Define χp : G → C× by χp(x) = e2πix. The function χp is to be taken
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as χp(x) = exp(2πi
∑−1
−k aip

i), if x =
∑∞
−k aip

i. To show that χp is in fact a continuous homo-
morphism we use:

χp : Qp → Qp/Zp → Z[1/p]/Z ⊂ R/Z η−→ C×

where η(xZ) = e2πix. In fact going from Qp/Zp to Z[1/p]/Z is the inverse of the natural
homomorphism Z[1/p]/Z → Qp/Z → Qp/Zp. The kernel of this homomorphism is q + Z, q ∈
Zp =⇒ q ∈ Z. Also for any x + Zp, x ∈ Qp, we have q + Zp = x + Zp where q =

∑−1
−k aip

i if
x =

∑∞
−k aip

i and also q + Z 7→ q + Zp means the map is onto. Hence it is an isomorphism. So
we will have χp is a homomorphism. χp will be continuous since its kernel Zp is open in Qp.

For any y ∈ Qp, the homomorphism χp(y·) : Qp → C× is a character of Qp. It can be easily
seen that for y1 6= y2, y1, y2 ∈ Qp, the characters χp(y1·) and χp(y2·) are different characters.

So if we can show that all characters of Qp are of the form χp(y·) then we will have Q̂p
∼= Qp.

Let χ : Qp → C× be any character of Qp. Since χ is continuous, there exists a smallest
n ∈ Z such that χ(pnZp) = {1}. If there does not exist such n, then χ = 1. We can consider,
instead of χ, χ′ = χ(p−ny), y ∈ Qp, which has χ′(Zp) = {1}. So we may assume n = 0. χ will
define a natural character on p−1Zp/Zp ∼= Z/pZ. We will then have χ(p−1) = e2πia0/p for some
a0 ∈ {1, ..., p− 1}.

Assume we have χ(p−k) = e2πi(a0p
−k+a1p−k+1+...+ak−1p

−1) where ai ∈ {1, ..., p− 1}. Then

χ(p−k−1)p = χ(p−k) =⇒ χ(p−k−1) = e2πi(a0p
−k−1+a1p−k+...+ak−1p

−2) e2πiak/p

for some ak ∈ {1, ..., p − 1}. Let y =
∑∞

i=0 aip
i. Then |y| = 1 and χ(p−k) = χp(yp

−k) for all
k > 0. So χ(x) = χp(yx) for all x ∈ Qp.

Also one can show that Qp is topologically isomorphic to Q̂p. A neighborhood of 1 in Q̂p

is {y ∈ Qp : |χp(yx) − 1| < 1

n
for |x| ≤ pm}, n > 0, m ∈ Z. It follows that χp(y·) is in this

neighborhood if and only if |y| ≤ p−m.
The reason for choosing the character on R as χ∞(x) = e−2πix while we chose the characters

on Qp as χp(x) = e2πix is to have the following equality:∏
p

χp(r) = 1 for r ∈ Q .

This equality follows if we write r =
∑

p

ap
pnp

+m, where ap, np,m ∈ Z. Then χp(r) = e2πiap/p
np

and χ∞(r) = e−2πi
∑

p ap/p
np

.

5) Let G = R×. We can write R× ∼= {−1, 1} × R+. From this representation we can de-
duce that any character χ of R× is of the form χ(x) = sgn(x)|x|s or χ(x) = |x|s.

6) Let G = Qp
×. We can write Qp

× ∼=< p > ×Up. First let us consider the characters of
Up. If χ : Up → C×, there exists n > 0 such that χ(1 + pnZp) = {1}. Let us denote 1 + pnZp
by U

(n)
p . Up is U

(0)
p by convention. If n is the smallest of such n’s, pn is called the conductor of

χ. χ is called unramified if the conductor is 1. Now U
(n)
p is in the kernel of χ. So χ defines a

character of Up/U
(n)
p , which is finite.

Characters of < p > which are trivial on Up are of the form χ : Qp
× → C×, χ(x) = |x|sp.

So we get that any character χ : Qp
× → C× is of the form χ(x) = |x|spw(x|x|p), where w is a

character of Up.
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3. Haar Measure

Let G be a locally compact Hausdorff group. A left (resp. right ) Haar measure on G is a
nonzero regular Borel measure µ on G satisfying µ(gE) = µ(E) (resp. µ(Eg) = µ(E)) for every
Borel set E ⊂ G and g ∈ G. In an abelian group G a left Haar measure is also a right Haar
measure.

Theorem . Every locally compact Hausdorff abelian group G has a Haar measure. Furthermore
this measure is unique up to a constant, i.e. if µ, λ are two Haar measures on G, there exists
0 < c <∞ such that µ = cλ.

Let G be abelian. µ is a Haar measure on G if and only if∫
G

f(hg) dg =

∫
G

f(g) dg

for all positive continuous functions with compact support (i.e. f(x) = 0 for x /∈ K, K compact
in G) and h ∈ G.
Examples:

1) The usual Lebesgue measure is a Haar measure on R (as an additive group), since∫
R
f(x+ h) dx =

∫
R
f(x) dx

for all f continuous and h ∈ R.

2) On R×,
dx

|x|
is a Haar measure, since∫

R×
f(hx)

dx

|x|
=

∫
R×
f(hh−1x)

d(h−1x)

|h−1x|
=

∫
R×
f(x)

dx

|x|
.

3) On Qp, we know that, by theorem, there exists a Haar measure µ. We can normalize µ

by letting µ(Zp) = 1. We can write for n ≥ 0,Zp = ∪p
n−1
i=0 i + pnZp, where i + pnZp’s are

disjoint for different i’s. So µ(Zp) = pnµ(pnZp) which implies µ(pnZp) = p−n. Similarly, for

n < 0, pnZp = ∪p
−n−1
i=0 ipn + Zp, and hence µ(pnZp) = p−n.

4) On Qp
×,

dx

|x|p
(1 − p−1)−1 is a Haar measure where dx is the unique normalized Haar

measure on Qp. Given a ∈ Qp
× with |a|p = pn, µ(aZp) = µ(pnZp) = p−n. Similarly,

µ(apnZp) = |a|pµ(pnZp) for all a ∈ Qp
×, n ∈ Z. So we have∫

Qp
×
f(ax)

dx

|x|p
=

∫
Qp

×
f(x)

dx

|x|p
for any step function f and this suffices for the proof of the statement for any f .

Let G be a locally compact Hausdorff abelian froup, H be a closed subgroup of G. Then
G/H is a locally compact Hausdorff abelian group.

Theorem (Fubini’s Theorem). Let µG and µH be Haar measures on G and H. Then the Haar
measure on G/H can be chosen in such a way that∫

G

f(g) dg =

∫
G/H

(∫
H

f(gh) dh

)
d(gH) .

for all compactly supported continuous functions f on G .
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4. The Fourier Transformation

Let G be a locally compact abelian group, Ĝ be the character group of G. Choose Haar
measures on G and Ĝ. For a continuous function f : G → C such that

∫
G
|f(g)| dg < ∞, we

define the Fourier transform of f , f̂ : Ĝ→ C as

f̂(χ) =

∫
G

χ(g)f(g) dg .

Theorem (Fourier Inversion Theorem). If f ∈ L1(G), f is continuous and f̂ ∈ L1(Ĝ), we
have

f(g) =

∫
Ĝ

χ(g)f̂(χ) dχ

if Haar measure dχ on Ĝ is suitably normalized relative to the given Haar measure dg on G.

The normalized measure on Ĝ is called the dual measure of dg.

Examples:

1) Let G be a finite abelian group. Then f̂ =
∑

g∈G χ(g)f(g) is the Fourier transform of

f and the dual of counting measure on G is the dual measure divided by |G| on Ĝ.

Proof: Let S =
∑

g∈G χ(g) for χ ∈ Ĝ. Then

χ(h)S =
∑
g∈G

χ(h)χ(g) =
∑
g∈G

χ(hg) =
∑
g∈G

χ(g) = S .

It follows that ∑
g∈G

χ(g) =

{
|G| if χ = 1,

0 if χ 6= 1 .

Applying this formula to Ĝ and
ˆ̂
G ∼= G, we get∑
χ∈Ĝ

χ(g) =

{
|G| if g = e ,

0 if g 6= e .

Or in a different form, using χ(h−1) = χ(h), we can write

1

|G|
∑
χ∈Ĝ

χ(h)χ(g) = δh(g)

for all g ∈ G where δh(g) =

{
1 if g = h ,

0 if g 6= h .

The trivial equality f(g) =
∑

h∈G f(h)δh(g) gives

f(g) =
1

|G|
∑
χ∈Ĝ

(∑
h∈G

χ(h)f(h)

)
χ(g) =

1

|G|
∑
χ∈Ĝ

f̂(χ)χ(g)

for all g ∈ G. �

2) Let G = R. For any f ∈ L1(R), the Fourier transform of f is f̂(y) =
∫
R e

2πiyxf(x) dx.
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The Lebesgue measure on R̂ ∼= R is the dual of the Lebesgue measure on R.
Proof: We had the identification of R̂ as χ ∈ R̂, χ = χ∞(y·) for some y ∈ R. So

f̂(y) =

∫
R
χ∞(yx)f(x) dx =

∫
R
e2πiyxf(x) dx .

Now to show that the Lebesgue measure is self-dual on R, notice that

f(g) = c

∫
Ĝ

χ(g)f̂(χ) dχ

for some 0 < c <∞ and the measure on Ĝ is dual to the measure on G if c = 1. So if we can
show that c = 1 for some particular f , we will be done.

Let f = e−πx
2
. Then

f̂(y) =

∫
R
e2πiyxe−πx

2

dx =

∫
R
e−π(x−iy)

2

e−πy
2

dx = e−πy
2

∫
R
e−πx

2

dx = e−πy
2

,

and similarly ∫
R̂
χ(x)f̂(χ) dχ =

∫
R
e−2πiyxe−πy

2

dy = e−πx
2

= f(x) .

�

3) If G = T, we showed that Ĝ = Z. The Fourier transform of f : T → C× is given by

f̂ : Z → C×, f̂(n) =
∫ 1

0
e−2πinxf(x) dx. The inverse Fourier transform will be given as

f(x) =
∑∞

n=−∞ f̂(n)e2πinx. Hence the Lebesgue measure on T and the counting measure on Z
will be dual.

4) Let G = Qp, f = char(Zp). The Fourier transform of f is

f̂(y) =

∫
Qp

χp(yx)f(x) dx =

∫
Zp

χp(yx) dx =

{
1 if y ∈ Zp,
0 if y /∈ Zp

since χp(y·) is also a character on Zp and its integral is µ(Zp) = 1 if χp(y·) is 1 on Zp and 0 if

not. So f̂ = char(Zp). Since Ĝ ∼= Qp, in the same way we have f(x) =
∫
Qp
f̂(y)χp(yx) dy. This

shows that the Haar measure on Qp is dual to itself.

5. Local Zeta Functions

A function f : R→ C is called a Schwartz function on R if f ∈ C∞(R) and |p(x)f (n)(x)| → 0

as |x| → ∞ for all n ≥ 0 and all polynomials p(x). e−x
2

is an example of a Schwartz function
on R. A Schwartz function on Qp is a function f : Qp → C such that f is locally constant and
has compact support. f is locally constant means for each a ∈ Qp, there exists n such that f is
constant on a+ pnZp. f has compact support means the closure of {x : f(x) 6= 0} is compact.
If f is a Schwartz function on Qp, then there exist n ∈ Z and ai ∈ Qp, ci ∈ C, i = 1, ..., k such

that f =
∑k

i=1 ci char(ai + pnZp). The space of Schwartz functions on Qp is denoted by S(Qp).
Let f be a Schwartz function, c be a character of Qp

×. A local zeta function on Qp is a
function of a complex variable s defined by

ζ(f, c, s) =

∫
Qp

×
f(x)c(x)|x|sp d×x .

This integral converges absolutely and uniformly on compact subsets of {s ∈ C : Re s > 0},
hence defines an analytic function for these s.
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Proposition . Let f1, f2 ∈ S(Qp) and let c be a character of Qp
×. Then for 0 < Re s < 1,

ζ(f1, c, s) ζ(f̂2, c
−1, 1− s) = ζ(f̂1, c

−1, 1− s) ζ(f2, c, s) .

Proof:

ζ(f1, c, s) ζ(f̂2, c
−1, 1− s) =

∫
Qp

×

∫
Qp

×
f1(x)c(x)|x|sp f̂2(y)c−1(y)|y|1−sp d×xd×y

=

∫
Qp

×

∫
Qp

×
f1(x)c(x)|x|sp f̂2(xy)c−1(xy)|xy|1−sp d×xd×y

=

∫
Qp

×

∫
Qp

×
|x|p|y|1−sp f1(x)f̂2(xy)c−1(y) d×xd×y

=

∫
Qp

×

∫
Qp

×

∫
Qp

|x|p|y|1−sp f1(x)f2(z)χp(xyz)c−1(y) dzd×xd×y

=

∫
Qp

×
|y|1−sp c−1(y)

(∫
Qp

∫
Qp

f1(x)f2(z)χp(xyz) dzdx

)
d×y

=

∫
Qp

×
|y|1−sp c−1(y)

(∫
Qp

×
f̂1(yz)f2(z)|z|p d×z

)
d×y

= ζ(f2, c, s)ζ(f̂1, c
−1, 1− s) . �

Theorem . A local zeta function possesses an analytic continuation to the whole complex plane
as a meromorphic function of s. Moreover, there exists a meromorphic function ρ(c, s) such
that

ζ(f, c, s) = ρ(c, s)ζ(f̂ , c−1, 1− s)
for all s.

The proof of the theorem follows from the proposition and the following examples.

Examples:

1) Let p =∞, f(x) = e−πx
2
, c = 1. Then

ζ(f, c, s) =

∫
R×
e−πx

2|x|s d×x = 2

∫ ∞
0

e−πx
2

xs−1 dx

= 2

∫ ∞
0

e−u(
u

π
)
s−1
2

du

2π(u
π
)
1
2

=
1

π
s
2

∫ ∞
0

e−uu
s
2
−1 du

= π−
s
2 Γ(

s

2
) .

ζ(f̂ , c−1, 1− s) = π
s−1
2 Γ(

1− s
2

) .

ρ(c, s) =
ζ(f, c, s)

ζ(f̂ , c−1, 1− s)
= π

1
2
−s Γ( s

2
)

Γ(1−s
2

)
.

2) Let p =∞, f(x) = xe−πx
2
, c(x) = sgn(x).

ζ(f, c, s) = π−
s+1
2 Γ(

s+ 1

2
) .

f̂(y) = iye−πy
2

.
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ζ(f̂ , c−1, 1− s) = iπ−
(1−s)+1

2 Γ

(
(1− s) + 1

2

)
.

ρ(c, s) = −iπ
1
2
−s Γ( s+1

2
)

Γ( (1−s)+1
2

)
.

3) Let p be prime, f = char(Zp), c such that conductor of c = 1.

ζ(f, c, s) =

∫
Qp

×
char(Zp)(x)c(x)|x|sp d×x =

∫
Zp

c(x)|x|sp d×x

=
∞∑
j=0

∫
pjUp

c(x)|x|sp d×x =
∞∑
j=0

p−jsc(p)j
∫
Up

d×x

=
∞∑
j=0

(c(p)p−s)j =
1

1− p−sc(p)
.

ζ(f̂ , c−1, 1− s) =
1

1− ps−1c−1(p)
and ρ(c, s) =

1− ps−1c−1(p)
1− p−sc(p)

.

4) Let p be prime, f = char(1 + pnZp), c such that conductor of c = pn.

ζ(f, c, s) =

∫
Qp

×
char(1 + pnZp)(x)c(x)|x|sp d×x =

∫
U

(n)
p

d×x .

f̂(y) =

∫
Qp

χp(yx) char(1 + pnZp)(x) dx =

∫
U

(n)
p

χp(yx)

= χp(y)

∫
pnZp

χp(yu) du = χp(y)p−n char(p−nZp)(y) .

ζ(f̂ , c−1, 1− s) =

∫
Qp

×
χp(x)p−n char(p−nZp)c−1(x)|x|1−sp d×x

= p−n
∫
p−nZp

χp(x)c(x)|x|1−sp d×x

= p−n
∞∑

j=−n

∫
pjUp

χp(x)c(x)|x|1−sp d×x(∗)

= p−n
∞∑

j=−n

c(p)
j
p−j(1−s)

∫
Up

χp(pju)c(u) d×u .

Now for j ≥ 0, we have ∫
Up

χp(pju)c(u) d×u =

∫
Up

c(u) d×u = 0

since c is non-trivial on Up.
9



For −n < j < 0, we have∫
Up

χp(pju)c(u) d×u =
∑

x∈Up/U
(n−1)
p

∫
xU

(n−1)
p

χp(pju)c(u) d×u

=
∑
x

χp(pjx)c(x)

∫
U

(n−1)
p

c(u′) d×u′ = 0

since again c is non-trivial on U
(n−1)
p .

Hence the equation ∗ becomes

ζ(f̂ , c−1, 1− s) = p−npn(1−s)
∑

x∈Up/U
(n)
p

χp(p−nx)c(p−nx)

∫
U

(n)
p

d×u

= pn(
1
2
−s)ρ(c)

∫
U

(n)
p

d×u = pn(
1
2
−s)ρ(c)ζ(f, c, s)

where ρ(c) =
∑

x∈Up/U
(n)
p
χp(p

−nx)c(p−nx)p−n/2. ρ(c) is called a generalized Gauss sum. The

functional equation implies that |ρ(c)| = 1. Hence

ρ(c, s) = pn(s−
1
2
)ρ(c) .

6. Adeles and Ideles

Let {(Gp, Hp)}p be a collection of locally groups Gp and for almost all p, open compact
subgroups Hp of Gp. The expression “almost all p” will be used as a short definition for “all
but a finite number of p’s”. The restricted direct product of {(Gp, Hp)}p is the set

G = {(gp)p : gp ∈ Hp for almost all p} .

G is a group under componentwise multiplication. We topologize it be defining the open sets
aroung identity element (ep)p ∈ G as

V =
∏
p

Up

where Up ⊂ Gp open and Up = Hp for almost all p.
If S is a finite set contaning the p’s for which Hp is not defined, GS =

∏
p/∈sHp ×

∏
p∈S Gp is

an open subgroup of G. The topology on G is defined as the weakest topology to make GS an
open subgroup for any finite set, S.

Now let Gp = Qp and for p 6=∞, let Hp = Zp as additive groups. Then the restricted direct
product is called adeles and is denoted by A. We can embed Q in A via the diagonal map

q 7→ (q, q, ...) ∈ A since if q =
a

q
∈ Q, q ∈ Zp for p 6 | b.

Proposition . Q ⊂ A is discrete.

Proof: It will suffice to show that there exists a neighborhood of 0 which contains no other
element of Q. Define

O = (−1/2, 1/2)×
∏
p

Zp .

O is open on A and 0 ∈ O. Suppose q ∈ Q∩O. Then q ∈ Zp for all p, which implies q ∈ Z and
since −1/2 < q < 1/2, q = 0. So O doesn’t contain an element of Q other than 0. �

Proposition . A/Q is compact.
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Proof: If we show that there exists D ⊂ A, D compact and D+Q = A, then we will be done.
Let D = [0, 1]×

∏
p Zp. D is compact. Now take and (xp)p ∈ A. Then xp ∈ Zp for p /∈ S, S a

finite set of p’s. For p ∈ S, xp =
np
pkp

+ zp, where zp ∈ Zp, np, kp ∈ Z+. Let r be such that

r =
∑
p∈S

np
pkp

.

Then xp − r ∈ Zp for all p. Let r0 = [|x∞ − r|]. Then xp − r − r0 ∈ Zp for all p and
x∞ − r − r0 ∈ [0, 1]. Hence (xp − r − r0)p ∈ D. Hence we have D + Q = A, which means D
maps onto A/Q by the natural homomorphism. Hence A/Q is compact. � Let G = Qp

× and
for p 6= ∞, let Hp = Up. Then the restricted direct product is called ideles and is denoted by

J. Again Q× can be embedded into J via the map q 7→ (q, q, ...) ∈ J since if q =
a

b
∈ Q, x ∈ Up

for p 6 | ab.
Proposition . Q× ⊂ J is discrete.

Proof: Similar to the proof of the assertion that Q ⊂ A is discrete, if we show that there exists
a neighborhood of 1 ∈ Q× which contains no other rational number, then we will be done. It
is obvious that (1/2, 3/2)×

∏
p Up is such a neighborhood. �

In this case, however, we do not have J/Q× is compact. Instead we will show that it is the
direct product of R+ and of a compact group.

Let us define the idelic norm ‖ · ‖ : J → R+ by ‖(xp)p‖ =
∏

p |xp|p. ‖ · ‖ is a continuous

homomorphism. Let J1 be the kernel of ‖ · ‖. J1 is closed and Q× ⊂ J1. Also J = R+ × J1.
This is so because, with the identification r ↔ (xp)p, x∞ = r, xp = 1, p prime, J = R+ · J1 and
J1 ∩ R+ = {1}.
Proposition . J1/Q× is compact.

Proof: Let E =
∏

p Up. We will show that J1 = Q× · E. Let (xp)p ∈ J1. Then xp ∈ Zp for

p /∈ S, S a finite set of p’s. For p ∈ S, xp = pkpup, where up ∈ Up, kp ∈ Z− {0}. Let

r =
∏
p∈S

p−kp sgn(x∞) .

Then xpr ∈ Up for all p and |x∞r| = |x∞
∏

p∈S p
−kp | =

∏
p |xp|p = 1. So x∞r = 1. So

E ·Q× = J1. Since E is compact, we are done. �

Now we will analyze the characters on G, the restricted direct product of {(Gp, Hp)}p. If
c : G → C× is a character of G, then cp : Gp ↪→ G → C× defines a character of Gp. Since
c is continuous, cp(Hp) = {1} for almost all p,i.e. cp is unramified for almost all p. Hence c
canbe written as c =

∏
p cp. Conversely, if {cp}p is a collection of characters on Gp’s for which

cp(Hp) = {1} for almost all p, the homomorphism c(x) =
∏

p cp(xp) for x = (xp)p ∈ G, is a
character of G.

For the adeles, a character χ : A → C× can be decomposed as χ(x) =
∏

p χp(ypxp) for all

x = (xp)p ∈ A, where yp ∈ Zp for almost all p to ensure that χp(Zp) = {1} for almost all p.
This means y = (yp)p ∈ A. Hence if we fix

χ : A→ C×, χ(x) =
∏
p

χp(xp) for x = (xp)p ,

to be the standard character of A, then any character of A will be of the form x 7→ χ(yx) for

some y ∈ A. So we have Â ∼= A.
11



Proposition . In the identification defined above, Q⊥ = Q.

Proof: Since
∏

p χp(q) = 1 for q ∈ Q, if y ∈ Q, χ(yx) = 1 for all x ∈ Q. Hence Q ⊂ Q⊥. We

have A/Q is compact, so Q⊥ ∼= Â/Q is discrete, hence Q⊥/Q ⊂ A/Q is discrete and compact,
i.e. it is finite. If n is the order of Q⊥/Q, then for y ∈ Q⊥ ⊂ A, ny ∈ Q, so y ∈ n−1Q = Q. �

Similarly, for the ideles, any character can be written as c =
∏

p cp with cp(Up) = {1} for

almost all p. If pnp is the conductor of cp, then the conductor of c is defined to be
∏

p<∞ p
np . We

will be interested in mostly the größencharacters, the characters which are trivial on Q×. Since
J/Q× ∼= R+ × (J1/Q×), any größencharacter of J can be written in the form c(x) = ‖x‖sc′(x),
where c′ is a character induced from J1/Qp

×, i.e. c′(R+) = {1} and s = it, t ∈ R.
Now we will define integration on G, the restricted direct product of {(Gp, Hp)}p. Since G

is locally compact, it has a Haar measure. If we choose Haar measures µp on Gp’s such that
µp(Hp) = 1 for almost all p, the Haar measure on G will be fixed as follows: for a basis element
V =

∏
p Vp of G, µ(V ) =

∏
p µp(Vp).

Proposition . Suppose f =
∏
fp with fp ∈ L1(Gp) for all p, fp(Hp) = {1} for almost all p and∏

p

∫
Gp
|fp(xp)| dxp <∞. Then f ∈ L1(G) and∫

G

f(x) dx =
∏
p

∫
Gp

fp(xp) dxp .

A Schwartz function on A is defined as a linear combination of functions of the form f(x) =∏
p fp(xp) where fp’s are Scwartz functions on Qp’s and fp = char(Zp) for almost all p. In

particular for a Schwartz function, if f =
∏
fp, then f̂ =

∏
f̂p.

7. Global Zeta Functions

Let f be a Schwartz function on A, c a größencharacter. A global zeta function is a function
of a complex variable s defined by

ζ(f, c, s) =

∫
J
f(x)c(x)‖x‖s d×x .

This integral converges absolutely and uniformly for Re s > 1.
Example

Let f∞(x) = e−πix
2

on R and fp = char(Zp) on Qp, and c = 1. Then

ζ(f, c, s) =
∏
p

∫
Qp

×
fp(x)|x|sp d×x =

∏
p

ζ(fp, 1, s)

= π1 s
2 Γ(

s

2
)
∏

(1− p−s)−1 = π−
s
2 Γ(

s

2
)ζ(s) ,

as long as the convergence of all the integrals is guaranteed, and that is the case when Re s > 1.

Theorem . ζ(f, c, s) possesses an analytic continuation as a meromorphic function of s and
satisfies the functional equation

ζ(f, c, s) = ζ(f̂ , c−1, 1− s) .
12



Proof: Recall that J = R+Qp
×∏

p<∞ Up. Let E =
∏

p<∞ Up.

ζ(f, c, s) =

∫
J
f(x)c(x)‖x‖s d×x

=

∫ ∞
0

∫
J1
f(yt)c(yt)‖yt‖s d×yd×t

=

∫ ∞
0

(∫
J1
f(yt)c(yt) d×y

)
ts d×t .

Consider now the integral inside the parantheses:

(†)
∫
J1
f(yt)c(yt) d×y =

∫
E

∑
r∈Q×

f(ryt)c(ryt) d×y =

∫
E

∑
r∈Q×

f(ryt) c(yt) d× .

By Poisson summation formula (which will be proved in the next section) we have∑
r∈Q×

f(ryt) =
∑
r∈Q

f(ryt) − f(0)

=
1

‖yt‖
∑
r∈Q

f̂(
r

yt
) − f(0)

= t−1
∑
r∈Q×

f̂(
r

yt
) + t−1f̂(0)− f(0) .

Without loss of generality we may assume that c is induced from J1, the equation † becomes∫
J1
f(yt)c(yt) d×y =

∫
K

∑
r∈Q×

f̂(
r

yt
)c(yt)t−1 d×y + (t−1f̂(0)− f(0))

∫
K

c(y)d×y

= t−1
∫
J1
f̂(

1

yt
)c−1(

1

yt
) d×y + (t−1f̂(0)− f(0))

∫
K

c(y)d×y

= t−1
∫
J1
f̂(
y

t
)c−1(

y

t
) d×y + (t−1f̂(0)− f(0))×

{
1 if c|K = 1

0 if not.
.

Hence we have

ζ(f, c, s) =

∫ ∞
0

(∫
J1
f(yt)c(yt) d×y

)
ts d×t

=

∫ 1

0

(∫
J1
f̂(
y

t
)c−1(

y

t
) d×y

)
ts−1 d×t+

{∫ 1

0
(ts−1f̂(0)− tsf(0)) d×t

0

+

∫ ∞
1

(∫
J1
f(yt)c(yt) d×y

)
ts d×t

=

∫ ∞
1

(∫
J1
f̂(yt)c−1(yt) d×y

)
t1−s d×t+

{
1
s−1 f̂(0)− 1

s
f(0)

0

+

∫ ∞
1

(∫
J1
f(yt)c(yt) d×y

)
ts d×t

The first and the last terms of the last equation are entire in s and transform to each other
under the change of f → f̂ , c→ c−1, s→ 1−s. Also the middle term transforms to itself under
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the same change of variables. So we have that ζ(f, c, s) extends to a meromorphic function if
c is non-trivial and to an entire function if c = 1. Also it satisfies the functional equation

ζ(f, c, s) = ζ(f̂ , c−1, 1− s) . �

8. Poisson Summation Formula

Proposition (Poisson Summation Formula). If f is a Schwartz function on A, then∑
r∈Q

f(ar) =
1

‖a‖
∑
r∈Q

f̂(
r

a
)

for a ∈ J.

Proof: We first prove the proposition for the case when a = 1.
Define g(x) =

∑
r∈Q f(x + r). g can be shown to be continuous in the following way: Since

f is Schwartz on A, fp = char(pnpZp) for p < ∞. Let K = [−1, 1] ×
∏

p(p
min{0,np}Zp). Let

x ∈ K, r ∈ Q. If fp(xp + r) 6= 0, then |xp + r|p ≤ p−np , and;
case 1: If np ≥ 0, then |xp|p ≤ 1 and |xp + r|p ≤ p−np implies that |r|p ≤ 1, since otherwise
|xp + r|p =max{|xp|p, |r|p} > 1.

case 2: If np < 0, then |xp|p ≤ p−np and |r|p ≤max{|xp|p, |xp + r|p} ≤ pnp .

Hence if f(x+ r) 6= 0, then we have r ∈ 1

N
Z where N =

∏
np<0 p

−np . So

∑
r∈Q

|f(x+ r)| =
∞∑
−∞

≤
∞∑

n=−∞

∣∣∣f∞(x∞ +
n

N
)
∣∣∣ .

Since f∞ is a Schwartz function on R, we have |f∞(x∞ + n/N)| ≤ M

(x∞ + n/N)2
for some M

and for all x∞, n. Since |x∞| ≤ 1, we have

(x∞ +
n

N
)2 ≥ (

|n|
N
− |x∞|)2 ≥ (

|n|
N
− 1)2 ≥ 1

2

|n|2

N2

and hence

|f∞(x∞ +
n

N
)| ≤ M ′

n2

for |n| ≥ 4N . Hence
∑

r |f(x + r)| converges uniformly to a continuous function on K, and
hence on A.

Now we can fix a Haar measures on A/Q which will satisfy Fubini’s Theorem. We have
D = [0, 1)×

∏
p Zp maps bijectively onto A/Q. Thinking of g as a function on A/Q we have

ĝ(r) =

∫
A/Q

g(x)χ(rx) dx =

∫
A
f(x)χ(rx) dx = f̂(r) .

Since g is continuous and A/Q is compact, Fourier inversion holds:

µ−1(D)
∑
r∈Q

χ(rx)f̂(r) = g(x) =
∑
r∈Q

f(x+ r) .

Take x = 0. Then ∑
r∈Q

f̂(r) = µ(D)
∑
r∈Q

f(r) .

Applying the same equation to f̂ we get µ(D) = 1.
14



To prove the general case define h(x) = f(ax) for x ∈ A. Then h is a Schwartz function.
Applying the first part to h we have ∑

r∈Q

h(r) =
∑
r∈Q

ĥ(r) .

Consider ĥ(y).

ĥ(y) =

∫
A
h(x)χ(yx) dx

=

∫
A
f(ax)χ(yx) dx

=

∫
A
f(x)χ(ya−1x)‖a‖−1 dx = ‖a‖−1f̂(

y

a
) .

So the equality follows. �

As a corollary, we have the classical Poisson Summation Formula:∑
n∈Z

f(an) =
1

|a|
∑
n∈Z

f̂(
n

a
)

for any Schwartz function f on R and a ∈ R×. This can be obtained by taking fp = char(Zp)
for all p <∞.

9. Dirichlet L-functions

A character χ : (Z/kZ)× → C×, k ∈ Z+, is called a Dirichlet character. χ is called primitive
if there does not exist k′|k with χ factoring through (Z/kZ)× → (Z/k′Z)×. For a Dirichlet
character, we can define a größencharacter c : J→ C× as follows: We require that
•if p 6 | k, then p 6=∞, cp is unramified.
•if p|k, then cp(u) = χ−1(u) for u ∈ Up. Here if k = pnm,Up → (Zp/kZp)× → (Z/pnZ)× ↪→
(Z/kZ)× is used.

These conditions determine c on
∏

p<∞ Up. By requiring c(R+) = {1} and c(Q×) = {1}, we

completely define c : J → C× on J = R+Q×
∏

p<∞ Up as a direct product. Note that if χ is
unramified, then conductor of c is k.

Proposition . cp(p) = χ(p) for p 6 | k, p 6=∞.

Proof: Since p ∈ Q×, we have

1 = c(p) =
∏
q

cq(p) .

Now c∞(p) = 1 since p ∈ R+ and cq(p) = 1 for q 6 | kp since p ∈ Uq. Hence

cp(p) =

∏
q|k

cq(p)

−1 .
Here the product in the parantheses is exactly χ(p)−1. So cp(p) = χ(p). �

Let χ be a Dirichlet character. The function

L(s, χ) =
∑

(n, k) = 1andn > 0
χ(n)

ns
=
∏
p6 | k

(1− χ(p)p−s)−1
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converges for Re s > 1 and is called the Dirichlet L-function associated to χ.
Assume χ is primitive. Let c be the größencharacter associated to χ and consider ζ(f, c, s)

with fp’s as in the examples of section 5. Then

ζ(f, c, s) =
∏
p

ζp(fp, cp, s)

=
∏

p|k or p=∞

ζp(fp, cp, s)
∏
p6 | k

(1− χ(p)p−s)−1 = L(s, χ)
∏

p|k or p=∞

ζp(fp, cp, s) .

Using the analytic continuation and functional equations of local and global zeta functions, we
have the following result:
Let ε = 0 if c∞ = 1, ε = 1 if c∞ = sgn, W (χ) = (−i)ε

∏
p|k ρ(cp), and define

ξ(s, χ) = (k/π)s/2Γ(
s+ ε

2
)L(s, χ) .

Theorem . ξ(s, χ) is a meromorphic function with a simple pole at s = 1 if χ = 1, and is an
entire function if χ 6= 1 and it satisfies the functional equation

ξ(1− s, χ−1) = W (χ)ξ(s, χ)

with |W (χ)| = 1.
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