Securing Data Transmission Using Coding Theory

Feryâl Alayont Department of Mathematics University of Arizona

April 11, 2006

Figure 1: A network connectivity example, http://www.lankacom.net/images/internetwork.htm

Figure 2: Flow of data between two computers, http://www.rabbitsemiconductor.com/documentation/docs/manuals/ TCPIP/Introduction/4layers.htm

Data transmission examples that use coding theory: Wireless communication, CD burning/reading, satellite communication, space missions, ...

Messages in binary digits:

Sent: 0111 $\xrightarrow{\text{noisy channel}}$ Received: 0101

Error not even detected!

Solution?

Error detection: Repeat messages twice

The two parts don't match! (Single) error detected!

Information
$$rate = \frac{\text{length of message}}{\text{length of sent word}} = \frac{1}{2}$$

Better detection method: Overall parity check (checksum)

Append a digit to the end so that total number of 1's is even Mathematically: $\mathbf{x} = x_1 x_2 x_3 x_4$ is coded as $\mathbf{c} = x_1 x_2 x_3 x_4 x_5$ so that $x_1 + x_2 + x_3 + x_4 + x_5 = 0 \mod 2$ Message: $\mathbf{x} = 0111$ $0 + 1 + 1 + 1 + x_5 = 0 \mod 2$ Sent: $\mathbf{c} = 0111|1 \xrightarrow{\text{noisy channel}}$ Received: $\mathbf{y} = 0101|1$

Parity check: $0 + 1 + 0 + 1 + 1 \neq 0 \mod 2$

Parity check doesn't work! (Single) error detected!

Information rate =
$$\frac{\text{length of message}}{\text{length of sent word}} = \frac{4}{5}$$

Single error correction: Repeat messages three times

Choose the part which is repeated at least two times. Single error corrected!

Information rate =
$$\frac{\text{length of message}}{\text{length of sent word}} = \frac{1}{3}$$

Better error-correcting code: Hamming [7,4] code; a single-error-correcting code

Add 3 bits x_5, x_6, x_7 to the message $x_1x_2x_3x_4$ so that

$$x_{2} + x_{3} + x_{4} + x_{5} = 0 \mod 2$$

$$x_{1} + x_{3} + x_{4} + x_{6} = 0 \mod 2$$

$$x_{1} + x_{2} + x_{4} + x_{7} = 0 \mod 2$$

Matrix notation:

$$\begin{bmatrix} 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\ x_7 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

The Hamming [7,4] code is the kernel (null space) of this matrix.

Message:
$$\mathbf{x} = 0111$$

 $1 + 1 + 1 + x_5 = 0, \ 0 + 1 + 1 + x_6 = 0, \ 0 + 1 + 1 + x_7 = 0$
Sent: $\mathbf{c} = 0111|100 \xrightarrow{\text{noisy channel}} \text{Received: } \mathbf{y} = 0101|100$

$$x_{2} + x_{3} + x_{4} + x_{5} = 0 \mod 2$$

$$x_{1} + x_{3} + x_{4} + x_{6} = 0 \mod 2$$

$$x_{1} + x_{2} + x_{4} + x_{7} = 0 \mod 2$$

$$1 + 0 + 1 + 1 \neq 0 \qquad 0 + 0 + 1 + 0 \neq 0 \qquad 0 + 1 + 1 + 0 = 0$$

Message: $\mathbf{x} = 0111$ $1 + 1 + 1 + x_5 = 0, \ 0 + 1 + 1 + x_6 = 0, \ 0 + 1 + 1 + x_7 = 0$ Sent: $\mathbf{c} = 0111|100 \xrightarrow{\text{noisy channel}} \text{Received: } \mathbf{y} = 0101|100$

$$x_{2} + x_{3} + x_{4} + x_{5} = 0 \mod 2$$

$$x_{1} + x_{3} + x_{4} + x_{6} = 0 \mod 2$$

$$x_{1} + x_{2} + x_{4} + x_{7} = 0 \mod 2$$

$$1 + 0 + 1 + 1 \neq 0 \qquad 0 + 0 + 1 + 0 \neq 0 \qquad 0 + 1 + 1 + 0 = 0$$

3rd position is where the error is! Correct: $\hat{\mathbf{c}} = 0111|100$

Another example: Received: 1001|110

$$x_{2} + x_{3} + x_{4} + x_{5} = 0 \mod 2$$

$$x_{1} + x_{3} + x_{4} + x_{6} = 0 \mod 2$$

$$x_{1} + x_{2} + x_{4} + x_{7} = 0 \mod 2$$

$$0 + 0 + 1 + 1 = 0 \qquad 1 + 0 + 1 + 1 \neq 0 \qquad 1 + 0 + 1 + 0 = 0$$

Another example: Received: 1001|110

$$x_{2} + x_{3} + x_{4} + x_{5} = 0 \mod 2$$

$$x_{1} + x_{3} + x_{4} + x_{6} = 0 \mod 2$$

$$x_{1} + x_{2} + x_{4} + x_{7} = 0 \mod 2$$

$$0 + 0 + 1 + 1 = 0 \qquad 1 + 0 + 1 + 1 \neq 0 \qquad 1 + 0 + 1 + 0 = 0$$
6th position is where the error is! Correct: $\hat{\mathbf{c}} = 1001|100$

Information rate for the Hamming $code = \frac{\text{length of message}}{\text{length of sent word}} = \frac{4}{7}$

Linear code, C: set of binary codewords which includes the codeword with all 0's and coordinatewise sum of any two codewords

Example: 0000 1000 0111 1111

Example: Codewords satisfying Hx = 0H(0, 0, ..., 0) = 0 $Hx_1 = 0$ and $Hx_2 = 0 \Longrightarrow H(x_1 + x_2) = 0$

Note: A linear code is a subspace in F_2^n

Basis of $C: r_1, r_2, \ldots r_k, k = \text{dimension of } C$

Generator matrix of \mathcal{C} : G =

$$-r_1 -$$

 $-r_2 -$
 \cdots
 $-r_k -$

Encoding: $\mathbf{x} \rightsquigarrow \mathbf{c} = \mathbf{x}G$

Hamming distance: $d(\mathbf{x}, \mathbf{y})$ =number of coordinates in which \mathbf{x} and \mathbf{y} differ

Weight: $d(\mathbf{x}, 0) = wt(\mathbf{x})$

Examples: d(0000, 0011) = 2, d(0000, 1010) = 2, d(0000, 1011) = 3

Hamming distance is a distance function, in particular the Triangle Inequality holds:

$$d(\mathbf{x}, \mathbf{z}) \le d(\mathbf{x}, \mathbf{y}) + d(\mathbf{y}, \mathbf{z})$$

Decoding: $\mathbf{y} = \mathbf{c} + \mathbf{e}$, $\mathbf{e} = \text{error vector}$

Strategy: guess that the codeword sent is the codeword $\hat{\mathbf{c}}$ such that the number of errors is minimum

$$\iff \mathbf{e} = \mathbf{y} - \hat{\mathbf{c}}$$
 has the least number of 1's

$$\iff wt(\mathbf{e}) = d(\mathbf{y}, \hat{\mathbf{c}})$$
 is minimum

 $\iff \hat{\mathbf{c}}$ is the nearest codeword neighbor of \mathbf{y}

Sent: $\mathbf{c} \rightsquigarrow$ Received: \mathbf{y} Decode: $\hat{\mathbf{c}}$ = nearest codeword neighbor of \mathbf{y} Example: Code 000000 100011 010101 001110 110110 101101 011011 111000

Received: 011010 \rightsquigarrow Nearest neighbor: 011011

Decode: 011011

Received: 101010 \rightsquigarrow Nearest neighbor: 100011 or 001110 or 111000 ?

Cannot be determined

Which errors can be corrected?

Minimum distance of a code C is the minimum distance between two distinct words in the code.

Example: 000000 100011 010101 001110 110110 101101 011011 111000 has minimum distance 3: d(000000, 100011) = 3. **Theorem.** If C is a code with minimum distance d, nearest neighbor decoding correctly decodes any received vector in which at $most \lfloor \frac{d-1}{2} \rfloor$ errors have occurred.

Proof: Sent: **c** Error: **e** with less than $\lfloor \frac{d-1}{2} \rfloor$ 1's Received: $\mathbf{y} = \mathbf{c} + \mathbf{e}$

Claim: \mathbf{c} is the unique codeword closest to \mathbf{y} .

If $\mathbf{c'}$ is another codeword with distance at most $\lfloor \frac{d-1}{2} \rfloor$ from \mathbf{y} :

$$d(\mathbf{c}, \mathbf{c}') \le d(\mathbf{c}, \mathbf{y}) + d(\mathbf{y}, \mathbf{c}') \le \lfloor \frac{d-1}{2} \rfloor + \lfloor \frac{d-1}{2} \rfloor \le d-1$$

Contradiction.

Which errors cannot be corrected?

Received $\mathbf{y} = \mathbf{c} + \mathbf{e} = \mathbf{c}' + \mathbf{e}'$ for $\mathbf{c} \neq \mathbf{c}'$. Decoded as \mathbf{c} .

 $\mathbf{e}' = \mathbf{e} + (\mathbf{c} - \mathbf{c}') \in \mathbf{e} + \mathcal{C} \text{ and } wt(\mathbf{e}) < wt(\mathbf{e}').$

All possible errors= F_2^n decomposes into cosets of C. All errors in a coset are decoded as the minimal weight error in that coset.

Example:		Leader	
	Code	000	111
		100	011
		010	101
		001	110

	Leader							
Code	0000000	0010110	0100101	0110011	1000011	1010101	1100110	1110000
	1000000	1010110	1100101	1110011	0000011	0010101	0100110	0110000
	0100000	0110110	0000101	0010011	1100011	1110101	1000110	1010000
	0010000	0000110	0110101	0100011	1010011	1000101	1110110	1100000
	0001000	0011110	0101101	0111011	1001011	1011101	1101110	1111000
	0000100	0010010	0100001	0110111	1000111	1010001	1100010	1110100
	0000010	0010100	0100111	0110001	1000001	1010111	1100100	1110010
	0000001	0010111	0100100	0110010	1000010	1010100	1100111	1110001
	0001111	0011001	0101010	0111100	1001100	1011010	1101001	1111111
	1001111	1011001	1101010	1111100	0001100	0011010	0101001	0111111
	0101111	0111001	0001010	0011100	1101100	1111010	1001001	1011111
	0011111	0001001	0111010	0101100	1011100	1001010	1111001	1101111
	0000111	0010001	0100010	0110100	1000100	1010010	1100001	1110111
	0001011	0011101	0101110	0111000	1001000	1011110	1101101	1111011
	0001101	0011011	0101000	0111110	1001110	1011000	1101011	1111101
	0001110	0011000	0101011	0111101	1001101	1011011	1101000	1111110

Coset leaders for Hamming [7, 4, 3] code:

Binary symmetric channel:

p: probability of bit error

Probability of word error, P_{err} = probability of incorrect or ambiguous decoding

 $\iff P_{err} =$ probability of the error not being a coset leader

Probability of a particular error of weight $i = p^i (1-p)^{n-i}$ because i errors occurred

Probability of the error being a coset leader = \sum_i probability of the error being a coset leader of weight i

 $=\sum_{i} \alpha_{i} p^{i} (1-p)^{n-i}$ where α_{i} is the number of coset leaders of weight i

$$P_{\text{err}} = 1 - \sum_{i} \alpha_i p^i (1-p)^{n-i}$$

Example: $P_{err} = 1 - (1 - p)^4$ for sending length n = 4 words without encoding

 $P_{err} = 1 - (1 - p)^7 - 7p(1 - p)^6$ for Hamming [7, 4, 3] code

For p = 1/100, the first is ≈ 0.0394 and the second is ≈ 0.0020 .

For a binary symmetric channel with probability of bit error 0 , the channel capacity is

Figure 3: Channel capacity function

Theorem. (Shannon, 1948) Given $\epsilon > 0$ and R < C, there exists a sufficiently long linear code with rate greater than R and probability of decoding error less than ϵ . No such linear code exists if R > C.

Good codes: RSV codes, Low-density parity-check codes, turbo codes

Figure 4: Timeline of error control coding, http://www.acorn.net.au/telecoms/coding/coding.cfm

References:

Fundamentals of Error-Correcting Codes, W. Cary Huffman, Vera Pless, Cambridge University Press, 2003.

Introduction to Coding Theory, J.H. Van Lint, Springer, 1998.

Introduction to the Theory of Error-Correcting Codes, Vera Pless, Wiley-Interscience, 1989.

The Mathematics of Coding Theory, Paul Garrett, Prentice Hall, 2003.

The Theory of Error-Correcting Codes, F.J. MacWilliams, N.J.A. Sloane, North-Holland Mathematical Library, 1977.

ARC Communications Research Network page on Error Control Coding, http://www.acorn.net.au/telecoms/coding/coding.cfm

Neil J.A. Sloane's webpage http://www.research.att.com/~njas

Wikipedia page on Internet, http://en.wikipedia.org/wiki/Internet

Wikipedia page on Internet Protocol, http://en.wikipedia.org/wiki/Internet_Protocol