Securing Data Transmission Using Coding Theory

Feryâl Alayont
Department of Mathematics
University of Arizona

April 11, 2006

Figure 1: A network connectivity example, http://www.lankacom.net/images/internetwork.htm

Figure 2: Flow of data between two computers, http://www.rabbitsemiconductor.com/documentation/docs/manuals/ TCPIP/Introduction/4layers.htm

Data transmission examples that use coding theory: Wireless communication, CD burning/reading, satellite communication, space missions, ...

Communication channel:

Messages in binary digits:
Sent: $0111 \xrightarrow{\text { noisy channel }}$ Received: 0101
Error not even detected!

Solution?

Error detection: Repeat messages twice

Message: $\mathbf{x}=0111 \sim$ Sent: $\mathbf{c}=0111 \mid 0111$ $\xrightarrow{\text { noisy channel }}$ Received: $\mathbf{y}=0101 \mid 0111$
The two parts don't match! (Single) error detected!

Information rate $=\frac{\text { length of message }}{\text { length of sent word }}=\frac{1}{2}$

Better detection method: Overall parity check (checksum)

Append a digit to the end so that total number of 1's is even
Mathematically: $\mathbf{x}=x_{1} x_{2} x_{3} x_{4}$ is coded as $\mathbf{c}=x_{1} x_{2} x_{3} x_{4} x_{5}$ so that $x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=0 \bmod 2$

Message: $\mathbf{x}=0111 \quad 0+1+1+1+x_{5}=0 \bmod 2$ Sent: $\mathbf{c}=0111 \mid 1 \xrightarrow{\text { noisy channel }}$ Received: $\mathbf{y}=0101 \mid 1$

Parity check: $0+1+0+1+1 \neq 0 \bmod 2$
Parity check doesn't work! (Single) error detected!

Information rate $=\frac{\text { length of message }}{\text { length of sent word }}=\frac{4}{5}$

Single error correction: Repeat messages three times

$$
\begin{aligned}
& \begin{array}{l}
\text { Message: } \mathbf{x}=0111 \\
\xrightarrow{\text { noisy channel }} \text { Received: } \mathbf{y}=0111|0101| 0111
\end{array} . \text { Sent: } \mathbf{c}=0111|0111| 0111 \\
& \hline
\end{aligned}
$$

Choose the part which is repeated at least two times. Single error corrected!

Information rate $=\frac{\text { length of message }}{\text { length of sent word }}=\frac{1}{3}$

Better error-correcting code: Hamming [7,4] code; a single-error-correcting code

Add 3 bits x_{5}, x_{6}, x_{7} to the message $x_{1} x_{2} x_{3} x_{4}$ so that

$$
\begin{aligned}
& x_{2}+x_{3}+x_{4}+x_{5}=0 \quad \bmod 2 \\
& x_{1}+x_{3}+x_{4}+x_{6}=0 \\
& \bmod 2 \\
& x_{1}+x_{2}+x_{4}+x_{7}=0 \quad \bmod 2
\end{aligned}
$$

Matrix notation:

$$
\left[\begin{array}{lllllll}
0 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6} \\
x_{7}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The Hamming $[7,4]$ code is the kernel (null space) of this matrix.

Message: $\mathbf{x}=0111$
$1+1+1+x_{5}=0,0+1+1+x_{6}=0,0+1+1+x_{7}=0$
Sent: $\mathbf{c}=0111 \mid 100 \xrightarrow{\text { noisy channel }}$ Received: $\mathbf{y}=0101 \mid 100$
Which parity check equations are not satisfied?
Recall:

$$
\begin{array}{rl}
x_{2}+x_{3}+x_{4}+x_{5} & =0 \quad \bmod 2 \\
x_{1}+x_{3}+x_{4}+x_{6} & =0 \\
\bmod 2 \\
x_{1}+x_{2}+x_{4}+x_{7} & =0 \\
\bmod 2 \\
1+0+1+1 \neq 0 \quad 0+0+1+0 \neq 0 & 0+1+1+0=0
\end{array}
$$

Message: $\mathbf{x}=0111$

$$
1+1+1+x_{5}=0,0+1+1+x_{6}=0,0+1+1+x_{7}=0
$$

$$
\text { Sent: } \mathbf{c}=0111 \mid 100 \xrightarrow{\text { noisy channel }} \text { Received: } \mathbf{y}=0101 \mid 100
$$

Which parity check equations are not satisfied?
Recall:

$$
\begin{array}{rl}
x_{2}+x_{3}+x_{4}+x_{5} & =0 \\
x_{1}+x_{3}+x_{4}+x_{6} & =0 \\
\bmod 2 \\
x_{1}+x_{2} \\
x_{1}+x_{2}+x_{4}+x_{7} & =0 \\
\bmod 2 \\
1+0+1+1 \neq 0 \quad 0+0+1+0 \neq 0 & 0+1+1+0=0
\end{array}
$$

3rd position is where the error is! Correct: $\hat{\mathbf{c}}=0111 \mid 100$

Another example: Received: 1001|110

Which parity check equations are not satisfied?
Recall:

$$
\begin{aligned}
& x_{2}+x_{3}+x_{4}+x_{5}=0 \bmod 2 \\
& x_{1}+x_{3}+x_{4}+x_{6}=0 \bmod 2 \\
& x_{1}+x_{2}+x_{4}+x_{7}=0 \quad \bmod 2 \\
& 0+0+1+1=0 \quad 1+0+1+1 \neq 0 \quad 1+0+1+0=0
\end{aligned}
$$

Another example: Received: 1001|110

Which parity check equations are not satisfied?
Recall:

$$
\begin{aligned}
& x_{2}+x_{3}+x_{4}+x_{5}=0 \bmod 2 \\
& x_{1}+x_{3}+x_{4}+x_{6}=0 \bmod 2 \\
& x_{1}+x_{2}+x_{4}+x_{7}=0 \bmod 2 \\
& 0+0+1+1=0 \quad 1+0+1+1 \neq 0 \quad 1+0+1+0=0
\end{aligned}
$$

6th position is where the error is! Correct: $\hat{\mathbf{c}}=1001 \mid 100$

Information rate for the Hamming code $=\frac{\text { length of message }}{\text { length of sent word }}=\frac{4}{7}$

Linear code, \mathcal{C} : set of binary codewords which includes the codeword with all 0's and coordinatewise sum of any two codewords

Example: 0000100001111111

Example: Codewords satisfying $H x=0$
$H(0,0, \ldots, 0)=0$
$H x_{1}=0$ and $H x_{2}=0 \Longrightarrow H\left(x_{1}+x_{2}\right)=0$

Note: A linear code is a subspace in F_{2}^{n}

Basis of $\mathcal{C}: r_{1}, r_{2}, \ldots r_{k}, k=$ dimension of \mathcal{C}
Generator matrix of $\mathcal{C}: G=\left[\begin{array}{c}-r_{1}- \\ -r_{2}- \\ \cdots \\ -r_{k}-\end{array}\right]$
Encoding: $\mathrm{x} \leadsto \mathbf{c}=\mathbf{x} G$

Example: 000000100011010101001110 $110110101101011011 \quad 111000$

$$
G=\left[\begin{array}{llllll}
1 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 & 0
\end{array}\right]
$$

$$
\begin{array}{ll}
000 \leadsto 000000 & \\
010 \leadsto 00 \leadsto 100011 \\
110 \leadsto 110110 &
\end{array} \begin{aligned}
& 001 \leadsto 001110 \\
& 101 \leadsto 101101
\end{aligned} \quad \begin{array}{ll}
111 \leadsto 11101000
\end{array}
$$

Hamming distance: $d(\mathbf{x}, \mathbf{y})=$ number of coordinates in which \mathbf{x} and y differ

Weight: $d(\mathbf{x}, 0)=w t(\mathbf{x})$

Examples: $d(0000,0011)=2, \quad d(0000,1010)=2$,
$d(0000,1011)=3$

Hamming distance is a distance function, in particular the Triangle Inequality holds:

$$
d(\mathbf{x}, \mathbf{z}) \leq d(\mathbf{x}, \mathbf{y})+d(\mathbf{y}, \mathbf{z})
$$

Decoding: $\mathbf{y}=\mathbf{c}+\mathbf{e}, \mathbf{e}=$ error vector
Strategy: guess that the codeword sent is the codeword $\hat{\mathbf{c}}$ such that the number of errors is minimum
$\Longleftrightarrow \mathbf{e}=\mathbf{y}-\hat{\mathbf{c}}$ has the least number of 1's
$\Longleftrightarrow w t(\mathbf{e})=d(\mathbf{y}, \hat{\mathbf{c}})$ is minimum
$\Longleftrightarrow \hat{\mathbf{c}}$ is the nearest codeword neighbor of \mathbf{y}

Sent: c \leadsto Received: y
Decode: $\hat{\mathbf{c}}=$ nearest codeword neighbor of \mathbf{y}

Example: Code

000000	100011	010101	001110
110110	101101	011011	111000

Received: $011010 ~ \leadsto ~ N e a r e s t ~ n e i g h b o r: ~ 011011 ~$
Decode: 011011

Received: $101010 \leadsto$ Nearest neighbor: 100011 or 001110 or 111000 ?

Cannot be determined

Which errors can be corrected?

Minimum distance of a code \mathcal{C} is the minimum distance between two distinct words in the code.

Example: 000000100011010101001110
$1101101011010011011 \quad 111000$
has minimum distance 3: $d(000000,100011)=3$.

Theorem. If \mathcal{C} is a code with minimum distance d, nearest neighbor decoding correctly decodes any received vector in which at most $\left\lfloor\frac{d-1}{2}\right\rfloor$ errors have occurred.
Proof: Sent: cerror: e with less than $\left\lfloor\frac{d-1}{2}\right\rfloor 1$'s
Received: $\mathbf{y}=\mathbf{c}+\mathbf{e}$
Claim: \mathbf{c} is the unique codeword closest to \mathbf{y}.
If \mathbf{c}^{\prime} is another codeword with distance at most $\left\lfloor\frac{d-1}{2}\right\rfloor$ from \mathbf{y} :

$$
d\left(\mathbf{c}, \mathbf{c}^{\prime}\right) \leq d(\mathbf{c}, \mathbf{y})+d\left(\mathbf{y}, \mathbf{c}^{\prime}\right) \leq\left\lfloor\frac{d-1}{2}\right\rfloor+\left\lfloor\frac{d-1}{2}\right\rfloor \leq d-1
$$

Contradiction.

Which errors cannot be corrected?

Received $\mathbf{y}=\mathbf{c}+\mathbf{e}=\mathbf{c}^{\prime}+\mathbf{e}^{\prime}$ for $\mathbf{c} \neq \mathbf{c}^{\prime}$. Decoded as \mathbf{c}.
$\mathbf{e}^{\prime}=\mathbf{e}+\left(\mathbf{c}-\mathbf{c}^{\prime}\right) \in \mathbf{e}+\mathcal{C}$ and $w t(\mathbf{e})<w t\left(\mathbf{e}^{\prime}\right)$.
All possible errors $=F_{2}^{n}$ decomposes into cosets of \mathcal{C}. All errors in a coset are decoded as the minimal weight error in that coset.

Example:

	Leader	
Code	000	111
	100	011
	010	101
	001	110

Coset leaders for Hamming [7, 4, 3] code:

	Leader							
	0000000	0010110	0100101	0110011	1000011	1010101	1100110	1110000
	1000000	1010110	1100101	1110011	0000011	0010101	0100110	0110000
	0100000	0110110	0000101	0010011	1100011	1110101	1000110	1010000
	0010000	0000110	0110101	0100011	1010011	1000101	1110110	1100000
	0001000	0011110	0101101	0111011	1001011	1011101	1101110	1111000
	0000100	0010010	0100001	0110111	1000111	1010001	1100010	1110100
	0000010	0010100	0100111	0110001	1000001	1010111	1100100	1110010
	0000001	0010111	0100100	0110010	1000010	1010100	1100111	1110001

0001111	0011001	0101010	0111100	1001100	1011010	1101001	1111111
1001111	1011001	1101010	1111100	0001100	0011010	0101001	0111111
0101111	0111001	0001010	0011100	1101100	1111010	1001001	1011111
0011111	0001001	0111010	0101100	1011100	1001010	1111001	1101111
0000111	0010001	0100010	0110100	1000100	1010010	1100001	1110111
0001011	0011101	0101110	0111000	1001000	1011110	1101101	1111011
0001101	0011011	0101000	0111110	1001110	1011000	1101011	1111101
0001110	0011000	0101011	0111101	1001101	1011011	1101000	1111110

Binary symmetric channel:

p : probability of bit error

Probability of word error, $P_{\mathrm{e} r r}=$ probability of incorrect or ambiguous decoding
$\Longleftrightarrow P_{\text {err }}=$ probability of the error not being a coset leader
Probability of a particular error of weight $i=p^{i}(1-p)^{n-i}$ because i errors occurred

Probability of the error being a coset leader $=\sum_{i}$ probability of the error being a coset leader of weight i
$=\sum_{i} \alpha_{i} p^{i}(1-p)^{n-i}$ where α_{i} is the number of coset leaders of weight i

$$
P_{\mathrm{e} r r}=1-\sum_{i} \alpha_{i} p^{i}(1-p)^{n-i}
$$

Example: $P_{\text {err }}=1-(1-p)^{4}$ for sending length $n=4$ words without encoding
$P_{\text {err }}=1-(1-p)^{7}-7 p(1-p)^{6}$ for Hamming [7, 4, 3] code

For $p=1 / 100$, the first is ≈ 0.0394 and the second is ≈ 0.0020.

For a binary symmetric channel with probability of bit error $0<p<1$, the channel capacity is

$$
C=1+p \log _{2}(p)+(1-p) \log _{2}(1-p)
$$

Figure 3: Channel capacity function

Theorem. (Shannon, 1948) Given $\epsilon>0$ and $R<C$, there exists a sufficiently long linear code with rate greater than R and probability of decoding error less than ϵ. No such linear code exists if $R>C$.

Good codes: RSV codes, Low-density parity-check codes, turbo codes

Figure 4: Timeline of error control coding, http://www.acorn.net.au/telecoms/coding/coding.cfm

References:

Fundamentals of Error-Correcting Codes, W. Cary Huffman, Vera Pless, Cambridge University Press, 2003.

Introduction to Coding Theory, J.H. Van Lint, Springer, 1998.
Introduction to the Theory of Error-Correcting Codes, Vera Pless, Wiley-Interscience, 1989.
The Mathematics of Coding Theory, Paul Garrett, Prentice Hall, 2003.
The Theory of Error-Correcting Codes, F.J. MacWilliams, N.J.A. Sloane, North-Holland Mathematical Library, 1977.

ARC Communications Research Network page on Error Control Coding, http://www.acorn.net.au/telecoms/coding/coding.cfm

Neil J.A. Sloane's webpage
http://www.research.att.com/~njas
Wikipedia page on Internet,
http://en.wikipedia.org/wiki/Internet
Wikipedia page on Internet Protocol,
http://en.wikipedia.org/wiki/Internet_Protocol

