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Figure 1: A network connectivity example,

http://www.lankacom.net/images/internetwork.htm
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Figure 2: Flow of data between two computers,

http://www.rabbitsemiconductor.com/documentation/docs/manuals/

TCPIP/Introduction/4layers.htm
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Data transmission examples that use coding theory: Wireless

communication, CD burning/reading, satellite communication,

space missions, ...
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Communication channel:
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Messages in binary digits:

Sent: 0111
noisy channel

−−−−−−−−−→ Received: 0101

Error not even detected!

Solution?
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Error detection: Repeat messages twice

Message: x = 0111 ; Sent: c = 0111|0111
noisy channel

−−−−−−−−−→ Received: y = 0101|0111

The two parts don’t match! (Single) error detected!

Information rate = length of message
length of sent word

= 1
2
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Better detection method: Overall parity check (checksum)

Append a digit to the end so that total number of 1’s is even

Mathematically: x = x1x2x3x4 is coded as c = x1x2x3x4x5 so that

x1 + x2 + x3 + x4 + x5 = 0 mod 2
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Message: x = 0111 0 + 1 + 1 + 1 + x5 = 0 mod 2

Sent: c = 0111|1
noisy channel

−−−−−−−−−→ Received: y = 0101|1

Parity check: 0 + 1 + 0 + 1 + 1 6= 0 mod 2

Parity check doesn’t work! (Single) error detected!

Information rate = length of message
length of sent word

= 4
5
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Single error correction: Repeat messages three times

Message: x = 0111 ; Sent: c = 0111|0111|0111
noisy channel

−−−−−−−−−→ Received: y = 0111|0101|0111

Choose the part which is repeated at least two times. Single error

corrected!

Information rate = length of message
length of sent word

= 1
3
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Better error-correcting code: Hamming [7,4] code; a

single-error-correcting code

Add 3 bits x5, x6, x7 to the message x1x2x3x4 so that

x2 + x3 + x4 + x5 = 0 mod 2

x1 + x3 + x4 + x6 = 0 mod 2

x1 + x2 + x4 + x7 = 0 mod 2
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Matrix notation:









0 1 1 1 1 0 0

1 0 1 1 0 1 0
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The Hamming [7,4] code is the kernel (null space) of this matrix.
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Message: x = 0111

1 + 1 + 1 + x5 = 0, 0 + 1 + 1 + x6 = 0, 0 + 1 + 1 + x7 = 0

Sent: c = 0111|100
noisy channel

−−−−−−−−−→ Received: y = 0101|100

Which parity check equations are not satisfied?

Recall:

x2 + x3 + x4 + x5 = 0 mod 2

x1 + x3 + x4 + x6 = 0 mod 2

x1 + x2 + x4 + x7 = 0 mod 2

1 + 0 + 1 + 1 6= 0 0 + 0 + 1 + 0 6= 0 0 + 1 + 1 + 0 = 0
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Message: x = 0111

1 + 1 + 1 + x5 = 0, 0 + 1 + 1 + x6 = 0, 0 + 1 + 1 + x7 = 0

Sent: c = 0111|100
noisy channel

−−−−−−−−−→ Received: y = 0101|100

Which parity check equations are not satisfied?

Recall:

x2 + x3 + x4 + x5 = 0 mod 2

x1 + x3 + x4 + x6 = 0 mod 2

x1 + x2 + x4 + x7 = 0 mod 2

1 + 0 + 1 + 1 6= 0 0 + 0 + 1 + 0 6= 0 0 + 1 + 1 + 0 = 0

3rd position is where the error is! Correct: ĉ = 0111|100
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Another example: Received: 1001|110

Which parity check equations are not satisfied?

Recall:

x2 + x3 + x4 + x5 = 0 mod 2

x1 + x3 + x4 + x6 = 0 mod 2

x1 + x2 + x4 + x7 = 0 mod 2

0 + 0 + 1 + 1 = 0 1 + 0 + 1 + 1 6= 0 1 + 0 + 1 + 0 = 0
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Another example: Received: 1001|110

Which parity check equations are not satisfied?

Recall:

x2 + x3 + x4 + x5 = 0 mod 2

x1 + x3 + x4 + x6 = 0 mod 2

x1 + x2 + x4 + x7 = 0 mod 2

0 + 0 + 1 + 1 = 0 1 + 0 + 1 + 1 6= 0 1 + 0 + 1 + 0 = 0

6th position is where the error is! Correct: ĉ = 1001|100
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Information rate for the Hamming code = length of message
length of sent word

= 4
7
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Linear code, C: set of binary codewords which includes the

codeword with all 0’s and coordinatewise sum of any two codewords

Example: 0000 1000 0111 1111

Example: Codewords satisfying Hx = 0

H(0, 0, . . . , 0) = 0

Hx1 = 0 and Hx2 = 0 =⇒ H(x1 + x2) = 0

Note: A linear code is a subspace in F n
2
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Basis of C: r1, r2, . . . rk, k=dimension of C

Generator matrix of C: G =















−r1−

−r2−

. . .

−rk−















Encoding: x ; c = xG
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Example: 000000 100011 010101 001110

110110 101101 011011 111000

G =









1 0 0 0 1 1

0 1 0 1 0 1

0 0 1 1 1 0









000 ; 000000 100 ; 100011

010 ; 010101 001 ; 001110

110 ; 110110 011 ; 011011

101 ; 101101 111 ; 111000
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Hamming distance: d(x,y) =number of coordinates in which x and

y differ

Weight: d(x, 0) = wt(x)

Examples: d(0000, 0011) = 2, d(0000, 1010) = 2,

d(0000, 1011) = 3

Hamming distance is a distance function, in particular the Triangle

Inequality holds:

d(x, z) ≤ d(x,y) + d(y, z)
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Decoding: y = c + e, e = error vector

Strategy: guess that the codeword sent is the codeword ĉ such that

the number of errors is minimum

⇐⇒ e = y − ĉ has the least number of 1’s

⇐⇒ wt(e) = d(y, ĉ) is minimum

⇐⇒ ĉ is the nearest codeword neighbor of y

Sent: c ; Received: y

Decode: ĉ = nearest codeword neighbor of y
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Example: Code

000000 100011 010101 001110

110110 101101 011011 111000

Received: 011010 ; Nearest neighbor: 011011

Decode: 011011

Received: 101010 ; Nearest neighbor: 100011 or 001110 or

111000 ?

Cannot be determined
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Which errors can be corrected?

Minimum distance of a code C is the minimum distance between

two distinct words in the code.

Example: 000000 100011 010101 001110

110110 101101 011011 111000

has minimum distance 3: d(000000, 100011) = 3.
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Theorem. If C is a code with minimum distance d, nearest

neighbor decoding correctly decodes any received vector in which at

most bd−1
2

c errors have occurred.

Proof: Sent: c Error: e with less than b d−1
2

c 1’s

Received: y = c + e

Claim: c is the unique codeword closest to y.

If c′ is another codeword with distance at most b d−1
2

c from y:

d(c, c′) ≤ d(c,y) + d(y, c′) ≤ b
d − 1

2
c + b

d − 1

2
c ≤ d − 1

Contradiction. 2
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Which errors cannot be corrected?

Received y = c + e = c′ + e′ for c 6= c′. Decoded as c.

e′ = e + (c − c′) ∈ e + C and wt(e) < wt(e′).

All possible errors=F n
2 decomposes into cosets of C. All errors in a

coset are decoded as the minimal weight error in that coset.

Example: Leader

Code 000 111

100 011

010 101

001 110
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Coset leaders for Hamming [7, 4, 3] code:

Leader

Code 0000000 0010110 0100101 0110011 1000011 1010101 1100110 1110000

1000000 1010110 1100101 1110011 0000011 0010101 0100110 0110000

0100000 0110110 0000101 0010011 1100011 1110101 1000110 1010000

0010000 0000110 0110101 0100011 1010011 1000101 1110110 1100000

0001000 0011110 0101101 0111011 1001011 1011101 1101110 1111000

0000100 0010010 0100001 0110111 1000111 1010001 1100010 1110100

0000010 0010100 0100111 0110001 1000001 1010111 1100100 1110010

0000001 0010111 0100100 0110010 1000010 1010100 1100111 1110001

0001111 0011001 0101010 0111100 1001100 1011010 1101001 1111111

1001111 1011001 1101010 1111100 0001100 0011010 0101001 0111111

0101111 0111001 0001010 0011100 1101100 1111010 1001001 1011111

0011111 0001001 0111010 0101100 1011100 1001010 1111001 1101111

0000111 0010001 0100010 0110100 1000100 1010010 1100001 1110111

0001011 0011101 0101110 0111000 1001000 1011110 1101101 1111011

0001101 0011011 0101000 0111110 1001110 1011000 1101011 1111101

0001110 0011000 0101011 0111101 1001101 1011011 1101000 1111110
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Binary symmetric channel:
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Probability of word error, Perr = probability of incorrect or

ambiguous decoding

⇐⇒ Perr = probability of the error not being a coset leader

Probability of a particular error of weight i = pi(1 − p)n−i because

i errors occurred

Probability of the error being a coset leader =
∑

i
probability of

the error being a coset leader of weight i

=
∑

i
αip

i(1 − p)n−i where αi is the number of coset leaders of

weight i

Perr = 1 −
∑

i

αip
i(1 − p)n−i
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Example: Perr = 1 − (1 − p)4 for sending length n = 4 words

without encoding

Perr = 1 − (1 − p)7 − 7p(1 − p)6 for Hamming [7, 4, 3] code

For p = 1/100, the first is ≈ 0.0394 and the second is ≈ 0.0020.
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For a binary symmetric channel with probability of bit error

0 < p < 1, the channel capacity is

C = 1 + p log2(p) + (1 − p) log2(1 − p)

0.8

0.6

0.4

0

0.2

p

10.80.60.40.2

1

Figure 3: Channel capacity function
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Theorem. (Shannon, 1948) Given ε > 0 and R < C, there exists a

sufficiently long linear code with rate greater than R and probability

of decoding error less than ε. No such linear code exists if R > C.

Good codes: RSV codes, Low-density parity-check codes, turbo

codes
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Figure 4: Timeline of error control coding,

http://www.acorn.net.au/telecoms/coding/coding.cfm
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