Combinatorial Interpretations of Generalized Central Factorial and Genocchi Numbers

Feryal Alayont
alayontf@gvsu.edu

Grand Valley State University

January 9, 2016

Classical Rook Theory

Example

Classical Rook Theory

Example

$r_{k}(B)$: Number of ways of placing k non-attacking rooks on B $r_{3}(B)=1, r_{2}(B)=7, r_{1}(B)=6, r_{0}(B)=1$

Triangular boards

For size m triangular board T_{m},

$$
r_{k}\left(T_{m}\right)=S(m+1, m+1-k)
$$

where $S(m, n)$ are the Stirling numbers of the second kind, i.e.

$$
S(m, n)=S(m-1, n-1)+n S(m-1, n)
$$

with $S(m, m)=1$ and $S(m, 1)=1$.

Rooks in Three and Higher Dimensions

Question: What happens if the rooks can fly?

Follow-up: How do we want the rooks to attack in three and higher dimensions?

Rooks in Three and Higher Dimensions

Question: What happens if the rooks can fly?

Follow-up: How do we want the rooks to attack in three and higher dimensions?

Our choice: A rook in n-dimensions attacks along ($n-1$)-dimensional hyperplanes.

Rooks in Three and Higher Dimensions

Question: What happens if the rooks can fly?

Follow-up: How do we want the rooks to attack in three and higher dimensions?

Our choice: A rook in n-dimensions attacks along ($n-1$)-dimensional hyperplanes. For three dimensions, [Zindle, 2007]

Triangular Boards in Three Dimensions

Triangular Boards in Three Dimensions

Theorem (Krzywonos, A.)
For size m triangle board Δ_{m} in three dimensions,

$$
r_{k}\left(\Delta_{m}\right)=T(m+1, m+1-k)
$$

where $T(m, n)$ are the central factorial numbers, i.e.

$$
T(m, n)=T(m-1, n-1)+n^{2} T(m-1, n)
$$

with $T(m, m)=1$ and $T(m, 1)=1$.

Genocchi Boards in Three Dimensions

Genocchi Boards in Three Dimensions

Theorem (Krzywonos, A.)
For a size m Genocchi board Γ_{m} in three dimensions, $r_{m}\left(\Gamma_{m}\right)$ is given by the $(m+1)$ th (unsigned even) Genocchi number $G_{2(m+1)}$ $(1,3,17,155,2073, \ldots)$

Genocchi Numbers

The generating function for the Genocchi numbers G_{n} is

$$
\frac{2 t}{e^{t}+1}=\sum_{n=1}^{\infty} G_{n} \frac{t^{n}}{n!}
$$

$G_{\text {odd }}=0$ and $G_{2 n}$ count

- Permutations $a_{1} a_{2} \ldots a_{2 n-2}$ such that even a_{i} is followed by a smaller number and odd a_{i} is followed by a larger
- Permutations $a_{1} a_{2} \ldots a_{2 n-2}$ such that $a_{2 i}<2 i$ and $a_{2 i-1} \geq 2 i-1$
- Permutations $a_{1} a_{2} \ldots a_{2 n-2}$ such that $a_{i}>a_{i+1}$ means both a_{i} and a_{i+1} are even
- Permutations $a_{1} a_{2} \ldots a_{2 n-2}$ such that $a_{i}<i$ means both a_{i} and i are even

Rook Placements and Partitions

Rook Placements and Partitions

Stirling numbers of the second kind, $S(m, k)$, count partitions of m elements into k non-empty blocks.

Rook placement corresponding to partition $\{1,3\},\{2,5\},\{4\}$ of $\{1,2,3,4,5\}$

Rook Placements in 3-D and Partition Pairs

First partition: Project rooks onto the $x z$-plane
Second partition: Project onto yz-plane
Partition pairs $\left(P_{1}, P_{2}\right)$ such that minimum values of the partitions are the same

Rook Placements and Restricted Permutations

Rook Placements and Restricted Permutations

Example

Rook Placements and Restricted Permutations

Example

Rook Placements and Restricted Permutations

Example

	123		
1			\times
2	\times		
3		\times	

Rook Placements and Restricted Permutations

Example

123			
1			\times
2	\times		
3		\times	

312

Rook Placements in 3-D and Permutation Pairs

Rook Placements in 3-D and Permutation Pairs

Rook Placements in 3-D and Permutation Pairs

First permutation: x coordinates of the rooks from top to bottom Second permutation: y coordinates of the rooks from top to bottom
$\left(\pi_{1}, \pi_{2}\right)$ where π_{1}, π_{2} are permutations of 5 and $\pi_{1}(i)$ or $\pi_{2}(i) \leq i$ for each i.

Generalized Results in m Dimensions

Generalized Results in m Dimensions

Theorem
The generalized central factorial numbers $T_{d}(n, k)$ count the number of ordered d-tuples $\left(P_{1}, P_{2}, \ldots, P_{d}\right)$ of partitions of n into k sets satisfying $\min P_{1}=\min P_{2}=\cdots=\min P_{d}$.

Theorem
Generalized (unsigned) Genocchi numbers $G_{2 m}^{(d)}$ count ordered d-tuples of permutations $\left(\pi_{1}, \pi_{2}, \ldots, \pi_{d}\right)$ of $m-1$ such that $\min _{j} \pi_{j}(i) \leq i$ for $1 \leq i \leq m-1$.

Thanks!

Joint work with
Adam Atkins, Nick Krzywonos, Rachel Moger-Reischer, Ruth Swift

This work was partially supported by NSF grant DMS-1003993, which funded an REU program at GVSU, and by the GVSU S3 Program.

