Introduction to Graph Theory

Feryal Alayont
alayontf@gvsu.edu

Grand Valley State University
December 5, 2021

Graphs

Dots (vertices -singular vertex) A, B, C, D are the objects. Lines (edges) represent there's a relationship between the objects. Two connected dots are said to be adjacent.

Graphs

This graph represents the city of Königsberg from the famous Bridges of Königsberg problem:

The problem asks whether it is possible to cross each bridge once (and come back to where you started).

Picture from Wikipedia.

Graphs: Formally

A graph formally consists of a vertex set V (in this case $\{A, B, C, D\})$ and an edge set E where each edge is a set of two vertices itself. We write edges as $A B$, for brevity. In this case $E=\{A B, A C, A D, B C, C D\}$.

Some definitions

Degree of a vertex: How many edges meet at that vertex; notation $\operatorname{deg}(v)$.

Some definitions

In some cases, we allow multiple connections between two vertices (multiple edges), and a connection from a vertex to itself (loop). In the multiple connections case, each edge increases the degree by 1 at each end point. In the loop case, a loop increases a degree by 2 .

The relationship between degrees and edges

For each of the following graphs: a. Find the degrees of vertices, b. Find the sum of the degrees, c. Find the number of edges.

Do you notice a relationship? Can you justify?

The relationship between degrees and edges

For each of the following graphs: a. Find the degrees of vertices, b. Find the sum of the degrees, c. Find the number of edges.

Do you notice a relationship? Can you justify?
Number of edges $=$ Twice the sum of degrees.

More definitions

H is a subgraph of graph G if the vertices and edges of H are among the vertices and edges, respectively, of G.

Special graph families - Complete graphs

The complete graph K_{n} on n vertices is a graph where every vertex is connected to each of the other vertices exactly once. Shown above is K_{5}.

Special graph families - Cycles

The cycle C_{n} on n vertices is where every vertex is connected to each of its neighbors on both sides in the form of a cycle. Shown above is C_{5}.

Special graph families - Paths

The path P_{n} on n vertices is where every vertex, except for the beginning and end, is connected to each of its neighbors on both sides in the form of a line. Shown above is P_{5}.

We can get a P_{n} from a C_{n} by removing an edge.

Special graph families - Paths

The path P_{n} on n vertices is where every vertex, except for the beginning and end, is connected to each of its neighbors on both sides in the form of a line. Shown above is P_{5}.

We can get a P_{n} from a C_{n} by removing an edge. Hence P_{n} is a subgraph of C_{n}.

Special graph families - Complete bipartite graphs

$K_{m, n}$ has two groups of vertices, m and n vertices; every vertex in one group connects to all vertices in the other; no connections between vertices within the same group. Shown above is $K_{4,3}$ (same as $K_{3,4}$).

Special graphs/families - Wheels, fork, butterfly, trees

Special graphs/families - Wheels, fork, butterfly, trees

Wheel:

Special graphs/families - Wheels, fork, butterfly, trees

Fork/chair:

Special graphs/families - Wheels, fork, butterfly, trees

Fork/chair:

Butterfly:

Special graphs/families - Wheels, fork, butterfly, trees

Fork/chair:

Domination

A dominating set (blue vertices) D is a subset of vertices for which any vertex not in this subset is adjacent to a vertex in D. The domination number is the number of elements in the smallest dominating set.

Domination

A dominating set (blue vertices) D is a subset of vertices for which any vertex not in this subset is adjacent to a vertex in D. The domination number is the number of elements in the smallest dominating set.

Finding the domination number is an NP-complete problem (i.e. hard algorithmically).

Domination Practice

Find the domination number of the following graphs. Some answers will depend on the graph parameter.
Complete K_{n} :

Cycle C_{n} :

Complete bipartite $K_{m, n}$:

Path P_{n} :

Domination Practice

Complete K_{n} :

Domination number $=1$

Cycle C_{n} :

Domination number $=\lceil n / 3\rceil$

Complete bipartite $K_{m, n}$:
Domination number $=2$ unless one side has only one vertex in which case it is 1 .

Path P_{n} :
Domination number $=\lceil n / 3\rceil$

Domination Variations

Domination Variations

k-domination: Each vertex is adjacent to at least k vertices in D.

Domination Variations

k-domination: Each vertex is adjacent to at least k vertices in D.

Connected domination: Require D to be connected.

Domination Variations

k-domination: Each vertex is adjacent to at least k vertices in D.

Connected domination: Require D to be connected.

Distance k domination: Each vertex dominates vertices at most k away.

Domination Variations

k-domination: Each vertex is adjacent to at least k vertices in D.

Connected domination: Require D to be connected.

Distance k domination: Each vertex dominates vertices at most k away.

Domination in digraphs: A digraph (directed graph) is a graph where connections are directional. Think Instagram or Twitter (follow) vs. Facebook or Linkedln connections.

Graph labeling

Assigning labels to the vertices and/or edges of a graph satisfying certain conditions.

Graph labeling

Assigning labels to the vertices and/or edges of a graph satisfying certain conditions.

Vertex coloring: Two adjacent vertices cannot have the same color. Want minimum number of colors, called the chromatic number of the graph.

Graph labeling

Assigning labels to the vertices and/or edges of a graph satisfying certain conditions.

Vertex coloring: Two adjacent vertices cannot have the same color. Want minimum number of colors, called the chromatic number of the graph.

b

Graph labeling

Assigning labels to the vertices and/or edges of a graph satisfying certain conditions.

Vertex coloring: Two adjacent vertices cannot have the same color. Want minimum number of colors, called the chromatic number of the graph.

b

Graph labeling

Assigning labels to the vertices and/or edges of a graph satisfying certain conditions.

Vertex coloring: Two adjacent vertices cannot have the same color. Want minimum number of colors, called the chromatic number of the graph.

b r

Graph labeling

Assigning labels to the vertices and/or edges of a graph satisfying certain conditions.

Vertex coloring: Two adjacent vertices cannot have the same color. Want minimum number of colors, called the chromatic number of the graph.

Graph labeling

Assigning labels to the vertices and/or edges of a graph satisfying certain conditions.

Vertex coloring: Two adjacent vertices cannot have the same color. Want minimum number of colors, called the chromatic number of the graph.

Graph labeling

Assigning labels to the vertices and/or edges of a graph satisfying certain conditions.

Vertex coloring: Two adjacent vertices cannot have the same color. Want minimum number of colors, called the chromatic number of the graph.

Graph labeling

Assigning labels to the vertices and/or edges of a graph satisfying certain conditions.

Vertex coloring: Two adjacent vertices cannot have the same color. Want minimum number of colors, called the chromatic number of the graph.

Coloring Practice

Find the chromatic number of the following graphs. Some answers will depend on the graph parameter.

Complete K_{n} :

Path P_{n} :

Cycle C_{n} :

Coloring Practice

Complete K_{n} :

Chromatic number $=n$

Path P_{n} :
Chromatic number $=2$ (Paths are trees; all trees are bipartite graphs; all bipartite graphs can be colored in two colors.)

Cycle C_{n} :

Chromatic number $=2$ if even, 3 if odd.

More graph labeling and variations

Prime labeling: Assign numbers $1-n$ to n vertices of a graph so that no two adjacent vertices share a positive factor $\neq 1$.

More graph labeling and variations

Prime labeling: Assign numbers $1-n$ to n vertices of a graph so that no two adjacent vertices share a positive factor $\neq 1$.

Graceful labeling: Assign numbers $0-|E|$ to the vertices. For each edge, assign absolute value of the difference between the vertices. If each edge has a different label with labels $1-|E|$, then the labeling is graceful.

Other big themes

- Hypergraphs: When a connection is between a subset of vertices rather than just two vertices, i.e. three vertices can make one connection.

Other big themes

- Hypergraphs: When a connection is between a subset of vertices rather than just two vertices, i.e. three vertices can make one connection.
- Forbidden subgraphs: Max number of edges for graphs not containing a specific subgraph.

Other big themes

- Hypergraphs: When a connection is between a subset of vertices rather than just two vertices, i.e. three vertices can make one connection.
- Forbidden subgraphs: Max number of edges for graphs not containing a specific subgraph.
- Extremal graph theory: Local-global: requiring certain local restrictions corresponds to global requirements.

Other big themes

- Hypergraphs: When a connection is between a subset of vertices rather than just two vertices, i.e. three vertices can make one connection.
- Forbidden subgraphs: Max number of edges for graphs not containing a specific subgraph.
- Extremal graph theory: Local-global: requiring certain local restrictions corresponds to global requirements.
- Spectral graph theory: Investigating properties of graphs via its matrices, like adjacency matrix.

Other big themes

- Hypergraphs: When a connection is between a subset of vertices rather than just two vertices, i.e. three vertices can make one connection.
- Forbidden subgraphs: Max number of edges for graphs not containing a specific subgraph.
- Extremal graph theory: Local-global: requiring certain local restrictions corresponds to global requirements.
- Spectral graph theory: Investigating properties of graphs via its matrices, like adjacency matrix.
- Random graphs

Other big themes

- Hypergraphs: When a connection is between a subset of vertices rather than just two vertices, i.e. three vertices can make one connection.
- Forbidden subgraphs: Max number of edges for graphs not containing a specific subgraph.
- Extremal graph theory: Local-global: requiring certain local restrictions corresponds to global requirements.
- Spectral graph theory: Investigating properties of graphs via its matrices, like adjacency matrix.
- Random graphs
- Graph minor theory

Check out for more graph stuff

- List of small graphs with names:
https://www.graphclasses.org/smallgraphs.html
- Gallian's Dynamic Survey of Graph Labeling:
https://www.combinatorics.org/ds6
- Some books/notes (not all working; old post):
https://math.stackexchange.com/questions/144165/free-graph-theory-resources
- Check out recent AMS/MAA student talk abstracts for project ideas if in need of topics:
https://www.maa.org/sites/default/files/pdf/mathfest/2021/StudentAbstractBook2021B.pdf https:
//www.maa.org/sites/default/files/pdf/jmm/jmm2021/JMM_2021_Student_Poster_Abstracts.pdf
- Check out recent papers at undergraduate math journals:

```
https://scholar.rose-hulman.edu/rhumj/
https://pubs.lib.umn.edu/index.php/mjum/?
https://msp.org/involve/about/journal/about.html
```

Thank you!
Thank you for listening and joining in on the graph calculations, if you were able to.

Email: alayontf@gvsu.edu

