What kind of number is ... ?

Feryal Alayont
alayontf@gvsu.edu

March 13, 2007

Kinds of numbers

Kinds of numbers

- Natural numbers: 1, 2, 3, 4, ...

Kinds of numbers

- Natural numbers: 1, 2, 3, 4, ...
- Integers: ..., $-2,-1,0,1,2, \ldots$

Kinds of numbers

- Natural numbers: $1,2,3,4, \ldots$
- Integers: ..., $-2,-1,0,1,2, \ldots$
- Rational numbers: ..., $0,1,1 / 2,2,1 / 3,3,1 / 4,2 / 3, \ldots$

Kinds of numbers

- Natural numbers: $1,2,3,4, \ldots$
- Integers: ..., $-2,-1,0,1,2, \ldots$
- Rational numbers: ..., $0,1,1 / 2,2,1 / 3,3,1 / 4,2 / 3, \ldots$
- And the rest...

The rest

An irrational number is a real number which is not rational, i.e. it cannot be expressed as $\frac{m}{n}$ where both m and n are integers.

The rest

An irrational number is a real number which is not rational, i.e. it cannot be expressed as $\frac{m}{n}$ where both m and n are integers.

Please write down a few irrational numbers that come to your mind.

Irrationality of $\sqrt{2}$

Proved around 500 B.C. by Pythagoreans.

Irrationality of $\sqrt{2}$

Proved around 500 B.C. by Pythagoreans.
proof: Assume $\sqrt{2}=\frac{m}{n}$ in reduced form.

Irrationality of $\sqrt{2}$

Proved around 500 B.C. by Pythagoreans.
proof: Assume $\sqrt{2}=\frac{m}{n}$ in reduced form.

$$
2 n^{2}=m^{2}
$$

Irrationality of $\sqrt{2}$

Proved around 500 B.C. by Pythagoreans.
proof: Assume $\sqrt{2}=\frac{m}{n}$ in reduced form.

$$
2 n^{2}=m^{2} \quad \rightarrow \quad m=2 k
$$

Irrationality of $\sqrt{2}$

Proved around 500 B.C. by Pythagoreans.
proof: Assume $\sqrt{2}=\frac{m}{n}$ in reduced form.

$$
\begin{aligned}
& 2 n^{2}=m^{2} \quad \rightarrow \quad m=2 k \\
& n^{2}=2 k^{2}
\end{aligned}
$$

Irrationality of $\sqrt{2}$

Proved around 500 B.C. by Pythagoreans.
proof: Assume $\sqrt{2}=\frac{m}{n}$ in reduced form.

$$
\begin{array}{rll}
2 n^{2}=m^{2} & \rightarrow & m=2 k \\
n^{2}=2 k^{2} & \rightarrow & n=2 l
\end{array}
$$

Irrationality of $\sqrt{2}$

Proved around 500 B.C. by Pythagoreans.
proof: Assume $\sqrt{2}=\frac{m}{n}$ in reduced form.

$$
\begin{array}{rll}
2 n^{2}=m^{2} & \rightarrow & m=2 k \\
n^{2}=2 k^{2} & \rightarrow & n=2 l
\end{array}
$$

Contradiction.

Other roots

For an integer $a, a^{1 / n}$ is not a rational number unless a is an nth power of an integer.

Other roots

For an integer $a, a^{1 / n}$ is not a rational number unless a is an nth power of an integer.

More irrational numbers:
$\sqrt{3}, \sqrt{5}, \sqrt{6}, \ldots$,

Other roots

For an integer $a, a^{1 / n}$ is not a rational number unless a is an nth power of an integer.

More irrational numbers:
$\sqrt{3}, \sqrt{5}, \sqrt{6}, \ldots, \sqrt[3]{2}, \sqrt[3]{3}, \sqrt[3]{4}, \ldots$,

Other roots

For an integer $a, a^{1 / n}$ is not a rational number unless a is an nth power of an integer.

More irrational numbers:

$$
\sqrt{3}, \sqrt{5}, \sqrt{6}, \ldots, \sqrt[3]{2}, \sqrt[3]{3}, \sqrt[3]{4}, \ldots, \sqrt[4]{2}, \sqrt[4]{3}, \sqrt[4]{5}, \ldots
$$

Making new irrational numbers

Theorem: If x is rational and y is irrational, then $x+y$ and $x y(x \neq 0)$ are irrational.

Making new irrational numbers

Theorem: If x is rational and y is irrational, then $x+y$ and $x y(x \neq 0)$ are irrational.
proof: Assume x is rational, y is irrational and $x+y$ is rational.

Making new irrational numbers

Theorem: If x is rational and y is irrational, then $x+y$ and $x y(x \neq 0)$ are irrational.
proof: Assume x is rational, y is irrational and $x+y$ is rational. Then $y=(x+y)-x$ is rational too.

Making new irrational numbers

Theorem: If x is rational and y is irrational, then $x+y$ and $x y(x \neq 0)$ are irrational.
proof: Assume x is rational, y is irrational and $x+y$ is rational.
Then $y=(x+y)-x$ is rational too.
Contradiction.

Making new irrational numbers

Theorem: If x is rational and y is irrational, then $x+y$ and $x y(x \neq 0)$ are irrational.
proof: Assume x is rational, y is irrational and $x+y$ is rational.
Then $y=(x+y)-x$ is rational too.
Contradiction.

So: $1+\sqrt{2}$,

Making new irrational numbers

Theorem: If x is rational and y is irrational, then $x+y$ and $x y(x \neq 0)$ are irrational.
proof: Assume x is rational, y is irrational and $x+y$ is rational.
Then $y=(x+y)-x$ is rational too.
Contradiction.

So: $1+\sqrt{2}, 2-\sqrt[3]{3}$,

Making new irrational numbers

Theorem: If x is rational and y is irrational, then $x+y$ and $x y(x \neq 0)$ are irrational.
proof: Assume x is rational, y is irrational and $x+y$ is rational.
Then $y=(x+y)-x$ is rational too.
Contradiction.

So: $1+\sqrt{2}, 2-\sqrt[3]{3}, \frac{5}{3} \sqrt{7}$,

Making new irrational numbers

Theorem: If x is rational and y is irrational, then $x+y$ and $x y(x \neq 0)$ are irrational.
proof: Assume x is rational, y is irrational and $x+y$ is rational.
Then $y=(x+y)-x$ is rational too.
Contradiction.

So: $1+\sqrt{2}, 2-\sqrt[3]{3}, \frac{5}{3} \sqrt{7}, 3+4 \sqrt[3]{5}$ etc. are all irrational.

Making new irrational numbers

Theorem: If x is rational, then $x^{2}, x^{3}, x^{4}, \ldots$ are rational.

Making new irrational numbers

Theorem: If x is rational, then $x^{2}, x^{3}, x^{4}, \ldots$ are rational.
Theorem: (Equivalent) If x is irrational, then $\sqrt{x}, \sqrt[3]{x}, \sqrt[4]{x}, \ldots$ are irrational.

Making new irrational numbers

Theorem: If x is rational, then $x^{2}, x^{3}, x^{4}, \ldots$ are rational.

Theorem: (Equivalent) If x is irrational, then $\sqrt{x}, \sqrt[3]{x}, \sqrt[4]{x}, \ldots$ are irrational.

So: $\sqrt{\sqrt{2}}$,

Making new irrational numbers

Theorem: If x is rational, then $x^{2}, x^{3}, x^{4}, \ldots$ are rational.

Theorem: (Equivalent) If x is irrational, then $\sqrt{x}, \sqrt[3]{x}, \sqrt[4]{x}, \ldots$ are irrational.

So: $\sqrt{\sqrt{2}}, \sqrt[3]{1+\sqrt{2}}$,

Making new irrational numbers

Theorem: If x is rational, then $x^{2}, x^{3}, x^{4}, \ldots$ are rational.
Theorem: (Equivalent) If x is irrational, then $\sqrt{x}, \sqrt[3]{x}, \sqrt[4]{x}, \ldots$ are irrational.

So: $\sqrt{\sqrt{2}}, \sqrt[3]{1+\sqrt{2}}, \sqrt{\frac{5}{3} \sqrt[4]{5}+3}$,

Making new irrational numbers

Theorem: If x is rational, then $x^{2}, x^{3}, x^{4}, \ldots$ are rational.
Theorem: (Equivalent) If x is irrational, then $\sqrt{x}, \sqrt[3]{x}, \sqrt[4]{x}, \ldots$ are irrational.

So: $\sqrt{\sqrt{2}}, \sqrt[3]{1+\sqrt{2}}, \sqrt{\frac{5}{3} \sqrt[4]{5}+3}, 2+\sqrt[3]{7+\frac{3}{2} \sqrt{5}}$ etc. are all irrational.

Making new irrational numbers

Theorem: If x is rational, then $x^{2}, x^{3}, x^{4}, \ldots$ are rational.
Theorem: (Equivalent) If x is irrational, then $\sqrt{x}, \sqrt[3]{x}, \sqrt[4]{x}, \ldots$ are irrational.

So: $\sqrt{\sqrt{2}}, \sqrt[3]{1+\sqrt{2}}, \sqrt{\frac{5}{3} \sqrt[4]{5}+3}, 2+\sqrt[3]{7+\frac{3}{2} \sqrt{5}}$ etc. are all irrational.
And so is:

$$
\frac{11}{5}+\sqrt[7]{\frac{1}{2}+\frac{2}{5} \sqrt{4+\sqrt{3}}}
$$

Irrationality of e

Irrationality of e

Euler: e is irrational, using continued fractions, 1737.

Irrationality of e

Euler: e is irrational, using continued fractions, 1737.

Fourier: a more elementary proof using the series expansion, 1815.

Irrationality of e

proof: Taylor expansion of $e^{x}: e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots+\frac{x^{k}}{k!}+\ldots$

Irrationality of e

proof: Taylor expansion of $e^{x}: e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots+\frac{x^{k}}{k!}+\ldots$ So: $e=1+1+\frac{1}{2!}+\ldots+\frac{1}{k!}+\ldots$

Irrationality of e

proof: Taylor expansion of $e^{x}: e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots+\frac{x^{k}}{k!}+\ldots$ So: $e=1+1+\frac{1}{2!}+\ldots+\frac{1}{k!}+\ldots$

Assume $e=\frac{m}{n}, m$ and n integers

Irrationality of e

proof: Taylor expansion of $e^{x}: e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots+\frac{x^{k}}{k!}+\ldots$ So: $e=1+1+\frac{1}{2!}+\ldots+\frac{1}{k!}+\ldots$

Assume $e=\frac{m}{n}, m$ and n integers
$n!\left(e-\left(1+1+\frac{1}{2!}+\ldots+\frac{1}{n!}\right)\right)$

Irrationality of e

proof: Taylor expansion of $e^{x}: e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots+\frac{x^{k}}{k!}+\ldots$ So: $e=1+1+\frac{1}{2!}+\ldots+\frac{1}{k!}+\ldots$
Assume $e=\frac{m}{n}, m$ and n integers
$n!\left(e-\left(1+1+\frac{1}{2!}+\ldots+\frac{1}{n!}\right)\right)$ is a positive integer, call it A

Irrationality of e

proof: Taylor expansion of $e^{x}: e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots+\frac{x^{k}}{k!}+\ldots$ So: $e=1+1+\frac{1}{2!}+\ldots+\frac{1}{k!}+\ldots$
Assume $e=\frac{m}{n}, m$ and n integers
$n!\left(e-\left(1+1+\frac{1}{2!}+\ldots+\frac{1}{n!}\right)\right)$ is a positive integer, call it A

$$
A=n!\left(\frac{1}{(n+1)!}+\frac{1}{(n+2)!}+\frac{1}{(n+3)!}+\ldots\right)
$$

Irrationality of e

proof: Taylor expansion of $e^{x}: e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots+\frac{x^{k}}{k!}+\ldots$ So: $e=1+1+\frac{1}{2!}+\ldots+\frac{1}{k!}+\ldots$
Assume $e=\frac{m}{n}, m$ and n integers
$n!\left(e-\left(1+1+\frac{1}{2!}+\ldots+\frac{1}{n!}\right)\right)$ is a positive integer, call it A

$$
\begin{gathered}
A=n!\left(\frac{1}{(n+1)!}+\frac{1}{(n+2)!}+\frac{1}{(n+3)!}+\ldots\right) \\
=\frac{1}{n+1}+\frac{1}{(n+1)(n+2)}+\frac{1}{(n+1)(n+2)(n+3)}+\ldots
\end{gathered}
$$

Irrationality of e

proof: Taylor expansion of $e^{x}: e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots+\frac{x^{k}}{k!}+\ldots$ So: $e=1+1+\frac{1}{2!}+\ldots+\frac{1}{k!}+\ldots$
Assume $e=\frac{m}{n}, m$ and n integers
$n!\left(e-\left(1+1+\frac{1}{2!}+\ldots+\frac{1}{n!}\right)\right)$ is a positive integer, call it A

$$
\begin{gathered}
A=n!\left(\frac{1}{(n+1)!}+\frac{1}{(n+2)!}+\frac{1}{(n+3)!}+\ldots\right) \\
=\frac{1}{n+1}+\frac{1}{(n+1)(n+2)}+\frac{1}{(n+1)(n+2)(n+3)}+\ldots \\
\quad<\frac{1}{n+1}+\frac{1}{(n+1)^{2}}+\frac{1}{(n+1)^{3}}+\ldots=\frac{1}{n}
\end{gathered}
$$

Irrationality of e

proof: Taylor expansion of $e^{x}: e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots+\frac{x^{k}}{k!}+\ldots$ So: $e=1+1+\frac{1}{2!}+\ldots+\frac{1}{k!}+\ldots$

Assume $e=\frac{m}{n}, m$ and n integers
$n!\left(e-\left(1+1+\frac{1}{2!}+\ldots+\frac{1}{n!}\right)\right)$ is a positive integer, call it A

$$
\begin{gathered}
A=n!\left(\frac{1}{(n+1)!}+\frac{1}{(n+2)!}+\frac{1}{(n+3)!}+\ldots\right) \\
=\frac{1}{n+1}+\frac{1}{(n+1)(n+2)}+\frac{1}{(n+1)(n+2)(n+3)}+\ldots \\
\quad<\frac{1}{n+1}+\frac{1}{(n+1)^{2}}+\frac{1}{(n+1)^{3}}+\ldots=\frac{1}{n}
\end{gathered}
$$

Contradiction.

Irrationality of π

Lambert: π is irrational, using continued fractions, 1761.

Irrationality of π

Lambert: π is irrational, using continued fractions, 1761.

Niven: a relatively simple proof following an idea of Hermite, using integrals, 1947

Irrationality of π

Niven's polynomials: $P(x)=\frac{x^{n}(1-x)^{n}}{n!}$

Irrationality of π

Niven's polynomials: $P(x)=\frac{x^{n}(1-x)^{n}}{n!}$
example: For $n=3, P(x)=\frac{1}{3!}\left(x^{3}-3 x^{4}+3 x^{5}-x^{6}\right)$.

Irrationality of π

Niven's polynomials: $P(x)=\frac{x^{n}(1-x)^{n}}{n!}$
example: For $n=3, P(x)=\frac{1}{3!}\left(x^{3}-3 x^{4}+3 x^{5}-x^{6}\right)$.
Properties: 1) $P(x)$ is a polynomial of degree $2 n$.

Irrationality of π

Niven's polynomials: $P(x)=\frac{x^{n}(1-x)^{n}}{n!}$
example: For $n=3, P(x)=\frac{1}{3!}\left(x^{3}-3 x^{4}+3 x^{5}-x^{6}\right)$.
Properties: 1) $P(x)$ is a polynomial of degree $2 n$.
2) For $0<x<1,0<P(x)<\frac{1}{n!}$.

Irrationality of π

Niven's polynomials: $P(x)=\frac{x^{n}(1-x)^{n}}{n!}$
example: For $n=3, P(x)=\frac{1}{3!}\left(x^{3}-3 x^{4}+3 x^{5}-x^{6}\right)$.
Properties: 1) $P(x)$ is a polynomial of degree $2 n$.
2) For $0<x<1,0<P(x)<\frac{1}{n!}$.
3) Any k th derivative of $P(x)$ yields an integer for $x=0$ and $x=1$.

Irrationality of π

Theorem: π^{2} is irrational.

Irrationality of π

Theorem: π^{2} is irrational.
proof: Assume $\pi^{2}=\frac{a}{b}, a$ and b integers.

Irrationality of π

Theorem: π^{2} is irrational.
proof: Assume $\pi^{2}=\frac{a}{b}, a$ and b integers.
Let $N=a^{n} \int_{0}^{1} P(x) \pi \sin \pi x d x, P(x)=\frac{x^{n}(1-x)^{n}}{n!}$.

Irrationality of π

Theorem: π^{2} is irrational.
proof: Assume $\pi^{2}=\frac{a}{b}, a$ and b integers.
Let $N=a^{n} \int_{0}^{1} P(x) \pi \sin \pi x d x, P(x)=\frac{x^{n}(1-x)^{n}}{n!}$.
N (by parts)

Irrationality of π

Theorem: π^{2} is irrational.
proof: Assume $\pi^{2}=\frac{a}{b}, a$ and b integers.
Let $N=a^{n} \int_{0}^{1} P(x) \pi \sin \pi x d x, P(x)=\frac{x^{n}(1-x)^{n}}{n!}$.
N (by parts)
$\left.a^{n}\left(-\cos \pi x\left(P(x)-\frac{P^{\prime \prime}(x)}{\pi^{2}}+\ldots\right)+\sin \pi x\left(\frac{P^{\prime}(x)}{\pi}-\frac{P^{(3)}(x)}{\pi^{3}}+\ldots\right)\right)\right|_{0} ^{1}$

Irrationality of π

Theorem: π^{2} is irrational.
proof: Assume $\pi^{2}=\frac{a}{b}$, a and b integers.
Let $N=a^{n} \int_{0}^{1} P(x) \pi \sin \pi x d x, P(x)=\frac{x^{n}(1-x)^{n}}{n!}$.
N (by parts)
$\left.a^{n}\left(-\cos \pi x\left(P(x)-\frac{P^{\prime \prime}(x)}{\pi^{2}}+\ldots\right)+\sin \pi x\left(\frac{P^{\prime}(x)}{\pi}-\frac{P^{(3)}(x)}{\pi^{3}}+\ldots\right)\right)\right|_{0} ^{1}$
$\left.=-a^{n} \cos \pi x\left(P(x)-\frac{P^{\prime \prime}(x)}{\pi^{2}}+\ldots \pm \frac{P^{(2 n)}(x)}{\pi^{2 n}}\right)\right)\left.\right|_{0} ^{1}$

Irrationality of π

Theorem: π^{2} is irrational.
proof: Assume $\pi^{2}=\frac{a}{b}$, a and b integers.
Let $N=a^{n} \int_{0}^{1} P(x) \pi \sin \pi x d x, P(x)=\frac{x^{n}(1-x)^{n}}{n!}$.
$N^{\text {(by parts) }}$

$$
\begin{gathered}
\left.a^{n}\left(-\cos \pi x\left(P(x)-\frac{P^{\prime \prime}(x)}{\pi^{2}}+\ldots\right)+\sin \pi x\left(\frac{P^{\prime}(x)}{\pi}-\frac{P^{(3)}(x)}{\pi^{3}}+\ldots\right)\right)\right|_{0} ^{1} \\
\left.=-a^{n} \cos \pi x\left(P(x)-\frac{P^{\prime \prime}(x)}{\pi^{2}}+\ldots \pm \frac{P^{(2 n)}(x)}{\pi^{2 n}}\right)\right)\left.\right|_{0} ^{1}
\end{gathered}
$$

$a^{n} \frac{1}{\pi^{2 n}}$ is an integer and the derivative values are integers, so N is an integer.

Irrationality of π

$$
0<N=a^{n} \int_{0}^{1} P(x) \pi \sin \pi x d x<\frac{\pi a^{n}}{n!}
$$

Irrationality of π

$$
0<N=a^{n} \int_{0}^{1} P(x) \pi \sin \pi x d x<\frac{\pi a^{n}}{n!}
$$

N is an integer but we can make $\frac{\pi a^{n}}{n!}$ small by choosing a large n.

Irrationality of π

$$
0<N=a^{n} \int_{0}^{1} P(x) \pi \sin \pi x d x<\frac{\pi a^{n}}{n!}
$$

N is an integer but we can make $\frac{\pi a^{n}}{n!}$ small by choosing a large n.
Contradiction.

Irrationality of π

$$
0<N=a^{n} \int_{0}^{1} P(x) \pi \sin \pi x d x<\frac{\pi a^{n}}{n!}
$$

N is an integer but we can make $\frac{\pi a^{n}}{n!}$ small by choosing a large n.
Contradiction.

Corollary: π is irrational.

Making more irrational numbers

Theorem: (?) If x and y are irrational numbers, then $x+y$ is irrational.

Making more irrational numbers

Theorem: (?) If x and y are irrational numbers, then $x+y$ is irrational.

Sigh... not true: $x=\pi$ and $y=-\pi$

Making more irrational numbers

Theorem: (?) If x and y are irrational numbers, then $x+y$ is irrational.

Sigh... not true: $x=\pi$ and $y=-\pi$
What about $\pi+\sqrt{2}$? Is this irrational?

Algebraic numbers

A complex number is called an algebraic number if it is a root of a polynomial with rational coefficients.

Algebraic numbers

A complex number is called an algebraic number if it is a root of a polynomial with rational coefficients.
example: $\sqrt{2}$ is algebraic:

Algebraic numbers

A complex number is called an algebraic number if it is a root of a polynomial with rational coefficients.
example: $\sqrt{2}$ is algebraic: $p(x)=x^{2}-2$

Algebraic numbers

A complex number is called an algebraic number if it is a root of a polynomial with rational coefficients.
example: $\sqrt{2}$ is algebraic: $p(x)=x^{2}-2$
example: Any rational number is algebraic:

Algebraic numbers

A complex number is called an algebraic number if it is a root of a polynomial with rational coefficients.
example: $\sqrt{2}$ is algebraic: $p(x)=x^{2}-2$
example: Any rational number is algebraic: $x=\frac{m}{n}$ is the root of $p(x)=x-\frac{m}{n}$

Algebraic numbers

A complex number is called an algebraic number if it is a root of a polynomial with rational coefficients.
example: $\sqrt{2}$ is algebraic: $p(x)=x^{2}-2$
example: Any rational number is algebraic: $x=\frac{m}{n}$ is the root of $p(x)=x-\frac{m}{n}$
example: $1+\sqrt{2}$ is algebraic:

Algebraic numbers

A complex number is called an algebraic number if it is a root of a polynomial with rational coefficients.
example: $\sqrt{2}$ is algebraic: $p(x)=x^{2}-2$
example: Any rational number is algebraic: $x=\frac{m}{n}$ is the root of $p(x)=x-\frac{m}{n}$
example: $1+\sqrt{2}$ is algebraic: $p(x)=x^{2}-2 x-1$

Algebraic numbers

A complex number is called an algebraic number if it is a root of a polynomial with rational coefficients.
example: $\sqrt{2}$ is algebraic: $p(x)=x^{2}-2$
example: Any rational number is algebraic: $x=\frac{m}{n}$ is the root of $p(x)=x-\frac{m}{n}$
example: $1+\sqrt{2}$ is algebraic: $p(x)=x^{2}-2 x-1$
example: i is algebraic

Algebraic numbers

There are algebraic numbers which are not expressible by radicals, Abel, 1824

Closure property of addition and multiplication

Closure property of addition and multiplication

Closure property of algebraic numbers: if we add or multiply two algebraic numbers we get another algebraic number.

Closure property of addition and multiplication

Closure property of algebraic numbers: if we add or multiply two algebraic numbers we get another algebraic number.

So: $2 \sqrt[3]{2}+\frac{3}{2} \sqrt{7}$,

Closure property of addition and multiplication

Closure property of algebraic numbers: if we add or multiply two algebraic numbers we get another algebraic number.

So: $2 \sqrt[3]{2}+\frac{3}{2} \sqrt{7}, 1+\sqrt{2}+\sqrt[3]{3}+5 \sqrt{7} \sqrt[3]{130}$ etc. are algebraic.

Kinds of numbers again

- Natural numbers: 1, 2, 3, 4, ...
- Integers: ..., $-2,-1,0,1,2, \ldots$
- Rational numbers: ..., $0,1,1 / 2,2,1 / 3,3,1 / 4,2 / 3, \ldots$

Kinds of numbers again

- Natural numbers: 1, 2, 3, 4, ...
- Integers: ..., $-2,-1,0,1,2, \ldots$
- Rational numbers: ..., $0,1,1 / 2,2,1 / 3,3,1 / 4,2 / 3, \ldots$
- Algebraic numbers: $\sqrt{2}, \sqrt[3]{5}, 1+\sqrt{3}+2 \sqrt[3]{13}, \ldots$

Kinds of numbers again

- Natural numbers: 1, 2, 3, 4, ...
- Integers: ..., $-2,-1,0,1,2, \ldots$
- Rational numbers: ..., $0,1,1 / 2,2,1 / 3,3,1 / 4,2 / 3, \ldots$
- Algebraic numbers: $\sqrt{2}, \sqrt[3]{5}, 1+\sqrt{3}+2 \sqrt[3]{13}, \ldots$
- And the rest...

The rest

A transcendental number is a number which is not algebraic, i.e. it is not the root of a polynomial with rational coefficients.

The rest

A transcendental number is a number which is not algebraic, i.e. it is not the root of a polynomial with rational coefficients.

$$
e \text { and } \pi \text { are both transcendental: }
$$

The rest

A transcendental number is a number which is not algebraic, i.e. it is not the root of a polynomial with rational coefficients.

$$
e \text { and } \pi \text { are both transcendental: }
$$

e transcendental conjectured by Legendre, 1794; proved by Hermite, 1873

The rest

A transcendental number is a number which is not algebraic, i.e. it is not the root of a polynomial with rational coefficients.

$$
e \text { and } \pi \text { are both transcendental: }
$$

e transcendental conjectured by Legendre, 1794; proved by Hermite, 1873 π transcendental conjectured by Euler, 1755; proved by Lindemann, 1882

Making more more irrational numbers

Theorem: If x is algebraic and y is transcendental, then $x+y$ and $x y$ $(x \neq 0)$ are transcendental, and hence irrational.

Making more more irrational numbers

Theorem: If x is algebraic and y is transcendental, then $x+y$ and $x y$ $(x \neq 0)$ are transcendental, and hence irrational.

So: $\pi+\sqrt{2}$,

Making more more irrational numbers

Theorem: If x is algebraic and y is transcendental, then $x+y$ and $x y$ $(x \neq 0)$ are transcendental, and hence irrational.

So: $\pi+\sqrt{2}, e-\sqrt[3]{1+\sqrt{5}}$,

Making more more irrational numbers

Theorem: If x is algebraic and y is transcendental, then $x+y$ and $x y$ $(x \neq 0)$ are transcendental, and hence irrational.

So: $\pi+\sqrt{2}, e-\sqrt[3]{1+\sqrt{5}}, \pi(1+\sqrt{7})-\sqrt[3]{2-\frac{3}{5} \sqrt{11}}$, etc. are all transcendental, and hence irrational.

Making more more irrational numbers

Theorem: If x is algebraic, then \sqrt{x} is algebraic.

Making more more irrational numbers

Theorem: If x is algebraic, then \sqrt{x} is algebraic.
proof: If x satisfies $a x^{2}+b x+c=0$, then \sqrt{x} satisfies $a x^{4}+b x^{2}+c=0$.

Making more more irrational numbers

Theorem: If x is algebraic, then \sqrt{x} is algebraic.
proof: If x satisfies $a x^{2}+b x+c=0$, then \sqrt{x} satisfies $a x^{4}+b x^{2}+c=0$.

Theorem: If x is algebraic, then $\sqrt[n]{x}$ is algebraic.

Making more more irrational numbers

Theorem: If x is algebraic, then \sqrt{x} is algebraic.
proof: If x satisfies $a x^{2}+b x+c=0$, then \sqrt{x} satisfies $a x^{4}+b x^{2}+c=0$.

Theorem: If x is algebraic, then $\sqrt[n]{x}$ is algebraic.
Theorem: (Equivalent) If x is transcendental, then $x^{2}, x^{3}, x^{4}, \ldots$ are transcendental.

Making more more irrational numbers

Theorem: If x is algebraic, then \sqrt{x} is algebraic.
proof: If x satisfies $a x^{2}+b x+c=0$, then \sqrt{x} satisfies $a x^{4}+b x^{2}+c=0$.

Theorem: If x is algebraic, then $\sqrt[n]{x}$ is algebraic.
Theorem: (Equivalent) If x is transcendental, then $x^{2}, x^{3}, x^{4}, \ldots$ are transcendental.

So: $\pi^{2}, e^{5}, \sqrt{2}+\pi^{2}$, etc. are all irrational.

More transcendence results

Theorem: (Hermite, Lindemann) 1) If α is an algebraic number not equal to 0 or 1 , then $\log \alpha$ is transcendental.
2) If α is a non-zero algebraic number, then e^{α} is transcendental.

More transcendence results

Theorem: (Hermite, Lindemann) 1) If α is an algebraic number not equal to 0 or 1 , then $\log \alpha$ is transcendental.
2) If α is a non-zero algebraic number, then e^{α} is transcendental.

Transcendence of π : If π were algebraic, then $i \pi$ is algebraic and $e^{i \pi}=-1$ would have to be transcendental.

Hilbert's 7th problem

Theorem: (Gel'fond, Schneider, 1934) If α is an algebraic number not equal to 0 or 1 and β is a non-rational algebraic number, then α^{β} is transcendental.

Hilbert's 7th problem

Theorem: (Gel'fond, Schneider, 1934) If α is an algebraic number not equal to 0 or 1 and β is a non-rational algebraic number, then α^{β} is transcendental.

So: $3^{\sqrt{3}}$,

Hilbert's 7th problem

Theorem: (Gel'fond, Schneider, 1934) If α is an algebraic number not equal to 0 or 1 and β is a non-rational algebraic number, then α^{β} is transcendental.

So: $3^{\sqrt{3}}, 2^{1+\sqrt{2}}$,

Hilbert's 7th problem

Theorem: (Gel'fond, Schneider, 1934) If α is an algebraic number not equal to 0 or 1 and β is a non-rational algebraic number, then α^{β} is transcendental.

So: $3^{\sqrt{3}}, 2^{1+\sqrt{2}}, \sqrt{2}^{\sqrt{2}}$, etc. are all transcendental.

Hilbert's 7th problem

Theorem: (Gel'fond, Schneider, 1934) If α is an algebraic number not equal to 0 or 1 and β is a non-rational algebraic number, then α^{β} is transcendental.

So: $3^{\sqrt{3}}, 2^{1+\sqrt{2}}, \sqrt{2}^{\sqrt{2}}$, etc. are all transcendental.
Also: e^{π} is transcendental.

Hilbert's 7th problem

Theorem: (Gel'fond, Schneider, 1934) If α is an algebraic number not equal to 0 or 1 and β is a non-rational algebraic number, then α^{β} is transcendental.

So: $3^{\sqrt{3}}, 2^{1+\sqrt{2}}, \sqrt{2}^{\sqrt{2}}$, etc. are all transcendental.
Also: e^{π} is transcendental.
If e^{π} were algebraic, then $\left(e^{\pi}\right)^{i}=e^{i \pi}=-1$ would have to be transcendental.

Conclusion

MTH 210 conjecture: $\pi+e$ is irrational.

Conclusion

MTH 210 conjecture: $\pi+e$ is irrational.

Open problems:
Are $\pi+e, \pi / e, \pi^{e}, 2^{e}, \ln (\pi)$ irrational?

References

Aigner, M., Ziegler, G., Proofs from the book, 2000 Ribenboim, P., My Numbers, My Friends, 2000

