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Kinds of numbers

• Natural numbers: 1, 2, 3, 4, . . .

• Integers: . . . , -2, -1, 0, 1, 2, . . .

• Rational numbers: . . ., 0, 1, 1/2, 2, 1/3, 3, 1/4, 2/3, . . .

• And the rest . . .
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The rest

An irrational number is a real number which is not rational, i.e. it cannot

be expressed as m
n where both m and n are integers.

Please write down a few irrational numbers that come to your mind.
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Irrationality of
√

2

Proved around 500 B.C. by Pythagoreans.

proof: Assume
√

2 = m
n in reduced form.

2n2 = m2 → m = 2k

n2 = 2k2 → n = 2l

Contradiction.
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Other roots

For an integer a, a1/n is not a rational number unless a is an nth power

of an integer.

More irrational numbers:

√
3,
√

5,
√

6, . . . ,
3
√

2,
3
√

3,
3
√

4, . . . ,
4
√

2,
4
√

3,
4
√

5, . . .
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Making new irrational numbers

Theorem: If x is rational and y is irrational, then x + y and xy (x 6= 0)
are irrational.

proof: Assume x is rational, y is irrational and x + y is rational.
Then y = (x + y)− x is rational too.
Contradiction.

So: 1 +
√

2, 2− 3
√

3, 5
3

√
7, 3 + 4 3

√
5 etc. are all irrational.

F. Alayont (GVSU) What kind of number is . . . ? March 13, 2007 6 / 25



Making new irrational numbers

Theorem: If x is rational and y is irrational, then x + y and xy (x 6= 0)
are irrational.

proof: Assume x is rational, y is irrational and x + y is rational.

Then y = (x + y)− x is rational too.
Contradiction.

So: 1 +
√

2, 2− 3
√

3, 5
3

√
7, 3 + 4 3

√
5 etc. are all irrational.

F. Alayont (GVSU) What kind of number is . . . ? March 13, 2007 6 / 25



Making new irrational numbers

Theorem: If x is rational and y is irrational, then x + y and xy (x 6= 0)
are irrational.

proof: Assume x is rational, y is irrational and x + y is rational.
Then y = (x + y)− x is rational too.

Contradiction.

So: 1 +
√

2, 2− 3
√

3, 5
3

√
7, 3 + 4 3

√
5 etc. are all irrational.

F. Alayont (GVSU) What kind of number is . . . ? March 13, 2007 6 / 25



Making new irrational numbers

Theorem: If x is rational and y is irrational, then x + y and xy (x 6= 0)
are irrational.

proof: Assume x is rational, y is irrational and x + y is rational.
Then y = (x + y)− x is rational too.
Contradiction.

So: 1 +
√

2, 2− 3
√

3, 5
3

√
7, 3 + 4 3

√
5 etc. are all irrational.

F. Alayont (GVSU) What kind of number is . . . ? March 13, 2007 6 / 25



Making new irrational numbers

Theorem: If x is rational and y is irrational, then x + y and xy (x 6= 0)
are irrational.

proof: Assume x is rational, y is irrational and x + y is rational.
Then y = (x + y)− x is rational too.
Contradiction.

So: 1 +
√

2,

2− 3
√

3, 5
3

√
7, 3 + 4 3

√
5 etc. are all irrational.

F. Alayont (GVSU) What kind of number is . . . ? March 13, 2007 6 / 25



Making new irrational numbers

Theorem: If x is rational and y is irrational, then x + y and xy (x 6= 0)
are irrational.

proof: Assume x is rational, y is irrational and x + y is rational.
Then y = (x + y)− x is rational too.
Contradiction.

So: 1 +
√

2, 2− 3
√

3,

5
3

√
7, 3 + 4 3

√
5 etc. are all irrational.

F. Alayont (GVSU) What kind of number is . . . ? March 13, 2007 6 / 25



Making new irrational numbers

Theorem: If x is rational and y is irrational, then x + y and xy (x 6= 0)
are irrational.

proof: Assume x is rational, y is irrational and x + y is rational.
Then y = (x + y)− x is rational too.
Contradiction.

So: 1 +
√

2, 2− 3
√

3, 5
3

√
7,

3 + 4 3
√

5 etc. are all irrational.

F. Alayont (GVSU) What kind of number is . . . ? March 13, 2007 6 / 25



Making new irrational numbers

Theorem: If x is rational and y is irrational, then x + y and xy (x 6= 0)
are irrational.

proof: Assume x is rational, y is irrational and x + y is rational.
Then y = (x + y)− x is rational too.
Contradiction.

So: 1 +
√

2, 2− 3
√

3, 5
3

√
7, 3 + 4 3

√
5 etc. are all irrational.

F. Alayont (GVSU) What kind of number is . . . ? March 13, 2007 6 / 25



Making new irrational numbers

Theorem: If x is rational, then x2, x3, x4, . . . are rational.

Theorem: (Equivalent) If x is irrational, then
√

x , 3
√

x , 4
√

x , . . . are
irrational.

So:
√√

2,
3
√

1 +
√

2,
√

5
3

4
√

5 + 3 , 2 + 3

√
7 + 3

2

√
5 etc. are all irrational.

And so is:
11

5
+

7

√
1

2
+

2

5

√
4 +

√
3
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Irrationality of e

Euler: e is irrational, using continued fractions, 1737.

Fourier: a more elementary proof using the series expansion, 1815.
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Irrationality of e

proof: Taylor expansion of ex : ex = 1 + x + x2

2! + x3

3! + . . . + xk

k! + . . .

So: e = 1 + 1 + 1
2! + . . . + 1

k! + . . .

Assume e = m
n , m and n integers

n!
(
e −

(
1 + 1 + 1

2! + . . . + 1
n!

))
is a positive integer, call it A

A = n!
( 1

(n + 1)!
+

1

(n + 2)!
+

1

(n + 3)!
+ . . .

)
=

1

n + 1
+

1

(n + 1)(n + 2)
+

1

(n + 1)(n + 2)(n + 3)
+ . . .

<
1

n + 1
+

1

(n + 1)2
+

1

(n + 1)3
+ . . . =

1

n

Contradiction.
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Irrationality of π

Lambert: π is irrational, using continued fractions, 1761.

Niven: a relatively simple proof following an idea of Hermite, using
integrals, 1947
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Irrationality of π

Niven’s polynomials: P(x) = xn(1−x)n

n!

example: For n = 3, P(x) = 1
3!(x

3 − 3x4 + 3x5 − x6).

Properties: 1) P(x) is a polynomial of degree 2n.

2) For 0 < x < 1, 0 < P(x) < 1
n! .

3) Any kth derivative of P(x) yields an integer for x = 0 and x = 1.
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Irrationality of π

Theorem: π2 is irrational.

proof: Assume π2 = a
b , a and b integers.

Let N = an
∫ 1
0 P(x)π sin πx dx , P(x) = xn(1−x)n

n! .

N
(by parts)

=

an
(
− cos πx

(
P(x)− P′′(x)

π2 + . . .
)

+ sin πx
(P′(x)

π − P(3)(x)
π3 + . . .

))∣∣∣1
0

= −an cos πx
(
P(x)− P′′(x)

π2 + . . .± P(2n)(x)
π2n

))∣∣∣1
0

an 1
π2n is an integer and the derivative values are integers, so N is an

integer.
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Irrationality of π

0 < N = an

∫ 1

0
P(x)π sin πx dx <

πan

n!

N is an integer but we can make πan

n! small by choosing a large n.

Contradiction.

Corollary: π is irrational.
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Making more irrational numbers

Theorem: (?) If x and y are irrational numbers, then x + y is irrational.

Sigh... not true: x = π and y = −π

What about π +
√

2? Is this irrational?

F. Alayont (GVSU) What kind of number is . . . ? March 13, 2007 14 / 25
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Algebraic numbers

A complex number is called an algebraic number if it is a root of

a polynomial with rational coefficients.

example:
√

2 is algebraic: p(x) = x2 − 2

example: Any rational number is algebraic: x = m
n is the root of

p(x) = x − m
n

example: 1 +
√

2 is algebraic: p(x) = x2 − 2x − 1

example: i is algebraic

F. Alayont (GVSU) What kind of number is . . . ? March 13, 2007 15 / 25
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Algebraic numbers

There are algebraic numbers which are not expressible by radicals, Abel,
1824

F. Alayont (GVSU) What kind of number is . . . ? March 13, 2007 16 / 25



Closure property of addition and multiplication

Closure property of algebraic numbers: if we add or multiply two algebraic
numbers we get another algebraic number.

So: 2 3
√

2 + 3
2

√
7, 1 +

√
2 + 3

√
3 + 5

√
7 3
√

130 etc. are algebraic.

F. Alayont (GVSU) What kind of number is . . . ? March 13, 2007 17 / 25
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Kinds of numbers again

• Natural numbers: 1, 2, 3, 4, . . .

• Integers: . . . , -2, -1, 0, 1, 2, . . .

• Rational numbers: . . ., 0, 1, 1/2, 2, 1/3, 3, 1/4, 2/3, . . .

• Algebraic numbers:
√

2, 3
√

5, 1 +
√

3 + 2 3
√

13, . . .

• And the rest . . .
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The rest

A transcendental number is a number which is not algebraic, i.e. it is

not the root of a polynomial with rational coefficients.

e and π are both transcendental:

e transcendental conjectured by Legendre, 1794; proved by Hermite, 1873

π transcendental conjectured by Euler, 1755; proved by Lindemann, 1882

F. Alayont (GVSU) What kind of number is . . . ? March 13, 2007 19 / 25
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Making more more irrational numbers

Theorem: If x is algebraic and y is transcendental, then x + y and xy
(x 6= 0) are transcendental, and hence irrational.

So: π +
√

2, e − 3
√

1 +
√

5, π(1 +
√

7)− 3

√
2− 3

5

√
11, etc. are all

transcendental, and hence irrational.

F. Alayont (GVSU) What kind of number is . . . ? March 13, 2007 20 / 25
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Making more more irrational numbers

Theorem: If x is algebraic, then
√

x is algebraic.

proof: If x satisfies ax2 + bx + c = 0, then
√

x satisfies ax4 + bx2 + c = 0.

Theorem: If x is algebraic, then n
√

x is algebraic.

Theorem: (Equivalent) If x is transcendental, then x2, x3, x4, . . . are
transcendental.

So: π2, e5,
√

2 + π2, etc. are all irrational.
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More transcendence results

Theorem: (Hermite, Lindemann) 1) If α is an algebraic number not equal
to 0 or 1, then log α is transcendental.
2) If α is a non-zero algebraic number, then eα is transcendental.

Transcendence of π: If π were algebraic, then iπ is algebraic and e iπ = −1
would have to be transcendental.
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Hilbert’s 7th problem

Theorem: (Gel’fond, Schneider, 1934) If α is an algebraic number not
equal to 0 or 1 and β is a non-rational algebraic number, then αβ is
transcendental.

So: 3
√

3, 21+
√

2,
√

2
√

2
, etc. are all transcendental.

Also: eπ is transcendental.
If eπ were algebraic, then (eπ)i = e iπ = −1 would have to be
transcendental.
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Conclusion

MTH 210 conjecture: π + e is irrational.

Open problems:
Are π + e, π/e, πe , 2e , ln(π) irrational?
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