RSA: A public-key cryptosystem

Feryâl Alayont
University of Arizona
April 5, 2005

Symmetric-key cryptosystem:

Public-key cryptosystem:

The most common public-key cryptosystem in use: RSA
Invented in 1977 by Rivest, Shamir and Adleman from MIT
Usage: to exchange session keys extremely securely
SSH opening lines:
SSH Secure Shell 3.0.0 (Build 203) Copyright (c) 2000-2001 SSH Communications Security Corp - http://www.ssh.com/

This copy of SSH Secure Shell is a non-commercial version. This version does not include PKI and PKCS \#11 functionality.

This program uses RSA BSAFE(CCrypto-C by RSA Security Inc.

Keys and encryption:
Bob: two primes p, q about 155 decimal digits (secret) $N=p q$ (public) random e, less than $\varphi(N)=(p-1)(q-1)$ (public) d, the secret key: $e d=1(\bmod \varphi(N))$

Alice: message M, less than N (secret) ciphertext: $C=M^{e}(\bmod N)$

Bob: \quad decrypted text: $C^{d}=M(\bmod N)$ raising to $d^{\text {th }}$ 'undoes' the e-th power

Example:

Bob: $\quad p=5, q=11, N=55$

$$
\begin{aligned}
& e=7<\varphi(N)=(5-1)(11-1)=40 \\
& d=23, e d=161=1(\bmod 40)
\end{aligned}
$$

Alice: $\quad M=7, C=7^{7}=\left(7^{2}\right)^{2} 7^{2} 7=28(\bmod 55)$

Bob: $\quad C^{23}=28^{23}=7(\bmod 55)$
Bob recovered the message!

How does RSA work?
Theorem. For any modulus N and an integer a which does not have a common factor with $N, a^{\varphi(N)}=1(\bmod N)$. (Euler's Theorem)

RSA decryption: d satisfies

$$
e d=1+k \varphi(N)
$$

for some integer k.

$$
\bmod N: C^{d}=\left(M^{e}\right)^{d}=M^{1+k \varphi(N)}=M\left(M^{\varphi(N)}\right)^{k}=M(\bmod N)
$$

Conclusion: C^{d} recovers original message M !

Is RSA computationally feasible?

- Prime number generation

Pick a random large number; test primality using probabilistic tests; repeat many times \rightarrow very likely prime!

PRIMES is in P (2002), but not needed!

- Finding d

Euclidean algorithm can be used efficiently to find the multiplicative inverse of $e(\bmod \varphi(N))$.

Example:

$$
\begin{aligned}
& 40-5 \cdot 7=5 \\
& 7-1 \cdot 5=2 \\
& 5-2 \cdot 2=1 \\
& \Longrightarrow \quad 1=5-2 \cdot 2=5-2(7-5) \\
& =3 \cdot 5-2 \cdot 7=\ldots=23 \cdot 7-4 \cdot 40 \\
& \Longrightarrow \quad 23 \cdot 7=1+4 \cdot 40
\end{aligned}
$$

Speed: Takes at most $2 \log _{2} e$ steps.

- Exponentiating

Fast exponentiation algorithm.
Example: To find C^{23} :

$$
C \xrightarrow{\wedge} 2
$$

Binary expansion of 23: 10111

$$
C^{1} \rightarrow C^{10} \rightarrow C^{100} \rightarrow C^{101} \rightarrow C^{1010} \rightarrow C^{1011} \rightarrow C^{10110} \rightarrow C^{10111}
$$

Speed: Takes at most $2 \log _{2} d$ steps.

Conclusion: Encryption and decryption for authorized users are fast! RSA is computationally feasible.

Attacks on RSA

- Forward search attack

If all possible messages are known, Eve can encrypt all of them and compare with the ciphertext.

Solution: Add random bits at front/back

- Same small e for different users

If same message is sent to three users with same small $e=3$:

$$
C_{1}=M^{3}\left(\bmod N_{1}\right) \quad C_{2}=M^{3}\left(\bmod N_{2}\right)
$$

$$
C_{3}=M^{3}\left(\bmod N_{3}\right)
$$

Using the Chinese Remainder Theorem, find C^{\prime} such that $C^{\prime}=M^{3}\left(\bmod N_{1} N_{2} N_{3}\right)$.
$C^{\prime}=M^{3}$ itself since $M^{3}<N_{1} N_{2} N_{3}$.
Take cube root of C^{\prime} in the integers to recover M.
Solution: Avoid small e or add random bits at front/back of messages.

Example: $\quad N_{1}=2 \cdot 13=26, N_{2}=3 \cdot 11=33$, $N_{3}=5 \cdot 7=35, e=3$.

$$
\begin{gathered}
C_{1}=M^{3}(\bmod 26), \quad C_{2}=M^{3}(\bmod 33) \\
C_{3}=M^{3}(\bmod 35)
\end{gathered}
$$

We want $C^{\prime}(\bmod 26 \cdot 33 \cdot 35)$ such that C^{\prime} satisfies the above three equations.

Find D_{1}, D_{2} and D_{3} such that

$$
\begin{gathered}
33 \cdot 35 D_{1}=1(\bmod 26), 26 \cdot 35 D_{2}=1(\bmod 33) \\
26 \cdot 33 D_{3}=1(\bmod 35) \\
C^{\prime}=\quad M^{3}(\bmod 26) D_{1} 33 \cdot 35+M^{3}(\bmod 33) D_{2} 26 \cdot 35 \\
+M^{3}(\bmod 35) D_{3} 26 \cdot 33(\bmod 26 \cdot 33 \cdot 35)
\end{gathered}
$$

Check:

$$
C^{\prime}=M^{3} D_{3} 26 \cdot 33=M^{3}(\bmod 35)
$$

Similarly $C^{\prime}=M^{3}(\bmod 26)$ and $(\bmod 33)$. So

$$
C^{\prime}=M^{3}(\bmod 26 \cdot 33 \cdot 35)
$$

- Same N for different users

Suppose e_{1} and e_{2} are two relatively prime encryption exponents. By using Euclidean algorithm, find f_{1}, f_{2} s.t.

$$
1=f_{1} e_{1}+f_{2} e_{2} .
$$

Suppose M is sent to both of the users:

$$
C_{1}=M^{e_{1}} \quad C_{2}=M^{e_{2}}
$$

Eve recovers M :

$$
C_{1}^{f_{1}} C_{2}^{f_{2}}=M^{e_{1} f_{1}+e_{2} f_{2}}=M(\bmod N)
$$

Solution: Each user chooses their own N or adds random bits to messages.

- Factoring N

An easy case: The prime factors p, q are close to each other

$$
p q=\left(\frac{p+q}{2}\right)^{2}-\left(\frac{p-q}{2}\right)^{2}
$$

If p and q are close, it is easy to express N as a difference of two squares.
Method: Take the smallest integer k greater than \sqrt{N}.
Consider $Q(x)=x^{2}-N, x=k, k+1, \ldots$.
If $Q(x)$ is a square $y^{2}, N=(x-y)(x+y)$.

Example: $11 \cdot 23=253, \sqrt{253} \cong 15.9$

$$
\begin{gathered}
16^{2}-253=3 \text { not a square } \\
17^{2}-253=6^{2} \\
253=(17-6)(17+6)
\end{gathered}
$$

Easier than trial division with 2, 3, 5, 7, 11 .

Example: $13 \cdot 37=481, \sqrt{481} \cong 21.9$

$$
\begin{array}{rlr}
22^{2}-481 & =3 \quad \text { not a square } \\
23^{2}-481 & =3 \cdot 16 \quad \text { not a square } \\
24^{2}-481 & =95 \quad \text { not a square } \\
25^{2}-481 & =12^{2} \\
481 & =(25-12)(25+12)
\end{array}
$$

Not much easier than trial division.

Use a variant:
Basis for most modern factoring algorithms, including Quadratic Sieve and the Number Field Sieve.

Consider $R(x)=x^{2}(\bmod N), x=k, k+1, \ldots$.
If there are a few x 's for which the product of $R(x)$'s give a square, we are (almost) done!

Example:

$$
\begin{gathered}
22^{2}=3(\bmod 481) \\
23^{2}=3 \cdot 16(\bmod 481) \\
(22 \cdot 23)^{2}=(3 \cdot 4)^{2}(\bmod 481) \\
\Longrightarrow(22 \cdot 23-12)(22 \cdot 23+12)=0(\bmod 481) \\
\Longrightarrow(25-12)(25+12)=481
\end{gathered}
$$

Other factorization attacks require choosing primes carefully.
Choosing primes:
$p-q$ should not be small.
p and q should be about 512 bits in length.
(Elliptic curve factorization)
$p-1$ has a large prime factor. (Pollard's $p-1$ attack)
$p+1$ has a large prime factor. (Variation of Pollard's attack)

References:
DI Management, RSA Algorithm page,
http://www.di-mgt.com.au/rsa_alg.html
Dan Boneh, Twenty Years of Attacks on the RSA Cryptosystem, AMS Notices, 1999.

Whitfield Diffie, The First Ten Years of Public-Key Cryptography, Proceedings of the IEEE, 1988.

James H. Ellis, The history of Non-Secret Encryption, http://www.cesg.gov.uk/site/publications/media/ellis.pdf

Paul B. Garrett, Making, Breaking Codes: An Introduction to Cryptology, 2001.

Alfred J. Menezes, Paul C. van Oorschot, Scott A. Vanstone, Handbook of Applied Cryptography, 2001.

Carl Pomerance, A tale of Two Sieves, AMS Notices, 1996.

