Anti-games on affine geometries or, how getting bored with SET leads to interesting math

David Clark

George Fisk & Nurry Goren (center) 2014 Minnesota Pi Mu Epsilon Conference

Color: Red, Green, Purple Number: 1, 2, 3 Filling: Open, Stripe, Solid Shape: Squiggle, Oval, Diamond

Color: Red, Green, Purple Number: 1, 2, 3 Filling: Open, Stripe, Solid Shape: Squiggle, Oval, Diamond

Set: 3 cards, each attribute all same or all different.

Color: Red, Green, Purple Number: 1, 2, 3 Filling: Open, Stripe, Solid Shape: Squiggle, Oval, Diamond

Set: 3 cards, each attribute all same or all different.

Color: Red, Green, Purple Number: 1, 2, 3 Filling: Open, Stripe, Solid Shape: Squiggle, Oval, Diamond

Set: 3 cards, each attribute all same or all different.

Affine Geometry AG(n, q):

- **Points:** Vectors in \mathbb{F}_q^n
- Lines: 1-dim subspaces of \mathbb{F}_q^n and their cosets

Affine Geometry AG(4,3):

- **Points:** Vectors in \mathbb{F}_3^4
- Lines: 1-dim subspaces of \mathbb{F}_3^4 and their cosets

 $\langle {\it c}, {\it n}, {\it f}, {\it s}
angle$

Affine Geometry AG(4,3):

- **Points:** Vectors in \mathbb{F}_3^4
- Lines: 1-dim subspaces of \mathbb{F}_3^4 and their cosets

	С	n	f	S
0	Red	3	Open	Oval
1				Squiggle
2	Green	2	Solid	Diamond

Line: 1-dim subspace of \mathbb{F}_3^4

	С	n	f	S
0	Red	3	Open	Oval
				Squiggle
2	Green	2	Solid	Diamond

Line: 1-dim subspace of \mathbb{F}_3^4

	С	n	f	S
0	Red	3	Open	Oval
				Squiggle
2	Green	2	Solid	Diamond

Line: 1-dim subspace of \mathbb{F}_3^4

	С	n	f	S
0	Red	3	Open	Oval
				Squiggle
2	Green	2	Solid	Diamond

Line: 1-dim subspace of \mathbb{F}_3^4 or a coset

	С	n	f	S
0	Red	3	Open	Oval
				Squiggle
2	Green	2	Solid	Diamond

Line: 1-dim subspace of \mathbb{F}_3^4 or a coset

Point

Two points

Line (set)

2 points determine a **unique** line

Intersecting lines

2 lines intersect in 1 point...

Plane of 3^2 cards $\cong AG(2,3)$

... or lines can be parallel

Plane of 3^2 cards $\cong AG(2,3)$

The geometry of SET

Hyperplane of 3^3 cards $\cong AG(3,3)$

The geometry of SET

All 3^4 cards $\cong AG(4,3)$

Xavier (Player 1) vs. Olivia (Player 2)

$$(0,2)$$
 $(1,2)$ $(2,2)$

$$(0,1)$$
 $(1,1)$ $(2,1)$

(0,0) (1,0) (2,0)

Cap in AG(n,q): A set of points that contain no line.

 $(0,2) \ (1,2) \ (2,2)$

$$(0,1)$$
 $(1,1)$ $(2,1)$
 $(0,0)$ $(1,0)$ $(2,0)$

Theorem (Pellegrino, 1971): Every set of 21 SET cards contains a *set*. **Cap** in AG(n, q): A set of points that contain no line.

 $(0,2) \ (1,2) \ (2,2)$

$$(0,1)$$
 $(1,1)$ $(2,1)$
 $(0,0)$ $(1,0)$ $(2,0)$

Theorem (Pellegrino, 1971): Every set of 21 SET cards contains a *set*. **Cap** in AG(n,q): A set of points that contain no line.

 $(0,2) \ (1,2) \ (2,2)$

Theorem (Pellegrino, 1971): The size of a maximal cap in AG(4,3) is 20. Caps inspired **Anti-SET**: Backwards tic-tac-toe played with SET.

- Play with all 81 SET cards
- X, O alternate taking any available card
- First to have a *set* in their hand *loses*

Caps inspired **Anti-SET**: Backwards tic-tac-toe played with SET.

- Play with all 81 SET cards
- X, O alternate taking any available card
- First to have a *set* in their hand *loses*

- Play with all 81 points of AG(4,3).
- X, O alternate taking any available point
- First to have a line in their hand *loses*

Moves: \mathcal{X}_0 , \mathcal{O}_1 , \mathcal{X}_1 , \mathcal{O}_2 , ... (= points in AG(4,3))

Winning Strategy for Xavier

Pick \mathcal{X}_n to complete the line through \mathcal{X}_0 and \mathcal{O}_n .

Proof: In this situation:

How could Xavier's move be occupied?

Lemma: Xavier can't lose

Proof by picture:

Lemma: Xavier can't lose

Proof by picture:

Lemma: Xavier can't lose

Proof by picture:

Lemma: Xavier can't lose

Vector proof

Lemma: Xavier can't lose

Proof by picture:

This is a *mitre* configuration:

Vector proof

- A maximal cap in AG(4,3) has size 20.
- There are 81 points.
- So, one player will eventually take a 21st card.

A similar argument works for all AG(n, 3).

Detail: We don't know exact cap sizes for all AG(n, 3)!

Theorem: Winning Strategy for Xavier

Pick \mathcal{X}_n to complete the line through \mathcal{X}_0 and \mathcal{O}_n .

Proof: By the previous lemmas.

Theorem: Winning Strategy for Xavier

Pick \mathcal{X}_n to complete the line through \mathcal{X}_0 and \mathcal{O}_n .

Proof: By the previous lemmas.

How general is this proof? In AG(n, 3), n > 1:

- Every pair of points defines a unique line.
- There are 3 points on every line.
- There are plenty of *mitre* configurations:

Cap: A set of points that contains no line. $m_2(n)$: Size of a maximal cap in AG(n, 3).

$$m_2(2) = 4$$

Theorem: Olivia can force the game to $m_2(n)$ moves.

(Assuming Xavier follows the given strategy.)

Theorem: Olivia can force the game to $m_2(n)$ moves.

(Assuming Xavier follows the given strategy.)

Proof:

Olivia takes every move from a maximal cap *C* containing *X*₀.

Theorem: Olivia can force the game to $m_2(n)$ moves.

(Assuming Xavier follows the given strategy.)

- Olivia takes every move from a maximal cap C containing X₀.
- Thus Olivia never makes a line within the cap.

Theorem: Olivia can force the game to $m_2(n)$ moves.

(Assuming Xavier follows the given strategy.)

- Olivia takes every move from a maximal cap C containing X₀.
- Thus Olivia never makes a line within the cap.
- Xavier only takes points in \overline{C} .

Theorem: Olivia can force the game to $m_2(n)$ moves.

(Assuming Xavier follows the given strategy.)

- Olivia takes every move from a maximal cap C containing X₀.
- Thus Olivia never makes a line within the cap.
- Xavier only takes points in \overline{C} .

Theorem: Olivia can force the game to $m_2(n)$ moves.

(Assuming Xavier follows the given strategy.)

- Olivia takes every move from a maximal cap *C* containing *X*₀.
- Thus Olivia never makes a line within the cap.
- Xavier only takes points in \overline{C} .

Theorem: Olivia can force the game to $m_2(n)$ moves.

(Assuming Xavier follows the given strategy.)

- Olivia takes every move from a maximal cap *C* containing *X*₀.
- Thus Olivia never makes a line within the cap.
- Xavier only takes points in \overline{C} .

Theorem: Olivia can force the game to $m_2(n)$ moves.

(Assuming Xavier follows the given strategy.)

- Olivia takes every move from a maximal cap *C* containing *X*₀.
- Thus Olivia never makes a line within the cap.
- Xavier only takes points in \overline{C} .

Theorem: Olivia can force the game to $m_2(n)$ moves.

(Assuming Xavier follows the given strategy.)

- Olivia takes every move from a maximal cap *C* containing *X*₀.
- Thus Olivia never makes a line within the cap.
- Xavier only takes points in \overline{C} .
- Olivia can make one last move outside of C, guaranteed to lose.*

More options per attribute (in AG(n, q), q > 3)

- No longer a *unique* 3rd point on each line.
- Losing condition: $\left\{\frac{q+3}{2}, \ldots, q\right\}$ points of a line?
- \mathcal{X} 's strategy: Could \mathcal{O} steal a needed point? (Partial) Solution: With $X_0 = \vec{0}$, pick $X_n = -O_n$.

More options per attribute (in AG(n, q), q > 3)

- No longer a *unique* 3rd point on each line.
- Losing condition: $\left\{\frac{q+3}{2}, \ldots, q\right\}$ points of a line?
- X's strategy: Could O steal a needed point? (Partial) Solution: With X₀ = 0, pick X_n = -O_n.
- Optimal play (may) depend on (k, m) arcs:
 k points, of which some m (but no m + 1) are collinear.
- Unified viewpoint: "What are the substructures from which X and O must choose their points?"

 $\begin{array}{c} X_2 \\ I \\ O_2 \\ I \\ X_1 \\ I \\ O_1 \\ I \\ X_0 \end{array}$

More options per attribute (in AG(n, q), q > 3)

- No longer a *unique* 3rd point on each line.
- Losing condition: $\left\{\frac{q+3}{2}, \ldots, q\right\}$ points of a line?
- X's strategy: Could O steal a needed point? (Partial) Solution: With X₀ = 0, pick X_n = -O_n.
- Optimal play (may) depend on (k, m) arcs:
 k points, of which some m (but no m + 1) are collinear.
- Unified viewpoint: "What are the substructures from which X and O must choose their points?"

Steiner triple systems & other Steiner designs

• Problem: Fewer mitres.

More options per attribute (in AG(n, q), q > 3)

- No longer a *unique* 3rd point on each line.
- Losing condition: $\left\{\frac{q+3}{2}, \ldots, q\right\}$ points of a line?
- X's strategy: Could O steal a needed point? (Partial) Solution: With X₀ = 0, pick X_n = -O_n.
- Optimal play (may) depend on (k, m) arcs:
 k points, of which some m (but no m + 1) are collinear.
- Unified viewpoint: "What are the substructures from which X and O must choose their points?"

Steiner triple systems & other Steiner designs

• Problem: Fewer mitres.

Special cases are great projects for undergraduates!

Questions? clarkdav@gvsu.edu

(Samuel Morse born April 27, 1791)

More information:

- David Clark, George Fisk, and Nurry Goren: A variation on the game SET.
 Involve 9 (2) (2016) 249–264.
- Benjamin Lent Davis and Diane Maclagan: *The card game SET*. Mathematical Intelligencer 25 (3) (2003) 33–40.
- Maureen T. Carroll and Steven T. Dougherty: *Tic-Tac-Toe on a finite plane*.
 Mathematics Magazine 77 (4) (2004) 260–274.

If Xavier has a line, then $\mathcal{X} = \vec{a} + \vec{b}$

If Xavier has a line, then $\mathcal{X} = \vec{a} + \vec{b}$ By the strategy, $\mathcal{X} + \mathcal{O} + \vec{0} = \vec{0}$

If Xavier has a line, then $\mathcal{X} = \vec{a} + \vec{b}$ By the strategy, $\mathcal{X} + \mathcal{O} + \vec{0} = \vec{0}$ So, $\mathcal{O} = 2\vec{a} + 2\vec{b}$

If Xavier has a line, then $\mathcal{X} = \vec{a} + \vec{b}$ By the strategy, $\mathcal{X} + \mathcal{O} + \vec{0} = \vec{0}$ So, $\mathcal{O} = 2\vec{a} + 2\vec{b}$ $\vec{a} + \vec{b} + \mathcal{O} = \vec{0}$, so Ophelia chose a line first.

Choose a set S of 5 points:

Choose 3 parallel lines not contained in S.

One of these meets *S* in 1 point *P*.

Draw lines connecting *P* to the two points in $\ell_1 \cap S$

Each line meets ℓ_2 at a different point. But ℓ_2 has only 1 point not in *S*. So one of those points must be in *S*.

This line is contained entirely in *S*.

• Play two full turns.

This gives 2 lines which span a 9-point plane P.

• Play two full turns.

This gives 2 lines which span a 9-point plane P.

 There is no tie in P: Maximal cap in AG(2,3) has size 4.

• Play two full turns.

This gives 2 lines which span a 9-point plane P.

- There is no tie in P: Maximal cap in AG(2,3) has size 4.
- If Olivia keeps playing in P, she will lose.

Lemma: There are no ties

• If Olivia plays outside of *P*, Xavier still can't lose. *Xavier's strategy never picks a point in P.*

Lemma: There are no ties

• If Olivia plays outside of *P*, Xavier still can't lose. *Xavier's strategy never picks a point in P.*

• Therefore, Olivia must either lose outside of *P*, or eventually play in *P* again... and lose.

