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Reflexive Social Attention in Monkeys and Humans

looking, we asked humans and rhesus macaques toRobert O. Deaner,1,* and Michael L. Platt1,2,3

1Department of Neurobiology shift their gaze from a central stimulus to a peripheral
target appearing randomly on the left or right followingDuke University Medical Center

2 Center for Cognitive Neuroscience the presentation of an image of a rhesus macaque ran-
domly looking to the left or right for 100, 200, 400, or3 Department of Biological Anthropology and

Anatomy 800 ms. A critical feature of this task is that the direction
of gaze in the monkey face did not predict the locationDuke University

Durham, North Carolina 27710 of the target. We presented two monkey face images in
blocks: one of a rhesus macaque with its head oriented
forward and its eyes averted to the left or right (“Eyes
Only”) and a second of the same monkey with both itsSummary
head and eyes averted to the left or right (“Head & Eyes”).

For both images, standardized reaction times for mon-For humans, social cues often guide the focus of atten-
keys and humans were faster when the target appearedtion. Although many nonhuman primates, like humans,
in the direction indicated by the monkey face (Congruentlive in large, complex social groups, the extent to
Condition), particularly when faces were viewed for 200which human and nonhuman primates share funda-
ms (Figure 1A). For both species, a 2 � 2 � 4 ANOVAmental mechanisms of social attention remains unex-
(congruency [congruent or incongruent] � imageplored. Here, we show that, when viewing a rhesus
[“Head & Eyes” or “Eyes Only”] � viewing duration [100,macaque looking in a particular direction, both rhesus
200, 400, or 800 ms]) indicated an interaction betweenmacaques and humans reflexively and covertly orient
viewing duration and congruency (monkey: F � 4.78,their attention in the same direction. Specifically, when
df � 3,6240, p � 0.002; human: F � 4.45, df � 3,1648,performing a peripheral visual target detection task,
p � 0.004). Post-hoc t tests revealed that, for each spe-viewing a monkey with either its eyes alone or with
cies and for both images, standardized reaction timesboth its head and eyes averted to one side facilitated
in congruent trials were significantly faster when facesthe detection of peripheral targets when they randomly
were viewed for 200 ms (for humans, viewing the “Eyesappeared on the same side. Moreover, viewing images
Only” image for 800 ms also resulted in faster reactionof a monkey with averted gaze evoked small but sys-
times in congruent trials). Moreover, this result was con-tematic shifts in eye position in the direction of gaze
sistent across subjects: at 200 ms, all subjects, with bothin the image. The similar magnitude and temporal dy-
images, exhibited faster standardized reaction times innamics of response facilitation and eye deviation in
congruent trials, and this effect was significant for onemonkeys and humans suggest shared neural circuitry
individual monkey subject and one individual humanmediating social attention.
subject for each image. These data are consistent with
the idea that viewing a face with its gaze oriented in a

Results and Discussion particular direction reflexively and covertly shifts atten-
tion in the same direction in both monkeys and humans.

Where we look often betrays our intentions and desires. Covertly orienting attention is often accompanied or
Not surprisingly, when we see a person looking in a followed by small but systematic eye movements in the
particular direction, we reflexively and covertly orient same direction [13, 14], and the activation of brain areas
our attention, as well as our overt gaze, in the same involved in oculomotor processing is associated with
direction [1–4]. This gaze-following reflex is considered spatial shifts of attention [15]. Such findings suggest
to be a precursor to more complex sociocognitive abili- a close relationship between spatial attention and eye
ties in humans, such as theory of mind [5], and is com- movements. Although our subjects were required to
promised in neurodevelopmental disorders such as au- maintain fixation within a small tolerance zone, we ex-
tism [6] and Turner syndrome [7]. Understanding the plored whether, in addition to improving reaction times
neural basis of gaze following and other aspects of so- for detecting peripheral targets, viewing a monkey look-
cially mediated attention, as well as their disruption in ing in a particular direction was also associated with
neurological disorders, would be facilitated by an animal systematic changes in eye position. We found that, im-
model. Although several studies have reported that mediately before initiating a correct response, eye posi-
some nonhuman primate species orient gaze overtly in tion within this tolerance zone was biased in the direc-
the same direction as another individual [8–11], there tion indicated by the monkey face, especially with longer
is no evidence that nonhuman primates covertly shift viewing times (Figure 1B; 2 � 2 � 4 ANOVA, interaction
attention where another individual is looking [12], and between viewing duration and gaze direction; monkey:
no study has directly compared social attention in hu- F � 8.36, df � 3,6240, p � 0.0001; human: F � 6.34,
mans and any animal species. df � 3,1648, p � 0.001). With 400 and 800 ms viewing

To investigate directly whether humans and monkeys durations, eye position was biased in the direction of
exhibit similar sensitivity to where another individual is gaze in the monkey face for all subjects viewing both

images (with the exception of one monkey subject view-
ing the “Head & Eyes” image for 800 ms). Furthermore,*Correspondence: deaner@neuro.duke.edu
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Figure 1. Effects of Social Cues on Reaction Time and Eye Position

(A) Mean (�SEM) standardized reaction times for congruent (dashed) and incongruent (solid) trials. Top row: “Eyes Only” image; bottom row:
“Head & Eyes” image.
(B) Mean (�SEM) standardized horizontal eye position for rightward- (solid) and leftward (dashed)-gazing images. Post-hoc t test: * p � 0.05;
** p � 0.001.

these effects were statistically significant for two individ- An additional question is whether these shifts in the
subjects’ eye position reflect holistic processing of theual monkey subjects and two individual human subjects

viewing the “Eyes Only” image for either 400 or 800 direction of gaze in the face or instead simply reflect a
reorientation of gaze to the midpoint of the eyes in thems, and for three individual monkey subjects and one

individual human subject viewing the “Head & Eyes” image, which was slightly offset to one side or the other
relative to the center of the image as well as the monitor.image for either 400 or 800 ms.

A crucial question is whether these changes in eye A previous investigation [4] demonstrated that, in hu-
mans, reflexive shifts of attention in response to facesposition within the tolerance window were produced, at

least in part, by microsaccades, which are hypothesized with averted gaze cannot be fully explained by the spa-
tial position of salient features. To address this issue into overtly indicate covert shifts of attention [13, 14]. To

address this issue, we measured, for each trial, the first nonhuman primates, we collected additional data from
two monkey subjects viewing a version of the “Eyeseye movement reaching a velocity of 8� s�1 and oc-

curring after the onset of the gaze image but prior to Only” image in which the midpoint of the two eyes was
centered on both the image and the monitor rather thanthe response to the target. Such eye movements were

detected in 25% of trials for monkeys and 32% of trials offset by 0.08�, as in the original image. We found that
eye position within the tolerance window deviated in thefor humans. The vast majority of these microsaccades

occurred with the 400 and 800 ms viewing times (mon- direction of gaze in this image, and this effect became
more pronounced with prolonged viewing (F � 3.84,key: 96%; human: 97%). These movements exhibited a

linear relationship between peak velocity and amplitude df � 3,1520, p � 0.01; at 800 ms, post-hoc t test, p �
0.001). In addition, in trials in which microsaccades werecharacteristic of saccades (monkey: r2 � 0.11, b � 30.3,

df � 1,1568, p � 0.0001; human: r2 � 0.28, b � 36.3, detected, horizontal amplitude was biased by the direc-
tion of gaze in this modified image (F � 2.72, df � 1,128,df � 1,528, p � 0.0001) and were of small amplitudes,

typical of microsaccades (monkey: 0.83� � 0.2�; human: p � 0.02). These data suggest that covert attention fol-
lows the direction of gaze in a viewed face, rather than0.86� � 0.2�). Crucially, the horizontal amplitude of these

microsaccades was biased by the direction of gaze in the relative spatial positions of salient features.
The finding that social cues influence eye positionthe monkey face. On average, rightward-gazing monkey

faces evoked rightward microsaccades, and leftward- raises the possibility that improved response times in
congruent trials could be due to cortical magnificationgazing monkey faces evoked leftward microsaccades,

for both monkeys (F � 18.91, df � 1,1566, p � 0.0001) of visual stimulation nearer the retinal fovea as the line
of sight deviates toward the target. In fact, one mightand humans (F � 77.46, df � 1,528, p � 0.0001). To-

gether, our eye position and microsaccade results sup- argue that if small shifts in eye position within the fixation
window could account for reaction time differences,port the conclusion that both monkeys and humans re-

flexively and covertly orient attention in the direction in then the shifts of attention evoked by gaze cues in our
study, and previous ones [2–4], are better described aswhich another individual is looking.
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overt rather than covert. To explore this issue, we tested in nonhuman primate faces. Reaction time differences
between congruent and incongruent trials in our studywhether the horizontal distance from the line of sight to

the target, as estimated from eye position, predicted were similar to those reported previously for human sub-
jects performing target detection tasks while viewingstandardized reaction times when faces were viewed

for 200 ms. We found that eye position did not predict human [3, 4] or schematic [2] faces with averted gaze.
The question of whether nonhuman primates covertlyreaction times for monkeys (F � 1.13, df � 1,1454, p �

0.29) but did so for humans (F � 16.01, df � 1,389, p � shift their attention to where another human is looking
has not yet been investigated; however, previous stud-0.001). When the influence of eye position was removed

statistically, however, reaction times for human subjects ies [8, 11] have demonstrated that nonhuman primates
do overtly orient their attention in the direction of awere still significantly faster when peripheral targets ap-

peared on the side indicated by the monkey face (AN- human’s gaze. Collectively, these findings suggest that
the perceptual channels responsible for detecting facesCOVA; Fface orientation � 22.12, df � 1,388, p � 0.0001). Thus,

faster reaction times in congruent trials likely reflect and their direction of gaze are broadly tuned in both
monkeys and humans.central changes in perceptual processing rather than

movement-induced changes in retinal stimulation. In nonsocial attention tasks, response times are facili-
tated when peripheral cue onset precedes the unpre-Under natural conditions, shifting attention to a pe-

ripheral visual stimulus is often followed by an overt dictable onset of a target at the same location by roughly
100–200 ms but are inhibited with longer cue-target de-reorientation of gaze to the same location. Although

our task required subjects to maintain fixation on the lays; these findings suggest a transient, reflexive, and
covert shift of attention toward the cue [22, 23]. Unlikemonkey face prior to the appearance of the peripheral

target, in some trials, subjects prematurely shifted gaze such exogenous orienting of attention, endogenous ori-
enting of attention following the presentation of nonso-out of the fixation tolerance zone before the target ap-

peared, despite the fact that such responses were incor- cial symbolic cues at fixation results in response time
facilitation for congruent targets at longer cue-targetrect (and monkey subjects were not rewarded for them).

These erroneous saccades were generally in the direc- delays but no inhibition. Intriguingly, the response times
of both our monkey and human subjects, like thosetion indicated by the monkey face (173 of 259 errors for

monkeys, binomial probability � 0.0001; 14 of 22 errors reported for humans in similar prior studies [2–4], exhib-
ited aspects of both exogenous and endogenous cuingfor humans, binomial probability � 0.14) and occurred

almost exclusively in trials with 400 or 800 ms face view- of attention. Response times were facilitated when tar-
gets appeared in the direction of gaze in the face imageing times (monkey: 98%; human: 100%). Combined with

our previous analyses of response time, eye position, after short viewing times but showed no inhibition after
longer viewing times. Moreover, both our monkey andand microsaccades, these results suggest that, for both

monkeys and humans, viewing a face looking in a partic- human subjects made microsaccades in the direction
of gaze in the monkey face only after prolonged viewing.ular direction reflexively and covertly shifts visual atten-

tion in the same direction and sometimes leads to an These data suggest that shifts of attention triggered by
viewing a face with averted gaze may access a special-overt reorientation of gaze.

One intriguing aspect of our reaction time and eye ized social-orienting mechanism exhibiting aspects of
both exogenously and endogenously cued attention [4].position results is that the “Eyes Only” image produced

effects as strong as those evoked by the “Head & Eyes” Our results suggest that common mechanisms medi-
ate fundamental processes of social attention in mon-image (reaction times: both species, p � 0.08 for interac-

tions of image � congruency and image � congruency � keys and humans. Recent neuroimaging studies in hu-
mans collectively implicate brain regions near theviewing duration; eye position: both species, p � 0.13

for interactions of image � gaze direction and image � superior temporal sulcus in decoding where another
individual is looking and the parietal cortex for orientinggaze direction � viewing duration). Although previous

studies have shown that humans are sensitive to both attention and gaze in the same direction [24]. Neuronal
recording and ablation studies in monkeys have sug-types of cues [2–4, 16], prior studies with nonhuman

primates have been equivocal [8, 11, 12, 17–19]. Those gested that the superior temporal sulcus region may
also be important for detecting gaze direction in facesstudies, along with the demonstration that the eyes of

nonhuman primates are characterized by a low contrast [25, 26], but the role of parietal cortex in social attention
border between the iris and conjunctiva [20], have led remains unexplored in nonhuman primates. Our results
to the suggestion that nonhuman primates may be un- raise the possibility that connections between neural
able to use the eyes as a sole indicator of gaze direction circuits in temporal and parietal cortex may have
[12, 21]. Our data, however, demonstrate that the eyes evolved as part of a specialized module for controlling
of rhesus macaques carry ample information for other attention in both human and nonhuman primates living
primates to determine their gaze direction. Previous within complex societies.
studies reporting a lack of overt orienting by nonhuman

Experimental Proceduresprimates in response to viewing frontally oriented faces
with averted eyes may have overlooked subtle and tran-

Subjectssient changes in covert attention revealed by precise
Three adult male rhesus macaques participated in both experimen-spatial and temporal measurement of eye position in
tal blocks. Monkeys were housed in pairs at the Duke University

our study. Medical Center Vivarium. All animal procedures were approved by
It is also notable that human subjects reflexively and the Duke University Medical Center Institutional Animal Care and

Use Committee and were designed and conducted in compliancecovertly shifted their attention in the direction of gaze
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with guidelines provided by the Public Health Service’s Guide for eye position values were standardized relative to performance with
the gray stimulus by computing, for each subject in each sessionthe Care and Use of Animals.

Four adult humans, two male and two female, participated in the and for each viewing time, the mean reaction time and horizontal
eye position and then subtracting these values from the valuesexperiments (including the first author). The two males participated

in both experimental blocks, whereas the two females participated obtained in trials in which a face image was displayed. Only correct
trials were used for analysis of reaction time, eye position, andin one block each. None of the humans had previous experience

with this type of task, although two of the humans in each experiment microsaccades.
were aware of the hypothesis under test. All human procedures
were approved by the Duke University Medical Center Institutional Acknowledgments
Review Board.
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