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A model for analyzing rank data obtained from multiple evaluators, possibly using different ranking criteria, is proposed. The model is
speci� ed hierarchically within the Bayesian paradigm and includes parameters that represent the probabilities that two items are assigned
equal rankings. Also included are parameters that account for the relative precision of rankings obtained from distinct evaluation schemes.
The model is illustrated through a meta-analysis of rank data collected to compare the cognitive abilities of various primate genera.
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1. INTRODUCTION

In this article we propose a Bayesian latent variable model
for analyzing rank data obtained from several observers or
studies. The resulting model is closely related to Thurstonian
models for rank data (Thurstone 1927, 1931) as developed by,
among others, Daniels (1952), Stern (1990), and Böckenholt
(1992, 1993) and summarized, along with other methods for
analyzing rank data, by Marden (1995). The model is also
related to classical paired-comparison models (e.g., Bradley
and Terry 1952; Bradley 1984; David 1988) and the more
recent work on paired-comparison models for time-varying
data by Glickman and Stern (1998) and Glickman (1999).
From a Bayesian perspective, the model is closely related to
multirater ordinal data models as described by Johnson (1996,
1997) and Johnson and Albert (1999).

The major innovations of this model are the inclusion of
parameters to accommodate ties and a hierarchical structure
that facilitates the estimation of variances and correlations
arising from related studies. (See Davidson 1970 for an alter-
native formulation for tied data in standard paired-comparison
models.) In addition, posterior probabilities concerning the rel-
ative values of ranked items and other model parameters are
easily assessed using Markov chain Monte Carlo (MCMC)
methods.

To illustrate the features of the methodology, the model
is de� ned in the context of a meta-analysis of historical
data collected to rank nonhuman primate taxa according to
their “intelligence.” (We use the term “intelligence” as a
theoretical construct meaning that some cognitive abilities
are relatively domain general or applicable to many situ-
ations. The use of the term does not imply that all pro-
cessing can necessarily be reduced to a single unidimen-
sional axis. For further discussion of this issue, see Deaner,
van Schaik, and Johnson 2001.) Although the extent and
nature of taxonomic differences in cognitive abilities is of
long-standing interest for evolutionary biologists, few statisti-
cal tools are available for assessing performance differences
across multiple problem types (Balda, Kamil, and Bednekoff
1996; Lefebvre and Giraldeau 1996; Rumbaugh, Savage-
Rumbaugh, and Washburn 1996; Tomasello and Call 1997).
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Consequently, the proposed model should ultimately permit
substantial progress toward elucidating the organization and
evolution of animal cognition, especially regarding the ques-
tion of whether and to what extent domain-general abilities
exist in nonhuman primates.

The meta-analysis considered here includes several dozen
studies, which are grouped into paradigms and procedures.
Paradigms are general types of “intelligence” tests, whereas
procedures refer to different methodologies used in investigat-
ing these paradigms. Taxonomic rankings within a procedure
usually derive from a single study, but in some cases, two
or more studies with extremely similar methods were con-
ducted and hence were combined. To familiarize readers with
these studies, we provide a brief description of each paradigm.
Details on the procedures within the paradigms are provided
in earlier work (Deaner et al. 2001). Rank data for this meta-
analysis appear in Table 1. The following paradigms were
included in the meta-analysis:

¡ Detour. In detour problems, the subject is required to
manually move an object through a spatial � eld containing
obstacles. Detour problems investigate the ability to form
and act on spatial representations.

¡ String. In patterned string problems, the subject is shown
an array of interlaced strings, one of which is tethered
to a desirable food. The subject is allowed to pull only
one of the strings, and hence must determine which string
is actually attached to the reward. Patterned string prob-
lems also investigate the ability to form and act on spatial
representations.

¡ Displace. In studies of invisible displacement, the subject
views an object being placed into a container that is sub-
sequently moved behind one or more barriers. The subject
is then shown the empty container. If the subject searches
only the barriers behind which the container passed, this
indicates that the subject can track the spatial movements
of unperceived objects.

¡ Tool. Tool use, in which the subject must move an inter-
mediate object (a tool) in relation to another object or
substrate, involves aspects of causal reasoning, spatial
representation, and motor coordination.

¡ Discriminate. In the object discrimination learning set
paradigm, the subject is � rst confronted with the prob-
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lem of discriminating between two objects. One of the
objects is arbitrarily designated correct, and the subject is
rewarded for selecting it. The subject is given several tri-
als under these conditions and learns to consistently make
the correct choice. The learning set phenomenon refers to
the observation that if the subject is given another dis-
crimination problem, with two novel stimuli, then it will
tend to learn this second problem more quickly than it
did the � rst one. The degree to which the subject “learns
how to learn” is thought to re� ect on its ability to form
and use abstract rules or “hypotheses.”

¡ Reversal. The reversal learning paradigm investigates
the ability to reverse a previously learned discrimination.
Most commonly, over the course of several trials, the
subject learns to make one object discrimination to get
a reward (e.g., picking one object rather than another).
Then, without warning, the values of the objects change
so that the previously unrewarded object is rewarded for
a run of trials.

¡ Odd. The oddity paradigm addresses the ability to use a
relational or abstract concept. In most studies, the subject
is simultaneously provided with three visual stimuli, two
of which are identical and one that differs; the subject is
rewarded for choosing the differing or odd stimulus.

¡ Sort. The sorting paradigm examines the ability to form
abstract concepts and to use them to categorize stimuli
accordingly. Tests usually require the subject to place sim-
ilar objects in the same container.

¡ Delay. The delayed response paradigm investigates the
subject’s memory. In most studies, the subject observes a
reward being hidden in one of two spatial locations, there
is a delay, and then the subject is allowed to search one
of the locations. The questions of interest are “For any
given time interval, what percentage of � rst searches are
correct?” and “What is the maximum delay at which a
subject can still score above chance?”

2. MODEL SPECIFICATION

A general question that arises in the interpretation of
rank data obtained from multiple paradigms (i.e., studies or
observers) is whether or not there exists a single underlying
trait that can explain each paradigm’s rankings. This ques-
tion is especially important in the meta-analysis considered
here because of the controversy surrounding the existence of
domain-general abilities (intelligence) and the fact that sev-
eral distinct paradigms were used. Thus it is important that the
statistical model used for the analyses of these data include
parameters to represent paradigm–genus biases (or, in more
general terms, biases of rankings obtained from studies con-
ducted under paradigms for which particular items are differ-
entially assigned higher or lower rankings). These parameters
aid the detection of biases associated with given paradigms
when they exist, and also permit such effects to be disre-
garded when they are not supported by data. When present,
the inclusion of paradigm–genus bias parameters provides a
simple mechanism for accounting for the correlation between
rankings obtained from procedures within the same paradigm.

With these considerations in mind, we assume that the
ranks obtained under each procedure are based on two under-

lying, continuous-valued latent variables: a global trait vari-
able and a paradigm–genus bias effect. In the context of the
primate intelligence study, the global trait variables represent
each genus’s underlying cognitive ability—here assumed to
be unidimensional—and the paradigm-genus bias represents
variations in the measurement of the global trait according to
paradigm. Large values of paradigm-bias effects may be used
to diagnose violations of the assumption of a unidimensional
global trait variable. The combination of these variables is
assumed to be observed with error.

To make these assumptions more precise, let yi1 j denote the
rank of the ith genus obtained from the jth procedure, and let
g4j5 denote the paradigm to which the jth procedure belongs.
We assume that yi1 j > yk1 j implies zi1 j > zk1 j , where the latent
procedure variable, zi1 j , can be expressed as

zi1 j
D ˆi

C ‡i1 g4j5
C …i1 j 0 (1)

In the context of primate intelligences, ˆi denotes the global
intelligence measure of the ith genus, ‡i1 g4j5 denotes the
paradigm–genus bias effect, and …i1 j is a random error. Let
K denote the number of paradigms under which procedures
are de� ned, and let I denote the total number of genera
ranked. To establish a measurement scale for the latent vari-
ables, we assume that the variables ˆi are independent and
identically distributed a priori as standard normal variables.
The paradigm–genus bias effects are also assumed to be inde-
pendently distributed according to a normal distribution, but
with mean 0 and precision ’g4j5 . The precision parameter ’g4j5

is assumed to be constant for procedures within the same
paradigm. The random errors …i1 j are assumed to be indepen-
dently distributed according to normal distributions with mean
0 and precision ƒj , where ƒj is unique to procedure j. The pri-
mate intelligence study includes 9 paradigms, 30 procedures,
and 24 genera.

In the second stage of the hierarchical model, we assume
that the ƒj’s are drawn independently from a gamma distribu-
tion with mean and variation parameters Œ1 and �1, and that
the ’g4j5’s are drawn independently from a gamma distribution
with mean Œ2 and variation parameter �2.

The � nal stage of the model comprises prior distributions
on the hyperparameters Œ11Œ21 �1, and �2. In this stage of the
model, we re� ect vague prior information concerning the val-
ues of the precision parameters in the second stage, while also
maintaining propriety of the posterior and avoiding degener-
ate peaks in the posterior that can occur when a subset of
precision parameters becomes arbitrarily large. This dif� culty
occurs when one or more procedure’s ranks exactly agree with
the estimated consensus ranking, a con� guration that can eas-
ily arise in small studies.

A further consideration that arises in setting the prior
distributions in the third stage of the model concerns the
identi� ability of both the paradigm–genus precision parame-
ters, Ò D 4’11 : : : 1 ’K5, and the procedure precision parameters,
Ã D 4ƒ11 : : : 1 ƒJ 5. When paradigm–genus bias terms are uni-
formly small, or if only a small number of procedures are per-
formed under each paradigm, differentiating paradigm–genus
bias effects from procedure errors is problematic. This sug-
gests a two-step � tting procedure in which support for includ-
ing paradigm–genus biases in the model is � rst assessed by
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� tting a model including such effects, and then, if necessary,
re� tting a reduced model without them.

An additional relevant consideration in specifying the
third-stage model involves scaling the trait variables. Because
the latent intelligence variables È D 4ˆ11 : : : 1 ˆI 5 are de� ned
on a standard normal scale, procedure precisions smaller
than 1 imply that the ranking procedures are relatively unin-
formative. Similarly, values of the paradigm–genus precision
variables (Ò) smaller than 1 imply substantial disagreement
between paradigms. Because the prior means of the ƒj and ’k

are Œ1 and Œ2, and their prior variances are parameterized to
be Œ2

1=�1 and Œ2
2=�2, we thus assume a common exponential

prior distribution on Œ1 and Œ2 with parameters � xed so that
the prior mean of each is 20 and the prior variance is 400. This
prior has its mode at the origin but places substantial weight
on values of Œ1 and Œ2 greater than 10.

The prior on the variation parameters �1 and �2 was cho-
sen to be an inverse gamma distribution that placed 80% of
its weight between .25 and 4. In other words, the coef� cient
of variation for the second-stage precision parameters was
assigned an 80% probability of being between 1/2 and 2. The
sensitivity of the model to these third-stage model assump-
tions is addressed in Section 4.

To model information contained in ties, let z4i1 j51 i 2 Cj ,
denote the ordered values of the observed traits of genera
ranked in procedure j , with Cj denoting the set of genera
ranked in study j and C ü

j denoting the set Cj with the genus
estimated as having the largest value of zi1 j omitted. Let
y4i1 j5 denote the corresponding ordered values of the observed
ranks. De� ne

p4i1 j54Š5

D
(

exp6ƒ4z4iC11 j5
ƒ z4i1 j55=Š7 if y4iC11 j5

D y4i1 j5

1ƒ exp6ƒ4z4iC11 j5
ƒ z4i1 j 55=Š7 if y4iC11 j5

6D y4i1 j5

(2)

for a given value of the parameter Š. The function p4i1 j54Š5

de� nes a parametric model for the probability that two genera
are tied, given their latent procedure variables. The prior dis-
tribution on Š is assumed to be uniform on the positive real
line.

Given the aforementioned assumptions, the sampling den-
sity assumed for the observed rank data is assumed to take the
form

f4y — z1Š1È1 Ò1Ã1Ç1 �1‚1‹5

D
JY

jD1

Y

i2C ü
j

p4i1 j54Š5 Ind4y4iC11 j5 ¶ y4i1 j550 (3)

The normalizing constant of this sampling density is indepen-
dent of Š. It then follows that the posterior distribution on the
model parameters can be expressed as

p4z1Š1È1 Ò1Ã1Ç1 �1‚1‹ — y5

/
JY

jD1

Y

i2C ü
j

p4i1 j54Š5 Ind4y4iC11 j5 ¶ y4i1 j55

�
JY

jD1

Y

i2Cj

n4zi1 j 3 ˆi
C ‡i1 g4j51ƒj5 �

Y

i

n4ˆi3 0115

�
JY

jD1

Y

i2Cj

n4‡i1 g4j53 01 ’g4j55 �
JY

jD1

gamma4ƒj3 �11�1=Œ15

�
KY

kD1

gamma4’k3 �21�2=Œ25 � gamma4Œ13 11�5

� gamma4Œ2311�5 � inv-gamma4�13„1‚5

� inv-gamma4�23„1‚50 (4)

Here 4�1 ‚1„5 D 40051 0651101751 n4¢3 a1 b5 denotes a normal
density with mean a and precision b1 gamma4¢3 c1 d5 denotes
a gamma density with shape and scale parameters c and
d (mean c=d), and inv-gamma denotes the corresponding
inverse-gamma density.

3. MARKOV CHAIN MONTE CARLO ESTIMATION OF
MODEL PARAMETERS

The normal-gamma conjugate structure assumed for the
� rst- and second-stage models makes implementation of a
hybrid Gibbs–Metropolis sampling scheme straightforward.
After the model is initialized so that the parameter con� gu-
ration is consistent with the data (i.e., all precision parame-
ters and Š are positive, and the estimated procedure values
zij are consistent with the observed rank data), the follow-
ing steps may be used to generate samples from the posterior
distribution:

1. For i D 11 : : : 1 I , sample ˆi from a normal distribution
with mean c=d and precision d, where

c D
X

j2i2Cj

ƒj4zij
ƒ ‡i1 g4j55 and d D 1C

X

j2i2Cj

ƒj 0

2. For k D 11 : : : 1K and i D 11 : : : 1 I , sample ‡i1 k from a
normal distribution with mean c=d and precision d, where

c D
X

j2g4j5Dk

ƒj4zij
ƒ ˆi5 and d D ’g4j5

C
X

j2g4j5Dk

ƒj 0

3. For j D 11 : : : 1 J , sample ƒj from a gamma distribution
with shape c and scale d, where

c D �1
C

X

i2Cj

1

2
and d D �1

Œ1

C
X

i2Cj

4zij
ƒ ˆi

ƒ ‡i1 g4j55
2

2
0

4. For k D 11 : : : 1K, sample ’k from a gamma distribution
with shape c and scale d, where

c D �2 C
X

j2g4j5Dk

X

i2Cj

1
2

and d D �2

Œ2

C
X

j 2g4j5Dk

X

i2Cj

‡2
i1 g4j5

2
0

5. Generate a candidate draw for Œ1, say Œü , from an
inverse gamma with shape parameter c and scale parameter d,
where

c D 1C J�1 and d D
JX

jD1

�1ƒj 0

Accept the candidate draw with probability equal to the
minimum of 1 and exp6ƒ�4Œ ü ƒ Œ157.
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6. Generate a candidate draw for Œ2, say Œü , from an
inverse gamma with shape parameter c and scale parameter d,
where

c D 1 C K�2 and d D
KX

kD1

�2’k0

Accept the candidate draw with probability equal to the min-
imum of 1 and exp6ƒ�4Œ ü ƒ Œ257.

7. Generate a candidate draw for �1, say �ü , according to

�ü D �1 exp4s51

where s N 401 t5 and t, the precision of the Metropolis–
Hastings proposal density, was chosen to be 1.1. Accept �ü as
the new value of �1 with probability equal to

min

³
11

�ƒ„
ü exp4ƒ‚=�ü 5

�ƒ„
1 exp4ƒ‚=�15

�
JY

jD1

4ƒj�ü =Œ15
�ü exp4ƒƒj�ü =Œ15â4�15

4ƒj�1=Œ15
�
1 exp4ƒƒj�1=Œ15â4�ü 5

´
0

8. Generate a candidate draw for �2, say �ü , according to

�ü D �1 exp4s51

where s N 401 t5, and t D 05. Accept �ü as the new value of
�2 with probability equal to

min

³
11

�ƒ„
ü exp4ƒ‚=�ü 5

�ƒ„
2 exp4ƒ‚=�25

�
KY

kD1

4’k�ü =Œ25
�ü exp4ƒ’k�ü =Œ25â4�25

4’k�2=Œ25
�
2 exp4ƒ’k�2=Œ25â4�ü 5

´
0

9. For j D 11 : : : 1 J and i 2 Cj , generate candidate draws
for zi1 j from a truncated normal distribution with mean
ˆi

C ‡i1 g4j 5 and precision ƒj , truncated to the interval 4c1 d5,
where c is the largest value of zk1 j for which yk1 j < yi1 j and d

is the smallest value of zm1j for which ym1j > yi1 j . Accept the
candidate draw as the new value of zi1 j with probability equal
to the minimum of 1 and the ratio of

Y

i2C ü
j

p4i1 j54Š51

evaluated at the candidate and the current values of zi1 j .
10. Generate a candidate draw for Š, Š ü , according to

Š ü D Š exp4s51

where s N 401 t5 and t D 101. Accept Š ü as the updated value
of Š with probability equal to the minimum of 1 and the ratio

Šü

Š

JY

jD1

Y

i2C ü
j

p4i1 j54Šü 5

p4i1 j 54Š5
0

The values of t chosen for the foregoing proposal densities
resulted in acceptance rates in the range of 25%–35%.

4. ANALYSIS OF PRIMATE INTELLIGENCE DATA

The model described earlier for the analysis of correlated
rank data was applied to the primate intelligence data reported
in Table 1 by running the MCMC algorithm described in
Section 3 for 40,000 burn-in iterations, followed by 4,000,000
parameter updates. The number of updates was determined
using the coupling-regeneration scheme described by Johnson
(1998), which indicated that for this total sample size, iterates
separated by 40,000 updates in the chain could be considered
effectively independent. More speci� cally, the probability that
the distribution of 100 iterates separated by 40,000 updates in
this MCMC chain would couple with the distribution of 100
independent draws from the posterior distribution exceeds .98.
The coupling-regeneration scheme is probably conservative in
this setting because of the dif� culty associated with couplings
of the zi1 j , which are drawn from truncated normal distribu-
tions with truncation points determined by other latent proce-
dure variables. Nonetheless, the MCMC algorithm is relatively
fast, requiring only 1.5 hours when executed on a 4-year-old
Unix workstation.

As discussed in Section 3, the magnitudes of the paradigm–
genus bias terms and the values Ò1Œ2, and �2 were exam-
ined to assess support for paradigm–genus bias terms in the
� nal model. The posterior means of the paradigm–genus pre-
cision parameters Ò ranged from 36 to 65, whereas the poste-
rior mean of Œ2 was 32. In comparison, the posterior means
of the precision parameters Ã ranged from 1.8 to 5.9, and the
posterior mean of Œ1 was 4.6. Only two paradigm–genus bias
estimates had posterior means exceeding .5 in magnitude, and
neither could be reliably distinguished as being either posi-
tive or negative. Both effects occurred within the discrimina-
tion learning paradigm; the posterior mean of the discrimina-
tion learning–Macaca bias was ƒ053 with a posterior standard
deviation of 1.11, and the posterior mean of the discrimination
learning–Presbytis bias was ƒ052 with a standard deviation
of 1.44. Note that Presbytis was rated only once and in that
study was ranked highest. Mathematically, the fact that Pres-
bytis received the highest rating from this study implies that
the likelihood function does not provide a lower bound for the
value of its latent procedure variables zi1 j . Thus a negative, but
statistically insigni� cant, bias effect is not unexpected. Similar
comments apply also to the discrimination learning–Macaca
interaction. In � ve of the six procedures in this paradigm for
which Macaca was ranked, it received the top rating. The pos-
terior mean of each genera’s latent intelligence variables based
on the � t of the full model are provided in the � rst column of
Figure 1.

The lack of signi� cant bias terms suggests that a reduced
model without paradigm–genus bias parameters is adequate
for describing these data. Thus we re� tted a reduced model
using a simple modi� cation of the MCMC algorithm described
earlier; the proportion of times that each genus’s global intel-
ligence variable, ˆi, was greater than every other genus’s intel-
ligence variable was recorded, along with the MCMC sam-
ple mean and variance of these and related quantities. These
proportions provide an estimate of the posterior odds that the
general intelligence variable for one genus was greater than
another, which in this particular study were the variables of
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Figure 1. Posterior Means of Latent Intelligence Variables Under Varying Model Assumptions. The leftmost column depicts estimates obtained
using the full model with paradigm–genus interactions. The next column shows the posterior means obtained under the reduced model for
values of the hyperparameters speci’ ed in Section 2. The third column displays the posterior means of the intelligence variables when the prior
probability on �1 being in the interval (.25, 4) is .5. The ’ nal column are the corresponding means when this prior probability is increased to .95.

primary interest. These odds, as estimated from the reduced
model, are displayed in Figure 2.

From a biological perspective, the odds displayed in
Figure 2 con� rm a widely-held belief that the great apes
[Gorilla, Pan (chimpanzees), and Pongo (orangutan)] have
greater cognitive ability than other nonhuman primates. The
odds cited for Ateles are also of interest, because this genus is
not closely related to the great apes, but nonetheless appears
to rival Gorilla in terms of intelligence. Presbytis also is
estimated to have high cognitive ability, but, because it was
ranked in only one study, it had a comparatively large poste-
rior variance. The posterior means of each genus’s intelligence
variable are displayed in the second column of Figure 1 for
comparison with results obtained under the full model.

With the exception of procedures 15, 25, and 29, the poste-
rior means of the procedure precision parameters ranged from
2.9 to 6.2. The precision parameters for these procedures were
.9, .8, and 1.8. The comparatively low precision associated
with procedures 15 and 29 can be understood through apparent
discordancies in the rankings of the great apes in these proce-
dures. Macaca is ranked higher than Pan, Pongo, and Gorilla
in procedure 15, despite Macaca’s lower rankings in relation
to these genera in most other procedures. Similarly, procedure

29 yielded an unexpectedly low ranking of Gorilla and ranks
Papio above Pan. In procedure 25, Lemur is ranked above
Cercopithecus. Had similar discordancies been detected for
other procedures in the same paradigms, it is likely that sig-
ni� cant paradigm–genus biases would have been estimated, as
we illustrate in Section 4.1. However, with only one discrepant
procedure found within any paradigm, the model favors a
slightly lower value of the relevant procedure precision param-
eters to a lower value of the paradigm precision parameters
due to shrinkage effects imposed by the third-stage model.

The posterior mean of Š for this model was .26, with a 95%
posterior probability interval extending from .13 to .47. At
the posterior mean, this implies that latent procedure variables
(zi1 j’s) separated by .17 units were estimated to have approx-
imately a 50% chance of producing a tied ranking.

As a check on the sensitivity of these results to the choice
of the third-stage hyperparameters �1‚, and „, histogram esti-
mates of the parameters Œ1 and �1 were plotted against their
corresponding priors in Figures 3 and 4. These � gures sug-
gest that the choice of the third-stage hyperparameters �1‚,
and „ probably weighed signi� cantly in the determination of
the posterior distributions on Œ1 and �1.
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Figure 2. Posterior Probabilities that Latent Intelligence Variables of
One Genera Exceeded the Latent Intelligence Variable of Another. Inter-
vals describing these posterior probabilities can be found by observ-
ing the density of the plot immediately above or below the middle of
a genus’s name in the row corresponding to the genus for which a
comparison is to be made. Solid regions indicate that the posterior
odds that the leftmost genus was “smarter” than the rightmost genus
were less than 9:1. The medium density regions indicate these poste-
rior odds fell in the interval of 9:1 to 19:1. Low-density regions indicate
the corresponding odds fell in the interval of 19:1 to 39:1. Blank regions
indicate the posterior odds that one genus was smarter than the other
exceeded 39:1. For example, the odds that Gorilla was “smarter” than
Eulemur were estimated as being between 9:1 and 19:1.

To assess the sensitivity of the posterior distribution of È

to the choice of the priors on Œ1 and �1, we reestimated the
model under differing prior assumptions regarding the values
of �1‚, and „. Because the value of �1 controlled the amount
of shrinkage of the procedure precision parameters toward
their means, its value is important in determining the weights
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Figure 3. Histogram Estimate of the Posterior Distribution of log( Œ1) . The (rescaled) prior density is depicted as a solid line for comparison.

given each of the procedures in estimating È. Sensitivity of
the posterior on È to �1 is thus of special interest; for that rea-
son, we have displayed posterior means of È under values of
‚ and „ that placed 95% and 50% of the prior mass of �1 on
the interval (.25, 4). (The baseline model assigned 80% mass
to this interval.) The resulting posterior means are displayed,
along with the results from the full model with paradigm–
genus biases and the reduced, baseline model, in Figure 1.

Values of the posterior means of the cognitive ability vari-
ables in Figure 1 indicate that although the posterior distribu-
tion on �1 is sensitive to the values of the third-stage hyper-
parameter ‚ and „, the posterior distributions on the primary
variables of interest, È, are relatively insensitive to the choice
of this hyperparameter.

As a cursory check of model � t, 500 replications of the
ranking reported in Table 1 were generated from the posterior
distribution. For each of these posterior-predictive replications,
the proportion of comparisons within each procedure that were
correctly ranked, according to the posterior mean of È, were
computed. These proportions are compared to the proportion
of the observed comparisons that were correctly predicted by
the posterior mean of È in Figure 5. The proportion of ranks
correctly predicted by the posterior means of the cognitive
ability variables was 85% for the observed data. This value fell
in the middle of the range of proportions correctly predicted
for data simulated from the posterior, thus providing some
evidence of model adequacy.

4.1 Detection of Paradigm–Genus Interactions

A thorough investigation of the power of the proposed
model in detecting paradigm–genus biases is not possible here
because of space constraints. However, a simple illustration
that is suggestive of the model’s performance in this regard can
be constructed by creating an arti� cial paradigm that contains
probable paradigm–genus biases. To this end, the data from
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the 15th procedure, which exhibited a small precision and had
only � ve rankings, was arti� cially replicated a second and third
time and appended to the original data as a tenth paradigm.
Procedure 15 was also chosen because it was the most inter-
esting procedure from a substantive perspective; the great apes
performed uniformly worse than Macaca in this procedure and
were not tested in any other procedures in this paradigm.

Re� tting the full model with the added paradigm had little
effect on the latent cognitive parameters È. However, the pos-
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Posterior-predictive probabilities of correct ranking

Figure 5. Histogram Estimate of the Probabilities That Pairwise Comparisons of Genera Match the Ranking Predicted by the Posterior Mean
of È, for Replications of the Data Generated From the Predictive Distribution. The vertical line depicts the proportion of comparisons correctly
predicted for the observed data.

terior median of the precision parameter of the tenth paradigm
was estimated to be .04, whereas the posterior medians of
the � rst nine paradigm precision parameters ranged from 13
to 37. In addition, four of the � ve paradigm–genus interaction
terms estimated for this paradigm had posterior means larger
than 1 in magnitude. The interaction of the tenth paradigm
with Hylobates had a posterior mean of 6.5 and a posterior
standard deviation of 5.0; that with Macaca, a posterior mean
of ƒ708 and standard deviation of 4.7; that with Pan, a mean
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of ƒ208 and a standard deviation of 3.7; and that with Pongo,
a mean of 4.0 and a standard deviation of 3.9. The model thus
provides a clear indication of either paradigm–genus biases for
the arti� cial paradigm or, under an alternative interpretation,
the presence of a higher-dimensional trait variable.

5. DISCUSSION

The question of whether some primate taxa outperform oth-
ers across a range of experimental paradigms has been of
long-standing interest to those concerned with the organiza-
tion and evolution of cognitive abilities. Unfortunately, before
the development of the proposed model, statistical methods
that could simultaneously accommodate global trait variables,
paradigm–genus biases, tied ranks, and missing data were
unavailable, making the combined analysis of relevant stud-
ies impossible. Our � ndings that paradigm–genus biases are
insubstantial and that many genera differ signi� cantly from
others on their global trait variables indicates that, contrary
to much current thinking (e.g., Tooby and Cosmides 1992;
Tomasello and Call 1997; Shettleworth 1998), the intuitive
idea that taxa differ in domain-general ability or intelligence
might yet be vindicated.

Of course, the fact that we did not detect paradigm–genus
bias effects does not mean that we would not detect them if
more data were available. Nevertheless, the global trait vari-
ables estimated without these effects correctly predict per-
formance in 194 of 229 genus-by-genus comparisons (85%),
exactly the same proportion predicted by the full model con-
taining paradigm–genus bias effects. This statistic underscores
the fact that even if more data were included, the explanatory
power of paradigm–genus effects would still be small relative
to the global trait variable.

From a statistical perspective, the proposed model for the
analysis of multistudy rank data provides several innova-
tions over extant Thurstonian models. Modeling ties through
the introduction of the parameter Š greatly simpli� es esti-
mation of latent trait values using information derived from
tied ranks. The simplicity of this mechanism contrasts sharply
with classical Thurstonian models in which ties are not easily
accommodated (see, e.g., Marden 1995). For datasets like
the nonhuman primate intelligence meta-analysis, this aspect
of the model is particularly important, because ties comprise
approximately one-third of the data values.

In addition, the Bayesian formulation of the model simpli-
� es the assessment of uncertainty. Because in practice indi-
vidual procedures or raters usually do not rank more than 15
or so items, the posterior distribution on model parameters is
especially helpful in this regard. Finally, the hierarchical struc-
ture imposed on the precision parameters allows the model to
“borrow strength” in estimating precision parameters for stud-
ies in which only limited data are obtained. Again, because
rank data are generally not extensive, this too is an important
feature of the model.

[Received November 2000. Revised September 2001.]
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