
Lab 7: System ID

Overview
The primary goal of this lab is to find the transfer function of the DC motor system that has been
used in the last several labs. The form of the transfer function will be derived based on first
principles. The coefficients of the transfer function will be estimated by curve fitting open-loop
pulse responses. The final transfer function will be verified by using it to predict the closed-loop
step response under proportional control and comparing the model prediction with experimental
results.

Background and Theory
DC motors generate a torque between the rotor and stator that is related to the applied voltage or
current. When a voltage is applied, the resulting current generates a torque causing the rotor to
accelerate. For any voltage and load on the motor there tends to be a final angular velocity due to
friction and drag in the motor. For a given voltage the ratio between steady-state torque and speed
will be a straight line as seen in Figure 1.

ω

T voltage/current increases

Figure 1: Typical motor characteristic curve relating motor torque to speed.

The basic equivalent circuit model for the motor is shown in Figure 2. Equations can be de-
veloped for this model. This model must also include the rotational inertia of the rotor and any
attached loads. On the left hand side is the resistance of the motor and the “back emf” dependent
voltage source. On the right hand side the inertia components are shown. The rotational inertia J1
is the motor rotor, and the second inertia is an attached disk.

1



+
-

R

Voltage
+

-

Supply

J2J1
I

Vs

T ω,

Vm

Next, consider the power in the motor,
P VmI Tω KIω= = =

Because a motor is basically wires in a magnetic field, the electron flow (current) in 
the wire will push against the magnetic field. And, the torque (force) generated 
will be proportional to the current.

Tm KI=

Vm∴ Kω=

M∑ Tm Tlo ad– J d
dt
-----$ %
& 'ω= =

Consider the dynamics of the rotating masses by summing moments.

Tm∴ J d
dt
-----$ %
& 'ω Tload+=

I∴
Tm
K
-------=

Figure 2: Model and circuit representing a typical brushed DC motor.

Because a motor is basically wires in a magnetic field, the electron flow (current) in the wire
will push against the magnetic field. The torque (force) generated will be proportional to the
current. A constant K relates the torque to the current:

τm = Ki

The electrical and mechanicl power of the motor must be the same:

P = vmi = τmθ̇ = Kiθ̇

So,
vm = Kθ̇

Summing moments for the motor shaft gives

τm − τload = Jθ̈

or
τm = Jθ̈ + τload

These equations can be manipulated to give the differential equation involving θ and vs, the inputs
and outputs of the system:

i =
vs − vm

R

τm

K
=

vs −Kθ̇
R

Jθ̈ + τload

K
=

vs −Kθ̇
R

Resulting in

θ̈ +
K2

JR
θ̇ = vs

(
K
JR

)
− τload

J

Transfer Function Assignment
Find the transfer function for the DC motor system. What assumptions do you have to make?

2



Open-Loop Pulse Tests
Run several tests with different pulse widths and amplitudes. Save the data to csv files so that you
can use it in curve fitting. Be sure to use inverse deadband compensation in all of your tests for
this lab as shown in Figure 3. The transfer function we are seeking is θ/pwm, so that small pwm
values should still cause θ to change. This means that the transfer function model can safely ignore
deadband because we are compensating for it in software.

plant

inverse deadband H-Bridge motor θpwm pwmad justed

Figure 3: Block diagram of DC motor plant, including inverse deadband compensation

Open-Loop Arduino Requirements
∙ you should be able to re-use recent code

– serial interaction code

– encoder interrupt function

– function to command the H-bridge for motion in either direction

* positive and negative inputs

∙ eliminate your timer ISR if you have one

∙ your code should prompt the user for pulse width and amplitude

∙ your Arduino must continue to print data after the pulse has switched off

– the motor will still be coasting after the pulse turns off

– you must capture data until the motor stops moving

– either prompt the user for how long the test should run or set your own stopping condi-
tion in the code

∙ when a test is running, your Arduino must do the following each time through the loop
function:

– get the current time in microseconds using the micros() command

– determine the pwm command to send to the motor

– print the relevant data to serial

3



* time, pwm command, θ , and any other variables you think are important

– determine number of micro seconds to wait until the next time step

∙ use inverse deadband in all of your testing

∙ an example pulse response plot is shown in Figure 4

0.0 0.5 1.0 1.5 2.0

Time (sec.)

0.0

0.5

1.0

1.5

2.0

2.5

S
ig
n
a
l 
A
m
p
lit
u
d
e
 (
co

u
n
ts
)

pwm
θ

Figure 4: Example pulse response for a DC motor

System Identification (Curve Fitting)
Once you have saved several pulse response tests to csv files, pick at least one response to curve
fit using scipy.optimize.fmin. Remeber that this is best done by creating two helper func-
tions: mymodel and mycost. The mymodel function takes a list of unknown transfer function
coefficients as its input and returns the θ(t) pulse response. Within the mymodel function, you
will want to create a transfer function and call the function control.forced_response to
find the pulse response.

The cost function mycost must take the same list of unknown coefficients as its input and
return the scalar cost to be minimized (the sum of the squared errors).

Verification: Modeling Proportional Control
Once you have the transfer function for the motor with the coefficients estimated using fmin, find
the closed-loop transfer function for proportional control using control.feedback. Then find
the closed-loop step response. Compare this closed-loop simulation to experimental results. In

4



order to do this, you will need to modify your open-loop pulse test code to perform proportional
control step responses. Assuming proportional control with the plant transfer function G(s) and the
proportional gain Kp as shown in Figure 5, the closed-loop transfer function cltf can be found
like so:

#assuming num and den are already defined
G = control.TransferFunction(num,den)
Kp = x.xxx
cltf = control.feedback(Kp*G)

θd Kp G(s) θ
+

−

Figure 5: Block diagram of proportional control

Report Requirements
∙ include the transfer function you derived for the DC motor

– discuss whatever assumptions are needed to arrive at the transfer function

∙ include your Arduino code for the open-loop pulse tests; discuss how your code performs
real-time dynamic systems experiments

∙ show a graph overlaying an experimental open-loop pulse test with the prediction from your
transfer function model after curve fitting (i.e. the model prediction should be based on
transfer function coefficents from fmin)

∙ give the final form of your transfer function, including the estimates of all coefficents

∙ overlay step response graphs from model and experiment for several different values of Kp

– do your simulations point toward the right values for "good" choices of Kp?

∙ answer the following comprehension question:

Comprehension Question
∙ Describe the open-loop step response of a DC motor system where voltage is the input and

θ is the output.

5


	Overview
	Background and Theory
	Transfer Function Assignment

	Open-Loop Pulse Tests
	Open-Loop Arduino Requirements
	System Identification (Curve Fitting)
	Verification: Modeling Proportional Control
	Report Requirements
	Comprehension Question


