
pdm

Importing
Python Basics 3

Dr. Ryan Krauss

Grand Valley State University

Dr. Ryan Krauss Importing 1 / 7



pdm

The Power of Importing

I Python by itself is cool, but somewhat limited

I a good deal of the power of Python comes from the huge
number of modules available

I numpy, scipy, matplotlib, os, system, time, cherrypy, ...

I you have to import the modules to use them

Dr. Ryan Krauss Importing 2 / 7



pdm

The Power of Importing

I Python by itself is cool, but somewhat limited
I a good deal of the power of Python comes from the huge

number of modules available

I numpy, scipy, matplotlib, os, system, time, cherrypy, ...

I you have to import the modules to use them

Dr. Ryan Krauss Importing 2 / 7



pdm

The Power of Importing

I Python by itself is cool, but somewhat limited
I a good deal of the power of Python comes from the huge

number of modules available
I numpy, scipy, matplotlib, os, system, time, cherrypy, ...

I you have to import the modules to use them

Dr. Ryan Krauss Importing 2 / 7



pdm

The Power of Importing

I Python by itself is cool, but somewhat limited
I a good deal of the power of Python comes from the huge

number of modules available
I numpy, scipy, matplotlib, os, system, time, cherrypy, ...

I you have to import the modules to use them

Dr. Ryan Krauss Importing 2 / 7



pdm

Four ways to import
1. import numpy

I all functions or variable can be accessed using numpy.

I i.e. numpy.pi

I protects against namespace collisions

I what if two different modules have a variable pi and they
refer to different things?

I typing numpy. gets old
2. import numpy as np

I np.pi
I still projects against namespace collisions
I if you actually used np = 7 or something, you would

break the import
I some people use import numpy as N, but I think this

is risky

I you can never use N anywhere in your code without
messing things up

Dr. Ryan Krauss Importing 3 / 7



pdm

Four ways to import
1. import numpy

I all functions or variable can be accessed using numpy.

I i.e. numpy.pi
I protects against namespace collisions

I what if two different modules have a variable pi and they
refer to different things?

I typing numpy. gets old
2. import numpy as np

I np.pi
I still projects against namespace collisions
I if you actually used np = 7 or something, you would

break the import
I some people use import numpy as N, but I think this

is risky

I you can never use N anywhere in your code without
messing things up

Dr. Ryan Krauss Importing 3 / 7



pdm

Four ways to import
1. import numpy

I all functions or variable can be accessed using numpy.
I i.e. numpy.pi

I protects against namespace collisions

I what if two different modules have a variable pi and they
refer to different things?

I typing numpy. gets old
2. import numpy as np

I np.pi
I still projects against namespace collisions
I if you actually used np = 7 or something, you would

break the import
I some people use import numpy as N, but I think this

is risky

I you can never use N anywhere in your code without
messing things up

Dr. Ryan Krauss Importing 3 / 7



pdm

Four ways to import
1. import numpy

I all functions or variable can be accessed using numpy.
I i.e. numpy.pi

I protects against namespace collisions

I what if two different modules have a variable pi and they
refer to different things?

I typing numpy. gets old
2. import numpy as np

I np.pi
I still projects against namespace collisions
I if you actually used np = 7 or something, you would

break the import
I some people use import numpy as N, but I think this

is risky

I you can never use N anywhere in your code without
messing things up

Dr. Ryan Krauss Importing 3 / 7



pdm

Four ways to import
1. import numpy

I all functions or variable can be accessed using numpy.
I i.e. numpy.pi

I protects against namespace collisions
I what if two different modules have a variable pi and they

refer to different things?

I typing numpy. gets old
2. import numpy as np

I np.pi
I still projects against namespace collisions
I if you actually used np = 7 or something, you would

break the import
I some people use import numpy as N, but I think this

is risky

I you can never use N anywhere in your code without
messing things up

Dr. Ryan Krauss Importing 3 / 7



pdm

Four ways to import
1. import numpy

I all functions or variable can be accessed using numpy.
I i.e. numpy.pi

I protects against namespace collisions
I what if two different modules have a variable pi and they

refer to different things?
I typing numpy. gets old

2. import numpy as np

I np.pi
I still projects against namespace collisions
I if you actually used np = 7 or something, you would

break the import
I some people use import numpy as N, but I think this

is risky

I you can never use N anywhere in your code without
messing things up

Dr. Ryan Krauss Importing 3 / 7



pdm

Four ways to import
1. import numpy

I all functions or variable can be accessed using numpy.
I i.e. numpy.pi

I protects against namespace collisions
I what if two different modules have a variable pi and they

refer to different things?
I typing numpy. gets old

2. import numpy as np

I np.pi
I still projects against namespace collisions
I if you actually used np = 7 or something, you would

break the import
I some people use import numpy as N, but I think this

is risky

I you can never use N anywhere in your code without
messing things up

Dr. Ryan Krauss Importing 3 / 7



pdm

Four ways to import
1. import numpy

I all functions or variable can be accessed using numpy.
I i.e. numpy.pi

I protects against namespace collisions
I what if two different modules have a variable pi and they

refer to different things?
I typing numpy. gets old

2. import numpy as np
I np.pi

I still projects against namespace collisions
I if you actually used np = 7 or something, you would

break the import
I some people use import numpy as N, but I think this

is risky

I you can never use N anywhere in your code without
messing things up

Dr. Ryan Krauss Importing 3 / 7



pdm

Four ways to import
1. import numpy

I all functions or variable can be accessed using numpy.
I i.e. numpy.pi

I protects against namespace collisions
I what if two different modules have a variable pi and they

refer to different things?
I typing numpy. gets old

2. import numpy as np
I np.pi
I still projects against namespace collisions

I if you actually used np = 7 or something, you would
break the import

I some people use import numpy as N, but I think this
is risky

I you can never use N anywhere in your code without
messing things up

Dr. Ryan Krauss Importing 3 / 7



pdm

Four ways to import
1. import numpy

I all functions or variable can be accessed using numpy.
I i.e. numpy.pi

I protects against namespace collisions
I what if two different modules have a variable pi and they

refer to different things?
I typing numpy. gets old

2. import numpy as np
I np.pi
I still projects against namespace collisions
I if you actually used np = 7 or something, you would

break the import

I some people use import numpy as N, but I think this
is risky

I you can never use N anywhere in your code without
messing things up

Dr. Ryan Krauss Importing 3 / 7



pdm

Four ways to import
1. import numpy

I all functions or variable can be accessed using numpy.
I i.e. numpy.pi

I protects against namespace collisions
I what if two different modules have a variable pi and they

refer to different things?
I typing numpy. gets old

2. import numpy as np
I np.pi
I still projects against namespace collisions
I if you actually used np = 7 or something, you would

break the import
I some people use import numpy as N, but I think this

is risky

I you can never use N anywhere in your code without
messing things up

Dr. Ryan Krauss Importing 3 / 7



pdm

Four ways to import
1. import numpy

I all functions or variable can be accessed using numpy.
I i.e. numpy.pi

I protects against namespace collisions
I what if two different modules have a variable pi and they

refer to different things?
I typing numpy. gets old

2. import numpy as np
I np.pi
I still projects against namespace collisions
I if you actually used np = 7 or something, you would

break the import
I some people use import numpy as N, but I think this

is risky
I you can never use N anywhere in your code without

messing things up

Dr. Ryan Krauss Importing 3 / 7



pdm

Four ways to import (#3)

3. from numpy import pi, arange

I pi and arange now work by themselves without
numpy. or np.

I pi and arange are now in the global namespace

I you have to give a list of all the functions or variables you
need

I this is kind of cumbersome

Dr. Ryan Krauss Importing 4 / 7



pdm

Four ways to import (#3)

3. from numpy import pi, arange
I pi and arange now work by themselves without
numpy. or np.

I pi and arange are now in the global namespace
I you have to give a list of all the functions or variables you

need

I this is kind of cumbersome

Dr. Ryan Krauss Importing 4 / 7



pdm

Four ways to import (#3)

3. from numpy import pi, arange
I pi and arange now work by themselves without
numpy. or np.

I pi and arange are now in the global namespace

I you have to give a list of all the functions or variables you
need

I this is kind of cumbersome

Dr. Ryan Krauss Importing 4 / 7



pdm

Four ways to import (#3)

3. from numpy import pi, arange
I pi and arange now work by themselves without
numpy. or np.

I pi and arange are now in the global namespace
I you have to give a list of all the functions or variables you

need

I this is kind of cumbersome

Dr. Ryan Krauss Importing 4 / 7



pdm

Four ways to import (#3)

3. from numpy import pi, arange
I pi and arange now work by themselves without
numpy. or np.

I pi and arange are now in the global namespace
I you have to give a list of all the functions or variables you

need
I this is kind of cumbersome

Dr. Ryan Krauss Importing 4 / 7



pdm

Four ways to import (#4)

4. from numpy import *

I load everything in the numpy module into the global
namespace

My old habit is to use these two lines at the beginning of every
script:

from matplotlib.pyplot import *
from numpy import *

I in some ways, this is the easiest way to not have to think
about modules and make IPython easy

Dr. Ryan Krauss Importing 5 / 7



pdm

Four ways to import (#4)

4. from numpy import *
I load everything in the numpy module into the global

namespace

My old habit is to use these two lines at the beginning of every
script:

from matplotlib.pyplot import *
from numpy import *

I in some ways, this is the easiest way to not have to think
about modules and make IPython easy

Dr. Ryan Krauss Importing 5 / 7



pdm

Four ways to import (#4)

4. from numpy import *
I load everything in the numpy module into the global

namespace

My old habit is to use these two lines at the beginning of every
script:

from matplotlib.pyplot import *
from numpy import *

I in some ways, this is the easiest way to not have to think
about modules and make IPython easy

Dr. Ryan Krauss Importing 5 / 7



pdm

Four ways to import (#4)

4. from numpy import *
I load everything in the numpy module into the global

namespace

My old habit is to use these two lines at the beginning of every
script:

from matplotlib.pyplot import *
from numpy import *

I in some ways, this is the easiest way to not have to think
about modules and make IPython easy

Dr. Ryan Krauss Importing 5 / 7



pdm

Four ways to import (#4)
from matplotlib.pyplot import *
from numpy import *

I two risks:

I namespace collisions
I masks where things come from, making it harder to learn

from or maintain code

I some advanced Python users consider this to be poor
practice

I IPython will eventually remove the %pylab option
I spyder does this style of import if you click the option in

settings to load numpy and pylab

Dr. Ryan Krauss Importing 6 / 7



pdm

Four ways to import (#4)
from matplotlib.pyplot import *
from numpy import *

I two risks:
I namespace collisions

I masks where things come from, making it harder to learn
from or maintain code

I some advanced Python users consider this to be poor
practice

I IPython will eventually remove the %pylab option
I spyder does this style of import if you click the option in

settings to load numpy and pylab

Dr. Ryan Krauss Importing 6 / 7



pdm

Four ways to import (#4)
from matplotlib.pyplot import *
from numpy import *

I two risks:
I namespace collisions
I masks where things come from, making it harder to learn

from or maintain code

I some advanced Python users consider this to be poor
practice

I IPython will eventually remove the %pylab option
I spyder does this style of import if you click the option in

settings to load numpy and pylab

Dr. Ryan Krauss Importing 6 / 7



pdm

Four ways to import (#4)
from matplotlib.pyplot import *
from numpy import *

I two risks:
I namespace collisions
I masks where things come from, making it harder to learn

from or maintain code

I some advanced Python users consider this to be poor
practice

I IPython will eventually remove the %pylab option
I spyder does this style of import if you click the option in

settings to load numpy and pylab

Dr. Ryan Krauss Importing 6 / 7



pdm

Four ways to import (#4)
from matplotlib.pyplot import *
from numpy import *

I two risks:
I namespace collisions
I masks where things come from, making it harder to learn

from or maintain code

I some advanced Python users consider this to be poor
practice

I IPython will eventually remove the %pylab option

I spyder does this style of import if you click the option in
settings to load numpy and pylab

Dr. Ryan Krauss Importing 6 / 7



pdm

Four ways to import (#4)
from matplotlib.pyplot import *
from numpy import *

I two risks:
I namespace collisions
I masks where things come from, making it harder to learn

from or maintain code

I some advanced Python users consider this to be poor
practice

I IPython will eventually remove the %pylab option
I spyder does this style of import if you click the option in

settings to load numpy and pylab

Dr. Ryan Krauss Importing 6 / 7



pdm

My Recommendation
This is the currently accepted best practice:

import matplotlib.pyplot as plt
import numpy as np

I slightly more typing:

I t = np.arange(0,1,0.01)
I y = np.sin(2*np.pi*t)

I forces you to learn what comes from where

Dr. Ryan Krauss Importing 7 / 7



pdm

My Recommendation
This is the currently accepted best practice:

import matplotlib.pyplot as plt
import numpy as np

I slightly more typing:
I t = np.arange(0,1,0.01)

I y = np.sin(2*np.pi*t)

I forces you to learn what comes from where

Dr. Ryan Krauss Importing 7 / 7



pdm

My Recommendation
This is the currently accepted best practice:

import matplotlib.pyplot as plt
import numpy as np

I slightly more typing:
I t = np.arange(0,1,0.01)
I y = np.sin(2*np.pi*t)

I forces you to learn what comes from where

Dr. Ryan Krauss Importing 7 / 7



pdm

My Recommendation
This is the currently accepted best practice:

import matplotlib.pyplot as plt
import numpy as np

I slightly more typing:
I t = np.arange(0,1,0.01)
I y = np.sin(2*np.pi*t)

I forces you to learn what comes from where

Dr. Ryan Krauss Importing 7 / 7


