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The Power of Importing

I Python by itself is cool, but somewhat limited

I a good deal of the power of Python comes from the huge
number of modules available

I numpy, scipy, matplotlib, os, system, time, cherrypy, ...

I you have to import the modules to use them
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Four ways to import
1. import numpy

I all functions or variable can be accessed using numpy.

I i.e. numpy.pi

I protects against namespace collisions

I what if two different modules have a variable pi and they
refer to different things?

I typing numpy. gets old
2. import numpy as np

I np.pi
I still projects against namespace collisions
I if you actually used np = 7 or something, you would

break the import
I some people use import numpy as N, but I think this

is risky

I you can never use N anywhere in your code without
messing things up
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Four ways to import (#3)

3. from numpy import pi, arange

I pi and arange now work by themselves without
numpy. or np.

I pi and arange are now in the global namespace

I you have to give a list of all the functions or variables you
need

I this is kind of cumbersome
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Four ways to import (#4)

4. from numpy import *

I load everything in the numpy module into the global
namespace

My old habit is to use these two lines at the beginning of every
script:

from matplotlib.pyplot import *
from numpy import *

I in some ways, this is the easiest way to not have to think
about modules and make IPython easy
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Four ways to import (#4)
from matplotlib.pyplot import *
from numpy import *

I two risks:

I namespace collisions
I masks where things come from, making it harder to learn

from or maintain code

I some advanced Python users consider this to be poor
practice

I IPython will eventually remove the %pylab option
I spyder does this style of import if you click the option in

settings to load numpy and pylab
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My Recommendation
This is the currently accepted best practice:

import matplotlib.pyplot as plt
import numpy as np

I slightly more typing:

I t = np.arange(0,1,0.01)
I y = np.sin(2*np.pi*t)

I forces you to learn what comes from where
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