Lab Report: Identification of Organic Compounds: Functional Group Effects in Organic Spectroscopy

NAME:	% SCORE:
PARTNER'S NAME:	
LAB SECTION:	
DATE:	

	Possible points	
A. Spectrum		
B. Tables		
C. Hyperchem		
D. Questions		
E. Discussion		
Prelab quiz	10	
Total		

D. Questions:

IIX SDCCHOSCODY genera	IR	spectroscopy	genera
------------------------	----	--------------	--------

spe	ctroscopy general
1.	Why do the C-X stretches of C-Br and C-I appear at lower frequencies than C-Cl?
2.	Which compound in Table 2 pages 14-15 , has a broad peak in IR spectrum around 3300 cm-1 and 3 equivalent carbons? Use the IR correlation table in the appendix.
3.	Compare the 2 esters methyl butyrate and n-propyl acetate from the spectra you observed. Is IR spectroscopy a good way to differentiate between these two molecules? Explain.
4.	Could you use IR to determine if the compound 2-butanone (used to prevent engine knock) has been added to a sample of gasoline? Cite specific peaks you would look for. The IR for hexane would be very similar to gasoline.

D. DISCUSSION & CONCLUSIONS:

Discuss advantages and limitations IR spectroscopy has in identifying molecules. Address the questions below in your discussion. <u>Make sure you use data from lab in your discussion.</u>

Could you use IR spectroscopy to determine the identity of a pure substance without any other evidence? For instance could you use IR spectra to confirm that you synthesized 1-octanol? Can the spectra provide conclusive evidence for this compound as opposed to 2-octanol or 1-heptanol? What information can you gain from IR spectra?

Could you use IR to identify a compound in a mixture? Does the usefulness of IR depend upon what compounds are in the mixture?