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Chapter 1

Gases

We spent last semester learning about the structure and behavior of individual
molecules. This semester will be spent learning about the behavior of collec-
tions of molecules. We’ll start with gases, where the molecules more or less act
individually.

1.1 Kinetic-molecular theory of gases

The “kinetic theory of gases” makes the following assumptions about gases: Levine §15.1

1. Gases are composed of particles in constant, random motion.

2. The particles are negligibly small compared to the distances between them
and the size of the container.

3. The particles do not interact except that they have collisions with each
other and the container walls. In these collisions, the average translational
energy is conserved.

4. The particles move according to classical mechanics.

All but the first of those assumptions are not strictly true, so we should expect
the theory to disagree with observation in some circumstances. We’ll have to see
whether the disagreements are frequent enough to cause trouble.

1.1.1 Pressure of an ideal gas

Consider a gas of identical molecules in a cubical container with sides of length l . Levine §15.2
We want to calculate from kinetic theory the pressure the gas exerts on the walls.
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Pressure is force per unit area, so we will calculate the force on one wall of the
box and divide by its area l 2. From elementary mechanics we have

F = ma = m
dv

dt
= d(mv)

dt
= dp

dt
, (1.1)

so we will evaluate the force as ∆p
∆t from the momentum change ∆p at the wall

during some time interval ∆t .

First imagine a single gas molecule in the box. The components of its velocity
are vx , vy , and vz . Its speed is v = (v2

x + v2
y + v2

z )
1
2 , and its translational energy is

εtr = 1
2 mv2, where m is the molecule’s mass. The x component of its momentum

is mvx . When the molecule collides with a wall parallel to the y z plane, let
us assume that the x component of its velocity changes sign, and the other
two components are unaffected. (This assumption corresponds to a “specular
reflection”, like light off a mirror. It is not necessarily true for a single molecule
having a single collision, but it must be true on average, or else the gas could
develop a net direction of travel inside the box.) The change in momentum of the
particle is therefore ∆p = 2mvx . The molecule will bounce back and forth in the
box (possibly also moving in the y and z directions, but those do not affect the
x motion). The round-trip time in the x direction is ∆t = 2l/vx , so the average

force must be F = ∆p
∆t = 2mvx

2l /vx
= mv2

x
l . The pressure this one-molecule gas exerts

on the wall is then F /A = F /l 2 = mv2
x /l 3 = mv2

x /V . For the one-molecule gas we
therefore have PV = mv2

x .

If we have N molecules that don’t interact, their forces on the wall (since they
are all in the same direction) simply add, and we have

PV =
N∑

i=1
mv2

xi = mN

∑N
i=1 v2

xi

N
= mN〈v2

x〉, (1.2)

where the angle brackets indicate the usual average (add up the individual values
of v2

x and divide by the number of molecules.)

If we neglect gravity (appropriate for gases as long as the box isn’t too big)
there is nothing special about the x direction, so we expect that 〈v2

x〉 = 〈v2
y 〉 = 〈v2

z 〉.
The square of the speed of a molecule is v2 = v2

x +v2
y +v2

z , so the average squared
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1.1. Kinetic-molecular theory of gases 5

speed is

〈v2〉 = 1

N

N∑
i=1

(v2
xi + v2

yi + v2
zi ) (1.3)

= 1

N

[
N∑

i=1
v2

xi +
N∑

i=1
v2

yi +
N∑

i=1
v2

zi

]
(1.4)

= 〈v2
x〉+〈v2

y 〉+〈v2
z 〉 (1.5)

〈v2〉 = 3〈v2
x〉 (1.6)

so 〈v2
x〉 = 1

3 〈v2〉. Substituting into Eq. (1.2) gives

PV = 1

3
mN〈v2〉 = 1

3
nM〈v2〉, (1.7)

where n is the number of moles and M is the molar mass. This formula gives
the pressure of the gas in terms of microscopic properties of the molecules (their
masses and average squared speed). We see that the pressure is directly related
to the average of the squared speed of the gas molecules: the faster they go, the
higher the pressure.

1.1.2 RMS speed and average translational energy

The ideal gas law is PV = nRT = N kBT , where kB = 1.38×10−23 J/K is the Boltz- Levine §15.3
mann constant. (Note that the ordinary gas constant R = NAkB, where NA is
Avogadro’s number.) From that we immediately obtain a formula for the average
squared speed:

〈v2〉 = 3RT

M
= 3kBT

m
. (1.8)

The “root-mean-square” or RMS speed c (called vrms in Levine) is just the square
root of the average squared speed, and gives a measure of the typical speed of
molecules in a sample of gas:

c =
√
〈v2〉 =

(
3kBT

m

) 1
2 =

(
3RT

M

) 1
2

. (1.9)

In problems the second form is more convenient, but you must remember to put
in the molar mass M in kg/mol.

Example What is the RMS speed of an N2 molecule at 300 K? We have

c =
(

3RT

M

) 1
2 =

(
3(8.314Jmol−1 K−1)(300K)

0.028kgmol−1

) 1
2

= 517m/s.
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1.1.3 Average speed, translational energy, and temperature

By arguments similar to Eq. (1.3), you can show that the average translational
energy per molecule is 〈εtr〉 = 1

2 m〈v2〉, so from Eq. (1.8) we find immediately

〈εtr〉 = 3

2
kBT. (1.10)

So the average translational energy in a gas is indeed proportional to the absolute
temperature, and now we know the proportionality constant. This proportionality
holds not only for ideal gases but for any fluid whose translational motion can
be described classically, that is, any ordinary liquid or vapor. (It does not hold
accurately for solids at normal temperatures, or very low temperature fluids such
as liquid helium.)

For the whole sample of N particles we have Etr = 3
2 N kBT = 3

2 nRT . It is
important to notice that even though the molecules have a wide distribution of
speeds (more on that later), the translational energy of the whole sample is very
well defined if N is large. Substituting PV from the ideal gas law gives

PV = 2

3
N〈εtr〉 = 2

3
Etr. (1.11)

1.1.4 The distribution of speeds

The molecules do not all move with the same speed. To describe the distributionLevine §15.4
of speeds, we need to use a probability density function, just as in quantum me-
chanics (where the probability density function, ψ2, described the distribution of
position). Remarkably, we can find the distribution of speeds assuming only that
all directions in space are equivalent, and that the different velocity components
for a molecule are independent: what a molecule’s speed is in the x direction says
nothing about its speed in the y or z directions.

One-dimensional velocity distribution

First, let’s seek the one-dimensional distribution of speeds, f (vx ), such that the
fraction of molecules with x-components of speed between a and b is

P (a ≤ vx ≤ b) =
∫ b

a
f (vx )dvx . (1.12)

(Levine, starting on p. 463, calls this one-dimensional distribution not f (vx ) but
g (vx ).) Because all directions in space are equivalent, the function of f (vx ) must
be the same one that describes the probability distributions in vy and vz as well.
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1.1. Kinetic-molecular theory of gases 7

You can think of this one-dimensional function of vx as giving the probability
that a molecule will have its x component of velocity between vx and vx +dvx .

The probability density must be normalized, so that∫ ∞

−∞
f (vx )dvx = 1 (1.13)

Now, what is the probability that a particular molecule will have its x compo-
nent of velocity between vx and vx +dvx , its y component of velocity between vy

and vy +dvy , and its z component of velocity between vZ and vZ +dvz ? Because
the speeds in the various directions are assumed to be independent, that must
be the product of the three one-dimensional probabilities:

dN vx vy vz

N
= f (vx ) f (vy ) f (vz )dvx dvy dvz (1.14)

This is a three-dimensional function of the three velocity components. But, by
the assumption of equivalence of directions, it cannot depend on the direction of
the velocity; it can only depend on speed. Therefore,

f (vx ) f (vy ) f (vz ) =φ(v) (1.15)

a function of speed v only, where v =
(
v2

x + v2
y + v2

z

) 1
2

. Now, what kind of function

satisfies this requirement, that a product of functions of different arguments is
equal to a single function involving a sum of functions of the arguments? There’s
only one function that does that: the exponential, because eaebec = ea+b+c . In
this case a must be v2

x and so on, so the candidate function is

f (vx ) = Ae−
1
2 bv2

x , (1.16)

a Gaussian! (Levine gives a more thorough argument for this result in equations
15.30–15.34.) I have inserted the −1

2 for later convenience (this only changes the
definition of b.) A and b are yet to be determined, but if we choose this distribu-
tion function, we can be assured that the requirements of our assumptions will
be satisfied.

To find A, we normalize: the particle must have some x component of velocity,
between −∞ and ∞. So ∫ ∞

−∞
Ae−

1
2 bv2

x dvx = 1 (1.17)

We can do this using the standard integral∫ ∞

−∞
e−ax2

dx =
√
π

a
, (1.18)
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where a > 0, so that

A

(
2π

b

) 1
2 = 1 (1.19)

A =
(

b

2π

) 1
2

(1.20)

Notice that b must be positive for this normalization to work; otherwise the
integral is infinite and our function is not an acceptable probability density.

Now we need to find b. We have 〈v2〉 = 3〈v2
x〉 = 3kT /m, so that 〈v2

x〉 = kT /m.
We can also calculate that average from the probability density function, using the
usual formula for the average of a function (compare to a quantum mechanical
expectation value, where ψ∗ψ gives f (vx )):

〈v2
x〉 =

∫ ∞

−∞
v2

x f (vx )dvx (1.21)

=
(

b

2π

) 1
2
∫ ∞

−∞
v2

x e−
1
2 bv2

x dvx (1.22)

We need the standard integral∫ ∞

−∞
x2ne−ax2

dx = (2n)!π
1
2

22nn!an+1/2
, (1.23)

which with n = 1 and a = b/2 gives us

〈v2
x〉 =

(
b

2π

) 1
2 2!π

1
2

22(b/2)3/2
(1.24)

= 1

b
(1.25)

so we now have

b = (〈v2
x〉)−1 (1.26)

=
(

kBT

m

)−1

(1.27)

= m

kBT
(1.28)

so that finally

f (vx ) =
(

m

2πkBT

) 1
2

exp

(
− mv2

x

2kBT

)
. (1.29)
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1.1. Kinetic-molecular theory of gases 9

This expression gives us the one-dimensional distribution of velocity. Examples
are plotted in Figure 1.1.

Any particular molecule could have a velocity component (or projection)
along the x axis anywhere between −∞ and ∞; this distribution function shows
us that the most likely velocity component is zero, and that the probability density
falls off with increasing |vx | in a Gaussian way. Note that the Gaussian will be
wider for larger T and for smaller m. Also note that the average speed along the
x-axis is zero: there is no net tendency for the molecules to be moving either left
or right. (That is why we had to evaluate b using 〈v2

x〉 rather than 〈vx〉; the latter
quantity is zero no matter what value b has.)
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Figure 1.1: The one-dimensional velocity distribution, showing variations with
molecular mass and with temperature. The area under each curve is 1.

Notice that the one-dimensional distribution can be written

f (vx ) =
(

m

2πkBT

) 1
2

exp

(
− εtr,x

kBT

)
. (1.30)

The argument of the exponential is the ratio of two terms, each with dimensions
of energy: the “one-dimensional translational energy” of the molecule, εtr,x ,
and the “characteristic energy” kT . It is relatively easy for molecules to have
translational energies less than or similar to kT , while it is quite improbable that
they will have energies much greater than kT . This is our first example of the
extremely important Boltzmann distribution.
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Three-dimensional speed distribution

Now we want to go on to find the distribution of molecular speeds in threeLevine §15.4
dimensions. Note that while the velocity component vx in a single dimension can
have any value between −∞ and ∞, the speed of a molecule must be nonnegative,
because v2 = v2

x + v2
y + v2

z . We will therefore expect to find a probability density
function F (v) that is nonzero only for positive v . (Levine calls this function G(v).)

Eq. (1.14) gave the probability that a molecule has its x-component of velocity
between vx and vx +dvx , y-component of velocity between vy and vy +dvy ,
and its z-component of velocity between vz and vz + dvz , as the product of
the three independent probabilities. (Think of the probability of three people
simultaneously flipping coins all getting heads: it’s 1

2 × 1
2 × 1

2 .) That is,

d Nvx vy vz

N
=

(
m

2πkBT

) 3
2

exp

(
−

m(v2
x + v2

y + v2
z )

2kBT

)
dvx dvy dvz (1.31)

(Notice that the exponent on the normalization factor is now 3/2.) If you think of
the function d Nvx vy vz /N as living in a three-dimensional “velocity space” whose
axes are vx , vy , and vz , then the dvx dvy dvz part of Eq. (1.31) describes the
volume of a small rectangular box, which is located a distance v from the origin.
We are looking for a distribution in speed only, and we don’t care what direction
the molecule is moving. The most straightforward way to find that distribution
is to convert Eq. (1.31) to the spherical polar coordinates v,θ,φ. The two angles
specify the direction of motion and the v variable (which corresponds to r in
ordinary spatial coordinates) is exactly the speed variable we are interested in. We
can then integrate over the angular coordinates θ and φ. This problem is exactly
analagous to the problem of finding the probability that an electron in an H atom
is in some range of distances from the nucleus, independent of direction.)

To change the distribution to spherical polar coordinates, we use the sub-
stitution v2 = v2

x + v2
y + v2

z , and we must also remember to convert the “volume

element” dx dy dz to the spherical polar element v2 sinθdv dθdφ. We then inte-
grate over the angles:

F (v)dv =
(

m

2πkBT

) 3
2
∫ π

0
sinθdθ

∫ 2π

0
dφ exp

(
− mv2

2kBT

)
v2 dv (1.32)

The only angular dependence is the simple sinθ, so the integration over both θ
and φ is easy and just gives 4π. So our final distribution of molecular speeds is

F (v) =
(

m

2πkBT

) 3
2

4πv2 exp

(
− mv2

2kBT

)
(1.33)
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1.1. Kinetic-molecular theory of gases 11

Eq. (1.33) is called the Maxwell distribution of speeds.
I think of this distribution in three parts: there’s a normalization part, a 4πv2

“degeneracy” part that counts all the possible velocities that correspond to the
same speed, and there is an exponential “Boltzmann factor” that compares the
kinetic energy of the molecule to kT , the average energy available at temperature
T .

What do these curves look like? The normalization part does not depend on
v ; the v2 part is a parabola; the Boltzmann part is a Gaussian centered at zero.
So at low speeds the curve looks like a rising parabola, then as v2 increases the
curve turns over and dives back into the baseline as the Gaussian becomes small.
Figure 1.2 shows examples corresponding to the 1D distributions we saw before.
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Figure 1.2: The Maxwell distribution of speeds. The area under each of the curves
is 1.

1.1.5 Testing the Maxwell distribution

I know of two good methods for experimentally checking the Maxwell distribution
of speeds: time-of-flight methods, including the use of slotted-disk “velocity
selectors”, probably described in your textbook, and Doppler spectroscopy.

In a velocity selector experiment, molecules leave a source through a small
hole, and then pass through a series of disks with slots in them. The disks are
arranged on a rotating shaft and the slots are offset, so that for a particular speed
of rotation only molecules of a particular speed can make it through all the slots.
Which speed makes it through is controlled by the rotation rate of the shaft. These
experiments were first done by Eldridge in 1927 (J. A. Eldridge, Phys. Rev. 30,
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931 (1927).) A thorough analysis of slotted-disk velocity selectors by C. J. B. van
den Meijdenberg appears in Atomic and Molecular Beam Methods, G. Scoles, ed.,
(Oxford, 1988).

In Doppler spectroscopy, the absorption spectrum of gas molecules is mea-
sured with very high resolution. Nowadays such spectroscopy is often done with
lasers since they can provide the required resolution easily. A molecule moving
toward a laser source will “see” a frequency that is higher than the frequency of
the laser because of the Doppler effect. The shift is proportional to vx /c, where
vx is the component of the molecule’s velocity along the laser beam direction
and c is the speed of light. The absorption spectrum that appears therefore has
lines that are broadened by the motion of the molecules, and if the line shape is
measured carefully, the distribution f (vx ) can be determined directly.

1.1.6 Applications of the Maxwell distribution

Average speed 〈v〉
We use the usual approach to averaging things:Levine §15.5

〈v〉 =
∫ ∞

0
vF (v)dv (1.34)

=
( m

2πkT

) 3
2

4π
∫ ∞

0
v3 exp

(
−mv2

2kT

)
dv (1.35)

Use the standard integral ∫ ∞

0
x2n+1e−ax2

dx = n!

2an+1 (1.36)

with n = 1 and a = m
2kT to give

〈v〉 =
( m

2πkT

) 3
2

4π
1!

2
( m

2kT

)2 (1.37)

=
(

8kT

πm

) 1
2

(1.38)

The average speed 〈v〉 differs from the root-mean-square speed
√

〈v2〉 = c
because it contains the numerical factor

p
8/π=p

2.546 rather than
p

3.

Most probable speed vmp

The most probable speed is the speed at which F (v) reaches a maximum. We
find it by differentiating F (v), setting the derivative equal to 0, and solving for
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1.1. Kinetic-molecular theory of gases 13

vmp; I ask you to work it out in a homework problem. The result is

vmp =
(

2kBT

m

) 1
2

(1.39)

The most probable speed has
p

2 as the numerical factor multiplying
(

kT
m

) 1
2

; it is

the smallest of the three measures of speed we have considered.

Fractions of molecules within finite speed or velocity ranges

The natural interpretation F (v) is “the fraction of molecules with speeds between
a and b is P (a ≤ v < b) = ∫ b

a F (v)dv”, and similarly for f (vx ). However, that
integral cannot be evaluated analytically for values of a or b different from zero
or infinity. Such finite integrals can be expressed in terms of the error function,
erf(x), defined by

erf(x) = 2p
π

∫ x

0
e−t 2

dt. (1.40)

The error function erf(x) can be evaluated easily in Excel with the notation ERF().
In terms of it the two most useful indefinite integrals for evaluating probabilities
of speeds or velocities in finite ranges are

∫
e−ax2

dx =
p
πerf

(
x
p

a
)

2
p

a
+C (1.41)∫

x2e−ax2
dx =

p
πerf

(
x
p

a
)

4a3/2
− xe−ax2

2a
+C (1.42)

So, for example, we might ask “What fraction of oxygen molecules have
speeds between 100 and 200 m/s?” Comparing Eq. (1.33) with those standard
integrals, we see that we need the second one with a = m/2kBT = M/2RT =
6.4149×10−6 s2/m2 so

p
a = 0.00253276s/m. We have for our probability

P (100 ≤ v < 200) =
∫ 200

100
F (v)dv = 4π

( a

π

)3/2
[p

πerf
(
x
p

a
)

4a3/2
− xe−ax2

2a

]200

100

(1.43)

Excel gives ERF(100
p

a) = 0.279796 and ERF(200
p

a) = 0.526239. Plugging in
the rest of the numbers (which I did in a simple Excel spreadsheet, shown in
Figure 1.3) gives P = 0.07225, or 7.225%.
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F
(v

)

M 0.032 kg/mol
R 8.314 J/mol K
T 300 K
a 6.41488E-06 s^2/m^2
sqrt(a) 0.002532762 s/m
lowlim 100 m/s
uplim 200 m/s
lowlim*sqrt(a) 0.253276184 erf(lowlim*sqrt(a)) 0.279796
uplim*sqrt(a) 0.506552368 erf(uplim*sqrt(a)) 0.526239

prefactor 3.66664E-08 integral at lower limit 320792.7
integral at upper limit 2291361

prefactor*(intupper-intlower) 0.072254

Figure 1.3: Spreadsheet and plot showing calculation of fraction of O2 molecules
with speeds between 100 and 200 m/s at 300 K. The spreadsheet is available on
the Blackboard site as o2frac.xls.

Wall collision rates and effusion

Collision rate with a wall Let’s work out the number of molecules that hit a Levine §15.6
container wall in a time ∆t . We’ll do this by considering the contribution of each
velocity separately, then adding them up, using the same cubical box of side l we
used before.

Let’s say the wall is perpendicular to the x axis. The number of molecules in
the gas with x component of velocity between vx and vx +dvx is just N f (vx )dvx ,
where f (vx ) is the one-dimensional velocity distribution and N is the total num-
ber of molecules. Those molecules will hit the wall in time ∆t if vx is toward
the wall and they start out within a distance vx∆t of the wall. Since the length
of the box is l , the fraction of those molecules close enough to hit the wall is
vx∆t/l , so the number of collisions they contribute is (vx∆t/l )N f (vx )dvx . The
total number of wall collisions during time ∆t is the sum of the contributions
from all velocities, or

Nwall =
N∆t

l

∫ ∞

0
vx f (vx )dvx . (1.44)

Notice that we only integrate from 0 up to ∞, not from −∞; molecules that are
moving away from the wall don’t hit it. Putting in Eq. (1.29) for f (vx ) we have

Nwall =
N∆t

l

(
m

2πkBT

) 1
2
∫ ∞

0
vx exp

(
− mv2

x

2kBT

)
dvx . (1.45)
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1.1. Kinetic-molecular theory of gases 15

The integral can be done with straightforward substitution and equals kBT /m,
so we have

Nwall =
N∆t

l

(
m

2πkBT

) 1
2 kBT

m
= N∆t

l

(
kBT

2πm

) 1
2

. (1.46)

A more generally useful quantity is the collision rate per unit area, which is
simply Nwall

l 2∆t ; since l 3 =V , that rate is

1

A

dNwall

dt
= 1

4

N

V
〈v〉 = 1

4

P NA

RT
〈v〉 (1.47)

where NA is Avogadro’s number, and we have used the ideal gas law and 〈v〉 =√
8kBT /πm. So the number of collisions per second with a wall is proportional

to P and to 〈v〉, as we expected.

Effusion rates Now, say we punch a small hole in the wall of area a, and we put
the box in a vacuum system so there is no gas to leak into the container. This
hole must be small enough that leaks through it don’t disturb the distribution
of speeds or densities in the main gas; effectively, the molecules must escape
one at a time. At what rate does gas leak out? Each molecule that hits the hole
will escape, so the escape rate will be just the area of the hole times the collision
frequency. The rate of change of the number of molecules N in the container will
be just

dN

dt
=−aP NA

4RT
〈v〉 = −aP NA

(2πMRT )1/2
. (1.48)

Effusion from a mixture of gases can be used to separate the gas molecules by
mass. The effusion rate is proportional to the inverse square root of the molecular
mass; light molecules escape through the hole more quickly than heavier ones.
The effusing gas is therefore enriched in the light component. This effect is the
basis of the gaseous-diffusion technique used at Oak Ridge to separate uranium
isotopes for the first atomic bombs.

It is convenient to rewrite Eq. (1.48) in terms of mass. Converting the number
of molecules N to the mass by dividing by Avogadro’s number and multiplying by
the molecular weight M , we find for the rate of mass loss

dmgas

dt
=−aP

(
M

2πRT

) 1
2

(1.49)

This expression provides a standard way of determining the vapor pressures
of not-very-volatile substances. If you put a sample of solid inside a cell with a
small hole of known area a (determined with a microscope), apply a vacuum
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pump to the other side of the hole, let the material effuse for a while (typically
minutes to hours), and then measure the loss of mass of your sample, you can
determine its vapor pressure P . Irving Langmuir at General Electric measured
vapor pressure curves for tungsten this way more than fifty years ago, and his
results still appear in standard reference books; they have not been improved
upon.

1.1.7 Translational energy distribution

Let’s consider the Maxwell distribution in terms of translational energy ratherLevine §15.5
than speed. We need to make a change of variable. Any time you convert a
distribution from one set of variables to another, you must be careful: you must
make sure that probabilities calculated from the distributions written in terms of
the two different variables match up. In other words, if the energy distribution
is G(εtr), we must have G(εtr)dεtr = F (v)dv. Therefore, we must be careful to
change variables in the accompanying differential dv as well as in F (v) itself.
When we converted the Maxwell distribution from Cartesian to spherical polar
coordinates above, we did this matching “automatically” by knowing beforehand
that the new volume element in spherical polar coordinates was r 2 sinθdrdθdφ.
Here we are making a different change so I will show the conversion in more
detail.

We want to change from v to εtr, starting from

G(εtr)dεtr = F (v)dv (1.50)

G(εtr)dεtr =
(

m

2πkBT

) 3
2

4πv2 exp

(
− mv2

2kBT

)
dv (1.51)

We have εtr = 1
2 mv2, so v =

(
2εtr
m

) 1
2

and dv = 1
2

(
2εtr
m

)− 1
2 2

m dεtr =
(

1
2mεtr

) 1
2

dεtr. In

the Maxwell distribution F (v)dv, we replace v with
(

2εtr
m

) 1
2

and dv with
(

1
2mεtr

) 1
2

dεtr

to get

G(εtr)dεtr =
(

m

2πkBT

) 3
2

4π

(
2εtr

m

)
exp

(
− εtr

kBT

)(
1

2m

) 1
2

ε
− 1

2
tr dεtr (1.52)

= 2π

(
1

πkBT

) 3
2

ε
1
2
tr exp

(
− εtr

kBT

)
dεtr (1.53)

so we say that

G(εtr) = 2π

(
1

πkBT

) 3
2

ε
1
2
tr exp

(
− εtr

kBT

)
. (1.54)
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1.1. Kinetic-molecular theory of gases 17

All the dependence on mass has canceled; the translational energy distribution
is the same for all molecules at the same temperature. Figure 1.4 shows this
distribution for temperatures of 300 and 700 K.

0 5 10 15 20 25
εtr/(kJ/mol)

0.0

0.5

1.0

1.5

2.0x10-4

G
(ε

tr
)/

(m
ol

/k
J)

300K

700 K

Figure 1.4: Translational energy distributions for gases. The distribution is inde-
pendent of mass.

The translational energy distribution rises very steeply from the origin; it has
infinite slope at the origin, while the speed distribution has zero slope there. If
you draw a vertical line at any energy, the area under the distribution to the right
of that line gives the fraction of molecules with translational energy equal to or
greater than that amount. In a simple theory of chemical kinetics, it is only those
molecules than can surmount an “activation barrier” and react; this distribution
therefore plays an important role in kinetics.
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1.1.8 Hard-sphere collision rates

Let’s begin thinking about molecules colliding with each other. Clearly that canLevine §15.7
be a complicated field; most of the richness of chemical reactions occurs in some
sequence of bimolecular collisions, and if a single simple theory could describe
everything about those collisions chemistry wouldn’t be nearly so interesting.
But, for starters, let’s use a simple theory: think of molecules as little tiny marbles.
The “hard-sphere” model can teach us a remarkable amount about molecular
collisions.

I’ll start out by thinking about one molecule as moving with speed vrel through
a forest of other, stationary, molecules. All the molecules are hard spheres with
diameter d . As our one molecule moves along, if its trajectory takes its center
within a distance d of the center of any other molecule, the two will hit. (See
Figure 1.5.) In a time t , our molecule carves out a “collision cylinder” of volume
πd 2vrelt ; any other molecules whose centers are in that cylinder will collide with
it. The number of such molecules is just the volume of the cylinder times the
number density of the gas, N = N /V . So the number of collisions one molecule
makes per second, z, is

z =πd 2vrelN . (1.55)

d

miss

hit

hit

Figure 1.5: The collision cylinder. Molecules whose centers lie within the cylinder
will be hit by the moving molecule.

If we rewrite N with the ideal gas law we find

N = N

V
= nNA

V
= P NA

RT
= P

kT
(1.56)

so that in terms of the pressure the collision rate of a single molecule is

z =πd 2vrel
P

kT
(1.57)

The effective “target area” of the molecule, πd 2, is often called the collision
cross section and given the symbol σ. This idea of an effective size can be usefully
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1.1. Kinetic-molecular theory of gases 19

extended to many kinds of events other than hard-sphere collisions. Events that
are less likely than simply bouncing—for example, chemical reaction—will have
smaller cross sections.

Of course, all the molecules are moving, and not all with the same speed.
When you include all the molecules’ motions, the appropriate value for vrel is just
the average speed, but calculated with the reduced mass of the colliding pair:

vrel =
(

8kT

πµ

) 1
2

(1.58)

where, as usual, µ = m1m2/(m1 +m2) and m1 and m2 are the masses of the
colliding molecules. (Once again, you can express µ in kg/mol and use R in the
numerator rather than k.)

If two different kinds of molecules are colliding, they might have different
sizes as well as different masses; in that case, you use the average diameter
d = (d1 +d2)/2 in Eq. (1.57).

The formulas I have given so far describe the number of collisions a single
molecule makes with other molecules (either the same kind or different) in a gas.
In a gas that contains molecule types A and B, the number of A–B collisions per
second per unit volume is

ZAB = zAB NA (1.59)

ZAB =σAB

(
8kT

πµAB

) 1
2
(

P A

kT

)(
PB

kT

)
. (1.60)

The number of B-B collisions per second per unit volume is calculated simi-
larly, but we must divide by 2 to avoid counting the same collision twice:

ZBB = 1

2
zBB NB (1.61)

ZBB = 1

2
σBB

(
8kT

πµBB

) 1
2
(

PB

kT

)2

(1.62)

where µBB = mB /2, σBB =πd 2
B , and PB is the partial pressure of B.

Mean free path

We have seen how to calculate the number of collisions a particular molecule
makes with other molecules per second, and also how to calculate the average
speed of the molecule. With those two results it is easy to find the average distance
a molecule travels between collisions, the mean free path λ:

λ= 〈v〉/z = kTp
2σP

. (1.63)

At one atmosphere and 300 K, for nitrogen and oxygen λ∼ 160 nm.
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Chapter 2

Chemical Kinetics

2.1 Elementary reactions and rate laws

It is conventional to call the rate of change of concentration of a reactant or Levine §17.1
product the rate of a reaction. This definition is useful in homogeneous reac-
tion mixtures at constant volume. (For other conditions, where unmixed flows,
reactions at interfaces, or volume changes are important, different definitions
of the reaction rate are needed.) The rate law is the differential equation that
describes the rate as a function of concentrations of the chemical species present.
If a chemical equation describes an individual molecular event, as for instance

O+CH4 ==⇒ OH+CH3, (1)

then we say that equation represents an elementary reaction. Most ordinary
chemical equations are not elementary; they describe overall chemical processes
that occur in several steps, not just one. One of the main goals of many kinetic
studies is to determine the sequence of elementary reactions, or mechanism,
which makes up an overall reaction.

For an elementary bimolecular reaction, we would expect that the rate of
the reaction should be proportional to the number of collisions between the
reactants per second. In the gas phase we have already seen, in Eq. (1.60), that
that collision rate ZAB is proportional to the product of pressures of the two
reactants. Equivalently, since P

RT = n
V , it is proportional to the concentrations of

the two reactants. In solution, the reaction rate must similarly be proportional
to the “encounter rate”, the number of times per second that the two reactants
find one another. That rate in solution is also proportional to the product of the
concentrations of the two species. For an elementary bimolecular reaction, then,
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we can write down the rate law directly:

−d [O]

dt
= k[O][CH4], (2.2)

where k, the proportionality constant between the rate and the product of con-
centrations, is an elementary rate coefficient. The rate coefficient is usually a
function of temperature but it does not depend on the concentrations, as you
can see from Eq. (1.60).

Note that for an elementary reaction we can write the rate in terms of any of
the concentrations, because

rate =−d [O]

dt
=−d [CH4]

dt
= d [OH]

dt
= d [CH3]

dt
. (2.3)

I will sometimes follow a convention of using a double-tailed arrow, ==⇒,
for reactions that are thought to be elementary. (Unlike the use of square brack-
ets for concentrations, this convention is not a standard part of the kinetics
nomenclature.)

Reaction (1) is a bimolecular reaction; the other possibilities are unimolecular
and termolecular, both of which are rarer. Elementary unimolecular reactions
come about when a reactant has been prepared somehow with enough energy to
react on its own. For example, in an experiment we sometimes do in pchem lab,
students prepare an electronically excited state of Ru(bpy)2+

3 by photoexcitation,
which then fluoresces in an elementary unimolecular reaction:

R∗ kf==⇒ R+hν, (4)

The rate of such an elementary unimolecular reaction is simply proportional to
the concentration of its single reactant, so its rate law is

d [R∗]

dt
=−k f [R∗]. (2.5)

More commonly, unimolecular reactants are generated in bimolecular collisional
processes that form part of an overall reaction mechanism.

2.2 Integrated rate laws

The rate law is a differential equation. The solution to that equation, the inte-Levine §17.3
grated rate law, describes the concentration of one species as a function of time.
Let’s examine three simple types of elementary rate laws: those for unimolecular
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2.2. Integrated rate laws 23

reactions, “simple” bimolecular reactions where the single reactant must collide
with another molecule of the same species to react, and “mixed” bimolecular
reactions where two different species must collide. In the general language of
kinetics, these reactions give “first order”, “simple second order”, and “mixed
second order” rate laws. Similar rate laws are also often found even for more
complicated reactions composed of several steps, as we will see shortly.

2.2.1 First order reactions

While true first order reactions (even composite ones) are comparatively rare,
first-order rate behavior is extremely important because many more complicated
reactions can be “tricked” into behaving like first-order ones and first-order
behavior is easier to handle experimentally than any other type.

A first order unimolecular reaction

A
k==⇒ P (6)

has the rate law

−d [A]

dt
= k[A]. (2.7)

If the general (not elementary) reaction

aA+bB+ . . . −−→ yY+zZ+ . . . (8)

is first order with respect to A, and its rate depends on no other concentrations (it
is zero order with respect to all other species), then its rate law is

− 1

a

d [A]

dt
= k[A]. (2.9)

The 1
a out front is a convention (not universally followed) that makes the rate

expressed in terms of any reactant or product equal if there are no intermediates
with substantial concentrations. Notice that k must have units of s−1; that will
always be true of first-order rate coefficients. k is a positive number that does
not depend on any concentrations, though it does depend (usually strongly) on
temperature.

Integration of the rate law

The rate law is a differential equation; in this case it is a separable equation,
and can be solved simply by isolating the terms corresponding to the different
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variables [A] and t on different sides of the equation and integrating both sides:

d [A]

[A]
=−k dt (2.10)∫

1

[A]
d [A] =−k

∫
dt (2.11)

ln[A] =−kt +C (2.12)

C is an as-yet-unknown constant of integration. Exponentiating both sides we
obtain

[A](t ) = eC e−kt =C ′e−kt . (2.13)

We must find the value of the constant C ′ by applying the initial conditions.
At time t = 0, the concentration of A is A0. We therefore have C ′ = A0, so that

[A](t ) = A0e−kt (2.14)

and the concentration of A falls exponentially with time from its initial value.
The rate coefficient can be determined by measuring [A] as a function of

time. Figure 2.1 shows two common plots used to demonstrate or analyze this
behavior.

time
τt1/20

A0

A0/2

A0/e

0

[A](t)

time

-l
n(

[A
](

t)
/A

0)

slope = k

Figure 2.1: Concentration-vs.-time behavior for a simple first order reaction.
The left panel shows the exponential concentration dependence; the right panel
shows the linear behavior of a semilogarithmic plot.
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Half-life and time constant

The half-life for a reaction is time time required for some reactant to reach
half its initial concentration (or more precisely, for its concentration to reach a
value halfway between its initial and final concentrations; for A −−→ P, the two
definitions are the same.) For a first-order reaction we can find the half-life t1/2

by substituting into Eq. (2.13):

[A](t1/2) = A0

2
= A0e−kt1/2 (2.15)

ln
1

2
=−kt1/2 (2.16)

t1/2 = ln2

k
(2.17)

Notice that the half-life for a first order reaction is independent of the initial
concentration of A; this is a very convenient property and is not true for other
reaction orders.

The time constant τ of this reaction (also called the natural lifetime, the
e-folding time, or the 1/e time) is the time required for the concentration of
A to reach 1/e (≈ 0.37) of its initial concentration. We can find it by a similar
calculation:

[A](τ) = A0

e
= A0e−kτ (2.18)

ln
1

e
=−kτ (2.19)

τ= 1

k
(2.20)

The 1/e time is again independent of the initial concentration of A. Both the
half-life t1/2 and the 1/e time τ have units of time: seconds, years, microseconds,
or whatever. Both provide a quick-and-dirty way to estimate the first-order
rate coefficient quickly from a plot of the concentration vs. time obtained in an
experiment; just look to see how long it takes for the concentration to drop to
half its initial value (to get t1/2) or to just above 1/3 of its initial value (to get τ).
Then invert that time, and multiply by ln2 ≈ 0.7 if you measured the half-life.
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Analysis of first-order data

First-order reactions have an important property that makes them easier to
study than others. If you can measure any property that is linearly related to the
concentration (more precisely, affine in the concentration: Q =α[A]+β), then
you can determine the rate coefficient without having to know either α or β; that
is, the analytical method you use to measure [A] need not be calibrated!

If A is a reactant, then you fit the Q vs. time data to an equation of the form

Q =Ce−kt +D, (2.21)

and if A is a product you fit to

Q =C (1−e−kt )+D, (2.22)

and in either case the value of k is independent of the slope α and offset β in the
expression Q =α[A]+β.

Many textbooks will suggest that you use the equation

− ln

(
Q −Q∞
Q0 −Q∞

)
= kt (2.23)

and therefore make a logarithmic plot to find k. However, this method has
the disadvantages that (1) it relies too heavily on the precision of the single
measurement Q∞ at very long time, and (2) that it requires careful weighting of
the data in the linear least-squares fit if an accurate value of k is required.

Examples of observables Q that are useful in analyzing first-order reactions
include

1. mass of reaction mixture (for reactions evolving gases)

2. capillary rise

3. optical absorption

4. optical rotation in a polarimeter (classic)

5. fluorescence

6. mass spectrometer signal on either product or reactant mass

7. volume change (good for some polymerizations)

The crucial point is that you do not have to know how your “detector” is cali-
brated; you only have to know that its reading is proportional to the concentration
(possibly with some offset).
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2.2.2 Pseudo-first-order reactions

When a reaction is known to follow a rate law of higher order than 1, concen- Levine §17.1
trations can often be adjusted to make the kinetics appear first order with an
effective rate coefficient. Consider a reaction

A+B −−→ C (24)

with the rate law

−d [A]

dt
= k[A][B]. (2.25)

This rate law is second order overall, and its rate coefficient k has units m−1 s−1.
But if we run the reaction with a very large excess of B, say B0 = 100A0, then [B]
will change very little during the reaction—it will be nearly equal to B0 the whole
time— and we can write

−d [A]

dt
≈ k ′[A], (2.26)

where k ′ = kB0. k ′ is a pseudo-first-order rate coefficient with units s−1. Now, if
we do this experiment at several different values of B0 (all very large compared
to A0), extract a k ′ for each with an exponential fit as described above, and then
plot k ′ vs. B0, we should get a straight line with slope k (that is, the true second-
order rate coefficient). This is one of the best ways to measure second-order
coefficients.

It’s better to make that k ′ vs. B0 plot and find its slope to get k than to evaluate
k from the measured k ′ at a single B0. Using only a single measurement will get
you the wrong answer if there is some competing process that can remove A from
the system (such as a slow decomposition reaction).

Example As part of my graduate work I did an experiment that determined the
rate coefficient for the reaction

S(1D)+N2
k−−→ S(3P )+N2, (27)

which is a mixed second order reaction. In the experiment, I prepared a sample
that contained a few millitorr of OCS, amounts of nitrogen ranging from 0.1 to
2 torr, and helium (which reacts extremely slowly with S(1D)) to make the total
pressure 5 torr. A fast pulse of laser light photolyzed the OCS to produce S(1D).
I then detected the total amount of S(1D) by laser induced fluorescence as a
function of time. Because the nitrogen concentration was much higher than
that of the S(1D) (and the N2 isn’t consumed anyway), the system was a good
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Table 2.1 Pseudo-first-order rate coefficients for quenching of singlet sulfur by
nitrogen.

N2 pressure/torr 0.1 0.5 2.0
k1/µs 0.541 1.442 4.88

pseudo-first-order one. I fit the decay curves to exponential decays to determine
pseudo-first-order rate coefficients k1, yielding the results shown in Table 2.1.

I then made a plot of those coefficients against the nitrogen pressure and fit a
straight line, as shown in Figure 2.2. The slope of the fitted line gave a second-
order rate coefficient of 2.3µs−1 torr−1, which at room temperature is equivalent
to 7.1×10−11 cm−1molec−1s−1.

Note that the intercept in Figure 2.2 is not zero. Two processes, quenching
by species other than nitrogen (namely OCS and helium) and diffusion of S(1D)
out of the detection region, contribute to the pseudo-first-order rate coefficients.
Making the plot against nitrogen pressure isolates the effect of the nitrogen from
the competing processes and avoids the systematic errors they would otherwise
introduce.

0.0 0.5 1.0 1.5 2.0 2.5
N2 pressure/torr

0

1

2

3

4

5

k 1
/µ

s-1

slope = 2.286 ± 0.007 µs-1 torr-1

Figure 2.2: Extraction of second order rate coefficient from pseudo-first-order
data in Table 2.1.
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2.2.3 Reactions second order in a single reactant

Here we have

d [A]

dt
=−k[A]2 (2.28)

d [A]

[A]2 =−k dt (2.29)∫
d [A]

[A]2 =−k
∫

dt (2.30)

− 1

[A]
=−kt +C (2.31)

Applying the initial condition [A](t = 0) = A0 we find C =−1/A0, so

1

[A]
− 1

A0
= kt (2.32)

The textbook analysis is to plot 1/[A] against t and extract the slope to get k.
Notice that the plot of [A] vs. time is not exponential, as it is in the first-order case,
but hyperbolic; the concentrations approach their asymptotic values much more
slowly than in the first order reaction.

Look at the half-life now. By an analysis similar to that we used before, we
find

t1/2 = 1

k A0
(2.33)

Now, the half-life depends on the initial concentration. In fact, it is inversely
proportional to the initial concentration. If you double the initial reactant con-
centration, the half-life will be cut in half. Similarly, if you compare the first and
second half-lives for a single reaction mixture, the second one is twice as long as
the first (whereas in the first order case, they are the same.) This gives a quick
and dirty way to estimate reaction orders from data.

2.2.4 Mixed second order reactions

One of the most common rate laws in practice is “mixed second order”: first order
in each of two reactants. For the reaction

aA+bB −−→ products, (34)

if A and B are consumed simultaneously we have

− 1

a

d [A]

dt
=− 1

b

d [B]

dt
= k[A][B]. (2.35)
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If A and B start with stoichiometric concentrations, aB0 = b A0, then this looks
just like the previous case, since a[A] = b[B] at all times.

Otherwise, we have two differential equations: one each in [A] and [B]. If A
and B are consumed simultaneously (there are no intermediates of substantial
concentrations) we can say

[B] = B0 − b

a
(A0 − [A]) , (2.36)

so that

− 1

a

d [A]

dt
= k[A]

(
B0 − b

a
(A0 − [A])

)
(2.37)

−d [A]

dt
= k[A](aB0 −b A0 +b[A]) (2.38)

= k[A](∆0 +b[A]) (2.39)

where∆0 = aB0−b A0. This differential equation is separable. Separating it, using
the standard indefinite integral∫

dx

x(a +bx)
= −1

a
ln

a +bx

x
+C , (2.40)

applying the initial condition, and substituting back in for [B] gives

ln

(
[B]

[A]

)
= ln

(
B0

A0

)
+k∆0t . (2.41)

So, a plot of ln([B]/[A]) against t gives a straight line with slope k∆0.
As A0 and B0 become closer to stoichiometric concentrations, ∆0 becomes

closer to zero, and the relative uncertainty in its value (from errors in the initial
concentrations A0 and B0) becomes larger. This method is numerically unsuit-
able near stoichiometric initial concentrations. It’s usually best to run kinetic
experiments under conditions where one reactant is clearly the limiting reactant,
or else to use stoichiometric initial concentrations and use the simple second
order analysis.
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2.3 Mechanisms

The mechanism lists the elementary reactions making up a chemical process. It
can be used to predict the detailed concentration vs. time behavior and therefore
the observed rate law. A proposed mechanism cannot be proven correct, though
it can be proven wrong by disagreement with observed behavior. Adding together
the reactions of the mechanism (perhaps with multipliers, indicating that some
elementary steps must happen more than once) should give the overall reaction.

For example, the “laboratory” reaction

2ICl+H2 −−→ I2 +2HCl (42)

has the observed rate law

1

2

d [HCl]

dt
= k[ICl][H2]. (2.43)

This rate law suggests that the kinetics are dominated by a bimolecular reaction
between ICl and H2. One possibility for the mechanism is

ICl+H2
k1==⇒ HI+HCl (slow) (2.44)

HI+ ICl
k2==⇒ HCl+ I2 (fast) (2.45)

We will shortly see how to analyze the behavior of this mechanism quantitatively.

2.3.1 Simple example: reversible unimolecular transformation

The mechanism

A
k1==⇒ B (46)

B
k2==⇒ A, (47)

which can also be written

A
k1−)−−*−
k2

B, (48)

gives the set of “elementary rate laws”

d [A]

dt
=−k1[A]+k2[B] (2.49)

d [B]

dt
= k1[A]−k2[B] (2.50)
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Figure 2.3: Behavior of a reversible first order reaction for the case B0 = 0 and
k1 = 2k2.

This is a system of two coupled ODEs. Once the initial conditions are spec-
ified, its solution describes the complete time dependence. Figure 2.3 shows a
graphical representation of the concentration vs. time profiles of both compo-
nents when B0 = 0. In this case, the system of equations can be easily solved
analytically, and I will now show how to do that. In more complicated cases I will
leave out the detailed solutions.

We can solve the system by using mass balance to uncouple the two equations:
[B] = B0 + (A0 − [A]) from stoichiometry, so that

d [A]

dt
=−k1[A]+k2(B0 + A0 − [A]). (2.51)

Eq. (2.51) is now a separable differential equation in [A] only. Its solution,
with [A](t = 0) = A0, is

[A](t ) = 1

k1 +k2

{
(k1 A0 −k2B0)e−(k1+k2)t +k2(A0 +B0)

}
(2.52)

The rate law in this case looks like

−d [A]

dt
= (k1 +k2)[A]−k2(B0 +A0) (2.53)

= k ′[A]+C , (2.54)

and the reaction order is not defined.
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At equilibrium, the forward and reverse rates are the same, so

k1[A]eq = k2[B]eq (2.55)

[B]eq

[A]eq
= k1

k2
(2.56)

= Keq (2.57)

Many exact solutions of this type are given by Z. G. Szabó, in Comprehensive
Chemical Kinetics, vol. 2, ch. 1, ed. by Bamford and Tipper (Elsevier, Amsterdam,
1969.)

2.4 Exact and approximate analytic solutions to sets of rate
equations

Any kinetic system composed entirely of first-order (or pseudo-first-order!) steps
has an exact analytic solution. It may be found by the linear algebraic methods
described in Sec. 2.5 in Steinfeld, Francisco, and Hase, Chemical Kinetics and
Dynamics, 2nd ed. (Prentice-Hall, 1998). Moderately complicated systems can
also be handled with Laplace transforms, described in Sec. 2.4 of the same text.
These techniques work only for linear (1st-order) systems. Let’s consider quali-
tatively a few simple cases, where the higher-powered solution techniques are
unnecessary.

2.4.1 Consecutive first-order reactions

Consider the consecutive mechanism

A
k1==⇒ B

k2==⇒ C (58)

An example of this sort of system is the electronic quenching of excited bromine
atoms by CO2,

Br(2P 1
2

)+CO2 ==⇒ CO∗
2 (001)+Br(2P 3

2
) (59)

CO∗
2 +CO2 ==⇒ 2CO2, (60)

under conditions of excess CO2 so that both steps are pseudo first order. One
way to monitor the reaction progress is to measure IR luminescence of Br(2P 1

2
) or

CO∗
2 .
The differential equation describing [A] is the usual one corresponding to

first-order decay, so that A decays exponentially with τ= 1/k1. If you substitute
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the exponential decay into the equation for d [B]/dt, you get a “first order linear”
(not separable) differential equation. It can be solved by techniques described in
every differential equations textbook. [B] grows, then decays:

[B] = k1 A0

k2 −k1

(
e−k1t −e−k2t

)
(2.61)

The maximum concentration of B depends on the relative sizes of k1 and k2.
Let’s look at the two extreme cases, illustrated in the upper and lower panels of
Figure 2.4.

Consecutive 1st-order, k1 À k2

In this case, then at short times (t ∼ 0), the second exponential term in Eq. (2.61)
is near 1, the equation looks like B ≈ A0(1− e−k1t ), and B grows in with time
constant 1/k1 as though no conversion to C was occuring. At long times, the first
of the two exponential terms goes toward zero, and we have [B] ' A0e−k2t , so that
B is decaying toward C with time constant 1/k2. The system essentially converts
all the A to B, and then, on a slower timescale, converts the B to C. The maximum
concentration of B will be nearly the initial concentration of A.

We can get [C] by mass balance: [C] = A0 − [A]− [B].

Consecutive 1st-order, k1 ¿ k2

In this case, a B molecule decays to C almost as soon as it is formed; only very
small concentrations of B ever appear. Once a small “steady-state” concentration
of B has built up, it looks like C is appearing with the same rate that A is disap-
pearing, so C appears with roughly an exponential rise that has τ∼ 1/k1. We will
see that this simple system, with its short-lived intermediate B, is an example of
systems for which the steady state approximation is useful.

2.4.2 Competitive (parallel) first order reactions

In this case, the mechanism is

A
k1==⇒ B (62)

A
k2==⇒ C (63)
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Figure 2.4: Temporal behavior of consecutive, irreversible first-order reactions.
The upper panel shows the case k1 = 5k2; the lower panel shows the case k2 = 5k1.

The rate equations are

d [A]

dt
=−(k1 +k2)[A] (2.64)

d [B]

dt
= k1[A] (2.65)

d [C]

dt
= k2[A] (2.66)

The first of the three is an ordinary first-order decay, giving [A] = A0e−(k1+k2)t .
Substituting that result into the second and third equations gives separable equa-
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Figure 2.5: Temporal behavior of competing, irreversible first-order reactions. In
this figure k1 = 2k2.

tions for both B and C, which have nearly the same solutions:

[B] = k1 A0

k1 +k2
(1−e−(k1+k2)t ) (2.67)

[C] = k2 A0

k1 +k2
(1−e−(k1+k2)t ) (2.68)

Note that B and C have the same temporal behavior; their risetimes are deter-
mined by the sum of the two elementary rate coefficients. Their concentrations
are determined by the individual rate constants, such that [B]/[C] = k1/k2 always.
Such systems are convenient to study experimentally; measure τA to get k1 +k2,
then simply measure [B]

[C] at any convenient time (typically t → ∞) to get the
ratio k1/k2. Those two measurements are enough to determine the individual k
values. This approach is the basis of the very popular “relative rates method” of
experimental kinetics.

Kinetic vs. thermodynamic control

If the reactions are reversible,

A
k1−)−−*−

k−1

B (69)

A
k2−)−−*−

k−2

C, (70)
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then the issue of thermodynamic or kinetic control of products appears.

Assuming no direct interconversion of B and C,

[B]eq

[C]eq
= [B]eq

[A]eq
· [A]eq

[C]eq
= k1

k−1

k−2

k2
= KBC. (2.71)

If k1k−2 ¿ k−1k2 so that KBC ¿ 1, then at equilibrium there will be much
more C than B and we say that C is the “thermodynamically favored" product.

On the other hand, if k1 À k−1 and k2 À k−2, both elementary reactions will “act
irreversible”—their forward rates will be much greater than their reverse ones—
until most of the A is gone. During that time the ratio [B]/[C] ≈ k1/k2. If k1 À k2,
mostly B will appear. B is then called the “kinetically favored" product. These
conditions on the rate coefficients are not mutually exclusive, and the effect is
not at all rare. If

k1 = 100 s−1 k−1 = 10−7

k2 = 10−2 k−2 = 10−12

then Table 2.2 shows the resulting concentrations. This is a not-too-extreme case
of kinetic control.

Table 2.2 Kinetic control
time [A](%) [B](%) [C](%)
0 100 0 0
10 s 0 99 1
3 months 0 98 2
1900 years 0 1 99

Relative Rate Experiments

Consider elementary reaction of B with two compounds A1 and A2, to give prod-
ucts P1 and P2.

A1 +B
k1==⇒ P1 (72)

A2 +B
k2==⇒ P2 (73)
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If B is added to a mixture of A1 and A2, whose concentrations are À B0, then

d [P1]

dt
= k1[A1]0[B] (2.74)

d [P2]

dt
= k2[A2]0[B] (2.75)

d [P1]

d [P2]
= k1[A1]0

k2[A2]0
(2.76)

So, after a long time

[P1]∞
[P2]∞

= k1[A1]0

k2[A2]0
(2.77)

If either k1 or k2 is known from other measurements, this technique allows
determination of the other without a concentration-vs.-time experiment; just
let B react to completion with a mixture of A1 and A2, then analyze the products
when the reaction is over. This relative rate technique has been used extensively
to measure reaction rates of radicals.

Example: Generate phenyl radicals (C6H5·) by pyrolysis of a precursor, in the
presence of both a hydrocarbon RH and CCl4. After the reaction, measure the
ratio [C6H5Cl]/[C6H6]. That ratio times [RH]0

[CCl4]0
gives the ratio of rate constants

kCCl4 /kRH. Careful work requires several starting ratios; then from Eq. (2.77)
plotting the final product ratio vs. the initial reactant ratio yields k1/k2 as the
slope, and a zero intercept.

The advantage of relative rate techniques is that slow but quantitative analyti-
cal techniques (gas chromatography, wet-chemical analysis, etc) can be used to
study even fast reactions.
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2.5 Approximations

What to do if a mechanism is too complicated to usefully compare its predictions
with data?

In particular, mechanisms give concentration vs. time for all species. Usually
we can obtain the rate law only in terms of the reactants or products or both. So
we seek a method to eliminate the concentrations of intermediates in our rate
expressions.

A common kind of mechamism involving an intermediate follows the pattern

A
k1−)−−*−

k−1

B (78)

B+C
k2==⇒ D (79)

The net reaction is A+C −−→ D; B is an intermediate. The set of elementary rate
laws is

d [A]

dt
= −k1[A]+k−1[B] (2.80)

d [B]

dt
= k1[A]− (k−1 +k2[C])[B] (2.81)

d [C]

dt
= −k2[B][C] (2.82)

d [D]

dt
= k2[B][C] (2.83)

Steady-state approximation

If B is a very reactive species (perhaps an organic free radical), we might assume
that its concentration remains small throughout the reaction. Then the absolute
slope of its concentration will be small compared to other time dependences in
the system, and we write

d [B]

dt
≈ 0. (2.84)

We then use that assumption to eliminate [B] from the rate expressions for the
product D. This is called the steady-state or Bodenstein approximation. For our
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example mechanism we have

d [B]

dt

SSA≈ 0 = k1[A]− (k−1 +k2[C])[B] (2.85)

[B]
SSA≈ k1[A]

k−1 +k2[C]
(2.86)

d [D]

dt

SSA≈ k1k2[A][C]

k−1 +k2[C]
(2.87)

Now if k−1 À k2[C],

d [D]

dt

SSA≈ k1k2

k−1
[A][C] (apparent 2nd order,) (2.88)

while if k2[C] À k−1,

d [D]

dt

SSA≈ k1[A] (apparent 1st order.) (2.89)

Conditions for validity of SSA It is sufficient that the sum of all effective rate
coefficients “out of” the intermediate be much greater than the sum “into” the
intermediate. In our example, this means

(k−1 +k2[C]) À k1. (2.90)

(It’s generally safe to take “À” to mean “greater by a factor of 50 or more”; smaller
ratios are often acceptable.)

In addition, there must be a “build-up time” during which [B] climbs to its
(small) steady-state value, and d [B]

dt ≈ 0 must be incorrect. The characteristic
time for buildup of the intermediate concentration is the inverse of the total
effective rate coefficient for loss of B, (k−1 +k2[C])−1, and after a few times that
characteristic time the steady state is established.

Example The classic example of an SN 1 reaction from organic chemistry is the
nucleophilic substitution of a tertiary halide:

(CH3)3CI+Cl− −−−−−→ (CH3)3CCl+ I− (91)

whose observed rate law under most conditions is first order in t-butyl iodide
but independent of the chloride concentration:

d [TBCl]

dt
= k[TBI], (2.92)
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where I have written TBCl for t-butyl chloride and TBI for t-butyl iodide.
A likely mechanism is

(CH3)3CI
k1−)−−*−

k−1

(CH3)3C++ I− (93)

(CH3)3C++Cl−
k2==⇒ (CH3)3CCl. (94)

Writing TB+ for the carbocation intermediate, the rate of production of product is

d [TBCl]

dt
= k2[TB+][Cl−]. (2.95)

This elementary rate law contains the concentration of the intermediate TB+; for
comparison to the observed rate law we need to eliminate it from the expression.

Applying the steady-state approximation to TB+, we find

d [TB+]

dt
= k1[TBI]−k−1[TB+][I−]−k2[TB+][Cl−]

SSA≈ 0 (2.96)

[TB+]
SSA≈ k1[TBI]

k−1[I−]+k2[Cl−]
. (2.97)

Inserting that result into the product production rate expression gives

d [TBCl]

dt

SSA≈ k2[Cl−]
k1[TBI]

k−1[I−]+k2[Cl−]
. (2.98)

Now, if the rate coefficients and concentrations are such that k2[Cl−] À
k−1[I−], then k−1[I−] is negligible in the denominator, the k2[Cl−] terms cancel
top and bottom, and the predicted rate law is

d [TBCl]

dt
≈ k1[TBI] (2.99)

in agreement with the observed rate law. The observed rate coefficient k in this
case is simply k1.

2.5.1 Other Simplifying Approximations

Once again, consider the mechanism

A
k1−)−−*−

k−1

B (100)

B
k2==⇒ C (101)
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and let us look for an expression for d [C]
dt . We have the set of rate equations

d [A]

dt
=−k1[A]+k−1[B] (2.102)

d [B]

dt
= k1[A]− (k−1 +k2)[B] (2.103)

d [C]

dt
= k2[B] (2.104)

I want to consider two main cases, illustrated in Figure 2.6 and summarized
in Table 2.3.

Table 2.3 Relations among simplifying approximations.

Case Requirements Long-time rate coefficient
SSA (k−1 +k2) À k1 k1k2/(k−1 +k2)
REA (k1 +k−1) À k2 k1k2/(k1 +k−1)

SS-EQ k−1 À k1 and k−1 À k2 k1k2/k−1
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Figure 2.6: The steady-state and equilibrium approximations for the A −)*− B −→C
mechanism, for two different sets of rate coefficients. In the left panel k−1 = k2 =
10k1; in the right panel k1 = k−1 = 10k2.

Rapid equilibrium case: (k1 +k−1) À k2

The rate equations for A and B now look like the simple system A −)−−*− B, whose
solution was worked out in Section 2.3.1. After a time ≈ 1/(k1 +k−1), the A −)−−*− B
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reaction will reach approximate equilibrium so that [B] ≈ k1
k−1

[A]. A and B will act
like a single species that is slowly decaying toward C, and

d [C]

dt

REA≈ k1k2

k−1
[A] (2.105)

The substitution [B]
REA≈ k1

k−1
[A] is the “rapid equilibrium approximation.”

Steady state case: (k−1 +k2) À k1

This is just the requirement for the steady-state approximation. Applying it to
this case gives

d [B]

dt
=−k1[A]− (k−1 +k2)[B]

SSA≈ 0 (2.106)

so

[B]
SSA≈ k1[A]

(k−1 +k2)
(2.107)

d [C]

dt

SSA≈
(

k1k2

k−1 +k2

)
[A] (2.108)

Equilibrium-steady-state case

If, in the steady-state case, k−1 À k2, or, in the rapid equilibrium case, k−1 À k1,
then these two approximations reduce to a common result, which Pyun (J. Chem.
Ed. 48, 194 (1971)) calls the “equilibrium-steady-state solution”. This simplest
approximation requires that k−1 be the fastest rate coefficient in the system.

After the time required for the establishment of either the steady state or the
rapid equilibrium condition, C begins appearing (in this first-order example) with
a simple exponential behavior. The effective rate coefficient for this appearance
is given in Table 2.3.

2.5.2 Rate determining steps

In some cases, the overall reaction rate is dominated by one of the elementary
steps, and that step is called the “rate-determining” or “rate-controlling” step.

In the steady-state approximation, if k2 À k−1, then the long-time rate coeffi-
cient reduces simply to k1. In that case the formation of B from A is limiting the
overall rate, and we say that the first step is rate-determining.
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In the rapid equilibrium approximation, if k1 À k−1, then the A—B equilib-
rium lies heavily in the direction of B, and the long-time rate coefficient becomes
simply k2. In this case the second step is the rate controlling one.

If the combined SSA-EQ approximation holds, then C appears with an effec-
tive rate coefficient that is the product of the rate coefficient for the second step
and the equilibrium constant for the first step. In this case, the second step is
again the rate controlling one, but the apparent rate coefficient (if one tries to
model the mechanism with a simple A −→ C elementary step) is modified by the
equilibrium constant for the initial equilibrium.

Notice that a single rate-controlling step does not always exist. For example,
in a sequence of consecutive first-order transformations, if all the steps have the
same rate coefficient then no one of them dominates the rate. (In other words, if
you changed any one of them slightly, the overall rate of production of product
would change.)

These various approximations - SSA, rapid equilibrium, rate-controlling step,
etc. - are often more valuable for the chemical insight they provide than for
mathematical power. In many cases they can be used to focus attention on the
particular parts of a mechanism that are most important in determining the rate.

Whenever one or more assumptions about the values of rate coefficients are
made, it is worthwhile to check the range of validity of the assumptions with
numerical work.

2.5.3 Examples

Ligand substitution

The nucleophilic substitution reaction

Ni(CO)4 +PPh3 −−−−−→ Ni(CO)3PPh3 +CO (109)

has the proposed mechanism (J. P. Day et al., JACS (90), 6927 (1968))

Ni(CO)4
k1−)−−−−−−*−

k−1

Ni(CO)3 +CO (110)

Ni(CO)3 +PPh3
k2−−−−−→ Ni(CO)3PPh3 (111)

Applying the steady-state approximation to the unsaturated intermediate
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Ni(CO)3 gives

d

dt
[Ni(CO)3] = k1[Ni(CO)4]− (k−1[CO]+k2[PPh3])[Ni(CO)3] (2.112)

[Ni(CO)3]
SSA≈ k1[Ni(CO)4]

k−1[CO]+k2[PPh3]
(2.113)

d

dt
[Ni(CO)3PPh3] = k2[Ni(CO)3][PPh3] (2.114)

SSA≈ k2[PPh3]
k1[Ni(CO)4]

k−1[CO]+k2[PPh3]
(2.115)

Under conditions of high ligand (PPH3) concentration, the rate law will reduce
to

d

dt
[Ni(CO)3PPh3] ≈ k1[Ni(CO)4], (2.116)

that is, first order in the carbonyl concentration only. This is a common kinetic
behavior seen for metal carbonyl nucleophilic substitutions.

This example illustrates the most common approach in steady-state treat-
ments: to eliminate the concentrations of presumed intermediates in order to
find a rate law in terms of reactant or product concentrations only. The formation
of “effective” or “observed” rate coefficients in terms of elementary ones usually
becomes clear.

Oxidation of aqueous azide

This example shows both the use of the steady-state treatment for an unstable
intermediate and the effect of rapid equilibria that precede a rate-determining
step.

A simplified mechanism for the oxidation of azide ion by aqueous Br2 is

Br2 +N−
3

fast−−−−−→ BrN3 +Br− (117)

BrN3 +Br−
K1−)−−−−−−*− Br2N−

3 (118)

BrN3 +N−
3

k1−−−−−→ Br−+N6 (119)

N6
k3−−−−−→ 3N2 (120)

The reaction was followed under conditions of excess N−
3 and Br− by observ-

ing the appearance of N2 gas (T. S. Vivekanadam et al., Int. J. Chem. Kin. 13,
199 (1981).) The product appeared with an apparent first-order behavior that
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dependended linearly on [N−
3 ]. The intermediate N6 is an obvious candidate for

the steady state approximation:

[N6]
SSA≈ k1

k3
[BrN3][N−

3 ] (2.121)

d [N2]

dt
= 3k3[N6] (2.122)

SSA≈ 3k1[BrN3][N−
3 ] (2.123)

The first reaction is “fast”, so it is reasonable to regard the initially added
bromine as converted completely to BrN3 immediately. The BrN3 can either
be complexed by Br− in step 118, or react to form product in step 119. The
equilibrium gives us

[Br2N−
3 ]

REA≈ K1[BrN3][Br−] (2.124)

When rapid equilibria are present, it is often useful to define a quantity whose
value does not change so long as no reactions other than the equilibrium reac-
tions occur. In this case we can define a quantity that is the total concentration
of oxidized bromine, and examine its kinetics.

M = [BrN3]+ [Br2N−
3 ] (2.125)

REA≈ [BrN3]+K1[BrN3][Br−] (2.126)

REA≈ [BrN3](1+K1[Br−]) (2.127)

[BrN3]
REA≈ M

1+K1[Br−]
(2.128)

Since M is only destroyed in step Eq. (119),

d M

dt
=−k1[BrN3][N−

3 ] (2.129)

REA≈ −k1[N−
3 ]

M

1+K1[Br−]
(2.130)

Note that d M
dt is just proportional to the rate of appearance of product, and

that it should be expected to follow pseudo-first-order kinetics under conditions
of constant [N−

3 ] and [Br]. The effective first-order rate coefficient is

keff = [N−
3 ]

k1

1+K1[Br−]
. (2.131)

The appearance of several terms in the denominator of a rate expression is a
common effect of equilibria that precede a rate-determining step.
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Notice that bromide acts to inhibit the reaction by tying up the oxidized
bromine (the oxidizing agent) in the unreactive complex Br2N−

3 . The standard
experimental analysis of this sort of competitive equilibrium is to measure keff at
several values of [Br−], and make a plot of [N−

3 ]/keff against [Br−]. The intercept
of such a plot is 1/k1, and its slope is K1/k1.

In fact, the complex can add another bromide ion to form Br3N2−
3 , and the

Br2N−
3 can react with azide to produce N6 with a smaller rate coefficient than

k1. This additional component to the equilibrium and additional pathway to
products do not change the basic pseudo-first-order nature of the reaction, but
they make the expression for keff more complicated.

2.6 Construction of candidate mechanisms from rate laws

2.6.1 Mechanism construction rules

A carefully determined rate law can be interpreted to obtain the atomic composi-
tion and charge of the important transition states (highest point in each section
of the free-energy diagram), and often some information about reactions prior
to the RCS. It never (without studies specifically on the elementary reactions
making up the mechanism) tells about fast reactions that follow the RCS.

Espenson gives a set of guidelines for interpretation of rate laws which I’ll
describe. These depend on accuracy of the steady-state and equilibrium approxi-
mations in appropriate parts of the mechanism, and usually on the existence of a
single rate-controlling step at a given set of reactant concentrations. They are not
foolproof but are sensible and useful. A similar set is given in Levine’s book.

1. If the rate law is written in terms of the predominant species in the reaction
medium, the composition and charge of the transition state for the RCS is
the “algebraic value” of the concentration terms in the observed rate law.
An undetermined number of solvent molecules may also be present in the
transition state.

The decomposition of N2O5,

2N2O5 −−→ 4NO2 +O2, (132)

has the rate law
d [N2O5]

dt
= k[N2O5]. (2.133)

The transition state for the slow step simply has the composition N2O5.
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In the aqueous redox reaction

Tl3++Hg2+
2 −−→ Tl++2Hg2+, (134)

rate = k
[Tl3+][Hg2+

2 ]

[Hg2+]
. (2.135)

We “divide out” the denominator, to obtain a transition state composition
of TlHg, and a transition state charge of 3+.

For orders of 1
2 , use only half the atoms:

2(MnIIIMG)++S2O2−
4 −−→ 2(MnIIMG)+2SO2, (136)

where MG is the protein myoglobin, has the rate law

rate = k[(MnIIIMG)+][S2O2−
4 ]

1
2 , (2.137)

and the TS is thought to have the composition Mn MG SO2 with no charge.

2. A sum of positive terms in the rate indicates independent parallel pathways
to the same product. The composition and charge of the transition state
along each pathway is found as above.

3I−+H2O2 +2H+ −−→ I−3 +2H2O (138)

d [I−3 ]

dt
= ka[I−][H2O2]+kb[I−][H2O2][H+] (2.139)

This acid-catalyzed reaction would be studied by monitoring the formation
of I−3 in various pH buffered solutions. ka could be determined by extrap-
olation to zero [H+]. There are two pathways, plain and catalyzed, with
compositions in the TS of (H2O2I)− and H3O2I.

We can see how this example comes about in a simple case:

A+B
k1−)−−*−

k−1

C (140)

C+A
k2==⇒ D (141)

C
k3==⇒ D (142)

Applying SSA to C,

0
SSA≈ d [C]

dt
= k1[A][B]− (k−1 +k3 +k2[A])[C] (2.143)
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so

[C]
SSA≈ k1[A][B]

k−1 +k3 +k2[A]
(2.144)

Now

d [D]

dt
= k2[A][C]+k3[C] (2.145)

= k1k2[A]2[B]

k−1 +k3 +k2[A]
+ k1k3[A][B]

k−1 +k3 +k2[A]
(2.146)

In the small [A] limit k2[A] ¿ k−1 +k3, giving

rate =
(

k1k2

k−1 +k3

)
[A]2[B]+

(
k1k3

k−1 +k3

)
[A][B] (147)

and we correctly interpret that there are two important transition states
with compositions A2B and AB.

In the large [A] limit, k2[A] À k−1 +k3, so

rate = k1[A][B]+ k1k3

k2
[B] (2.148)

In the large [A] limit the first term must dominate. We can manipulate the
expression to show that explicitly:

k2 · rate = k1k2[A][B]+k1k3[B] (2.149)

= k1[B](k2[A]+k3) (2.150)

≈ k1[B]k2[A] (from large [A] assumption) (2.151)

rate ≈ k1[A][B] (2.152)

In this limit the first step has become rate controlling and the k3 step is
unimportant. The relevant T.S. is the AB collision complex.

3. A sum of n terms in the denominator implies a succession of at least n
steps; all but the last of them must be reversible.

2Fe2++Tl3+ → 2Fe3++Tl+ (2.153)

−d [Tl3+]

dt
= k[Fe2+]2[Tl3+]

[Fe2+]+k ′[Fe3+]
(2.154)
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At low product concentration ([Fe2+] À k ′[Fe3+]), we have rate = k[Fe2+][Tl3+].
At high product concentration,

rate = k

k ′
[Fe2+]2[Tl3+]

[Fe3+]
. (2.155)

With 2 terms in the denominator, we expect two successive transition states.
Their compositions (but not order of occurrence) are obtained from the
limiting cases where one or the other term dominates. In this example they
have compositions (FeTl)5+ and (FeTl)4+.

4. Species appearing as single terms in the denominator of a rate expression
are produced in steps prior to the RCS.

In the last example we postulate that under high concentrations of Fe3+, it
is a product in the first of the two steps. The two reactants have total charge
+5, so try this mechanism:

Fe2++Tl3+ k1−)−−*−
k−1

Fe3++Tl2+ (156)

Tl2++Fe2+ k2==⇒ Fe3++Tl+ (157)

The second step has TS composition (FeTl)4+, as required. Apply SSA to
Tl2+:

d [Tl2+]

dt
= k1[Fe2+][Tl3+]− [Tl2+](k−1[Fe3+]+k2[Fe2+]) (2.158)

so

[Tl2+]
SSA≈ k1[Fe2+][Tl3+]

k−1[Fe3+]+k2[Fe3+]
= k[Fe2+][Tl3+]

[Fe3+]+k1[Fe2+]
(2.159)

rate = k2[Tl2+][Fe2+] = k1k2[Fe2+]2[Tl3+]

k−1[Fe3+]+k2[Fe2+]
(2.160)

rate = k[Fe2+]2[Tl3+]

k ′[Fe3+]+ [Fe2+]
(2.161)

where k = k1 and k ′ = k−1/k2.

So this mechanism agrees with the observed rate law at both low and high
concentrations of Fe3+. At high concentrations, the first step becomes a
rapid prior equilibrium. Large concentrations of Fe3+ drive the concentra-
tion of Tl2+ down and reduce the rate of formation of product.
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2.6.2 Application of “mechanism rules” to a simple inorganic exam-
ple

Vanadium ions can be oxidized by Hg2+:

2V3++2Hg2+ −−→ 2V4++Hg2+
2 (162)

The observed rate law is

−d [V3+]

dt
= k[V3+]2[Hg2+]

k ′[V4+]+ [V3+]
. (2.163)

Rule 3 tells us to expect at least 2 steps. Rule 1 gives the composition of the two
transition states as (VHg)4+ and (VHg)5+. In the succession of steps required by
the rules, all but the last must be reversible.

Since the two reactants can themselves produce one of the two required
transition states ((VHg)5+), it’s natural to bring them together as one step:

V3++Hg2+ k1−)−−*−
k−1

V4++Hg+ (164)

The Hg+ product of that reaction can react with another V3+ to give the second
required transition state. This reaction need not be reversible (but could be). A
single, rapid, association reaction between two mercury atoms can complete the
mechanism.

Hg++V3+ k2==⇒ V4++Hg0 (165)

Hg0 +Hg2+ k3==⇒ Hg2+
2 (166)

Now, let us check to make sure this mechanism gives the correct rate law with
reasonable assumptions. The intermediates are Hg+ and Hg0. Applying the SSA
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to Hg+, we find

d [Hg+]

dt
= k1[V3+][Hg2+]−k−1[V4+][Hg+]−k2[V3+][Hg+] (2.167)

[Hg+]
SSA≈ k1[V3+][Hg2+]

k−1[V4+]+k2[V3+]
(2.168)

−d [V3+]

dt

SSA≈ k1[V3+][Hg2+]−k−1[V4+][Hg+]+k2[V3+][Hg+] (2.169)

= k1[V3+][Hg2+]+ [Hg+](k2[V3+]−k−1[V4+]) (2.170)

= k1[V3+][Hg2+]

+
(

k1[V3+][Hg2+]

k−1[V4+]+k2[V3+]

)
(k2[V3+]−k−1[V4+])

(2.171)

= k1[V3+][Hg2+]

(
1+

(
k2[V3+]−k−1[V4+]

)
k−1[V4+]+k2[V3+]

)
(2.172)

= k1[V3+][Hg2+]

(
2k2[V3+]

k−1[V4+]+k2[V3+]

)
(2.173)

= 2k1[V3+]2[Hg2+]
k−1
k2

[V4+]+ [V3+]
(2.174)

which is the observed rate law. Note that the rapid, post-RCS reaction of Hg0

does not enter the rate law. That is the general case: fast reactions that follow
the rate controlling step do not appear in the rate law. Another example of that
principle was the decomposition rate of N6 in the bromine-azide reaction; its
rate constant does not appear in any of the rate expressions once the steady state
approximation has been applied to N6.

2.7 Temperature Dependence of Rates

2.7.1 Arrhenius equation

Most reactions go faster with increasing temperature. An equation often used to
describe the T dependence is the Arrhenius equation,

k = Ae−Ea /RT (2.175)

The Arrhenius equation is neither exact nor universal, but it describes many
reactions tolerably well over a modest temperature range, and it contains ele-
ments of the correct physics. A and Ea should not be regarded as having precise
physical significance in most cases. For elementary reactions, some theories of
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kinetics do ascribe precise meanings to them. Generally, you should regard Ea as
providing a rough estimate of the “reaction barrier”, the height of the energy hill
the reactants must climb over on their way to forming products. The activation
energy Ea also specifies how sensitive the reaction rate is to temperature; the rate
of a reaction will change very strongly with T if Ea is large, and will be relatively
insensitive to T if Ea is small. For most reactions Ea is substantially larger than
RT .

Figure 2.7 shows the behavior predicted by the Arrhenius equation for the
two common plots, k vs. T and ln(k) vs. 1/T .
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Figure 2.7: Two plots of rate coefficients for a reaction with A = 1010 cm3mol−1s−1

and Ea = 20 kJ/mol.

The “classical” method of finding A and Ea is to plot ln(k) vs. 1/T for a series
of rate coefficients measured at different T , and get Ea and A from the slope
and intercept. Both that method and the more modern nonlinear fit directly to
the Arrhenius equation suffer from heavy correlations: The same data can be
fit equally well by many different A/Ea pairs, so it is not possible to determine
either value very precisely. These correlations occur because the data are taken
over a fairly narrow range of T , and long extrapolations are necessary, as appears
in the right panel of Figure 2.7.
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Chapter 3

Real gases

3.1 P −V isotherms and the critical point

If you put some gas into a piston-and-cylinder apparatus and slowly push the pis-
ton in, holding the apparatus at a constant temperature, the pressure increases—
you feel more and more resistance—as you reduce the volume. At some point,
the pressure suddenly stops increasing, and you can move the piston in quite far
without increasing your pushing force at all. Finally, there is a sudden change,
and you find that pushing the piston in any farther requires a very high force. See
Figure 3.1 for an illustration.
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Figure 3.1: The P—V isotherm for propane below the critical temperature.

What is happening? At first, all the material is gas; during that time, it behaves
approximately according to the ideal gas law, and the pressure (thus the force
pushing against the piston) goes up as the inverse of the volume. Then at some
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point—when the pressure has reached the vapor pressure of the liquid at the
experimental temperature—the gas begins to condense, and both liquid and
vapor exist in the cylinder. The pressure remains at exactly this pressure until all
the gas has been liquefied. At that point, the cylinder contains only liquid, and
compressing this liquid further requires very high pressures.

What happens if you raise the temperature and repeat the experiment? You
find that the “flat” section of the trace, where the liquification occurs, appears at
higher pressure; you would have expected that, since you know that the vapor
pressure increases with temperature. The liquification therefore begins at a
smaller total volume than it did before. The point at which you have completely
liquified the sample appears at slightly higher volume than before (because
liquids usually expand with increasing temperature). So the total volume range
over which you have liquid and gas together goes down at higher temperature.

As you raise the temperature more, the total volume range over which you
have both liquid and gas in the cylinder gets smaller and smaller, until finally
you find that above a certain temperature you never see both liquid and gas
in the cylinder!. You compress and compress, and the density goes higher and
higher until it equals the liquid density, but you never see the phase change! The
temperature at which the liquid-vapor phase change disappears is called the
critical temperature Tc. Look at Figure 3.2 to see the accurately plotted behavior
of the isotherms for propane.
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Figure 3.2: Isotherms of a pure substance (propane). Above the critical tempera-
ture there are no “corners”; the curve decreases monotonically.

It is obvious from this description that the ideal gas law does not apply to
everything; if it did, the pressure would keep following that 1/V curve forever. But
even in the portion of the curve where only gas exists, the ideal gas law is not fol-
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lowed exactly. At intermediate and high densities, intermolecular forces become
important, and the pressure deviates from the ideal gas prediction. Sometimes
these deviations are large: factors of two or three (at several hundred bar pressure)
are common. One way to think about such behavior is to try to devise “improved”
gas laws that give more accurate descriptions of the P −V −T behavior. There
are two prices to be paid: one, the equations relating P , V , and T will be more
complicated, and two, the same equation will not work for all gases. We will need
to have parameters that can be changed to match the gas in question.

3.2 The van der Waals equation

One of the first, and still the most widely known, equations for real gases is the
van der Waals equation, developed in 1873. It applies two corrections to the ideal
gas law. First, it recognizes that the molecules themselves occupy some volume,
so that the volume a single molecule has to fly around in is not the total volume
of the container, but the volume of the container minus the volume occupied
by all the other molecules. Second, it recognizes that the molecules have some
attractive forces between them, that these attractive forces will diminish as the
molecules get farther apart, and that their net effect will be to reduce the pressure.
The van der Waals equation of state is

P = nRT

V −nb
−a

( n

V

)2
(3.1)

The numbers a and b are different for each gas; a, which must have units of
(pressure)(volume/mole)2, accounts for the attractive forces, and b, with units
volume/mole, accounts for the volume occupied by the molecules. The attractive
term −a(n/V )2, which reduces the pressure, gets smaller as the density decreases,
as you expect. Ideal gases would have a = b = 0.

Wikipedia has a table, taken from the CRC Handbook of Chemistry and Physics,
of van der Waals constants a and b for several gases at wikipedia.org/wiki/
Van_der_Waals_constants_(data_page). b, as you might guess, is similar in
magnitude to the volume of one mole of the liquid substance. For example, b for
water is 30 cm3/mol, while the molar volume of liquid water is 18 cm3/mol. b for
benzene is 115 cm3/mol; the molar volume of liquid benzene is 89 cm3/mol.

You usually see the van der Waals equation written in terms of the molar
volume Vm =V /n:

P = RT

Vm −b
− a

V 2
m

(3.2)

Vm is the volume occupied by one mole of gas; the higher Vm, the lower the
density and the less important intermolecular forces will be. In the limit of low
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densities (that is, large molar volumes), the gas behavior approaches that of an
ideal gas. This is easy to see in the van der Waals equation: as Vm gets large, it
dominates over b in the denominator of the first term, and makes the second
term become small; the equation then reduces to the ideal gas law P = RT /Vm.

3.2.1 Critical behavior in the van der Waals equation

To what extent does the van der Waals equation describe condensation and
critical behavior? The subcritical isotherms in Figure 3.2 have sharp corners at the
onset and completion of condensation; no smooth polynomial function can have
corners like that, because polynomial functions have continuous derivatives. So
we cannot expect the van der Waals equation to reproduce the isotherms exactly.
But it does show critical behavior.

Figure 3.3 shows isotherms calculated from the van der Waals equation using
the constants for CO2 (a = 3.640 atm L2 mol−2, b = 0.04267 L mol−1.) At temper-
atures below the critical temperature Tc, the curves show “loops” (oscillations)
in the region that corresponds to condensation. There is a technique, called the
“Maxwell construction”, for replacing these oscillations with flat lines, to generate
isotherms that look more like the real thing. As temperature increases, the loops
diminish in amplitude, until finally they disappear; at one particular temperature,
the curve has a slope of exactly zero at one particular molar volume, and negative
slope everywhere else. That’s the critical temperature Tc. At temperatures above
Tc the van der Waals isotherms qualitatively resemble the experimental ones.

3.2.2 Accuracy of the van der Waals equation

To quote Levine’s physical chemistry book: “The van der Waals equation is a
major improvement over the ideal-gas equation but is unsatisfactory at very
high pressures and its overall accuracy is mediocre.” With it you can estimate
properties of dense gases with accuracies much better than the ideal gas law, but
you should not expect few-percent accuracy.

There are several other equations of state commonly used for dense gases.
Some use two adjustable parameters, just as the van der Waals equation does;
some use more parameters in hopes of higher accuracy at the cost of more
complication; and one, the virial equation of state, replaces the constants for
each gas with functions of temperature, giving an effectively infinite number of
adjustable parameters.

There are about ten different general-purpose equations of state that are used
occasionally for dense gases, with numbers of parameters ranging from two to
around six. Many (hundreds!) more equations of state have been developed
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Figure 3.3: Isotherms for CO2 from the van der Waals equation. From the bottom,
the curves represent isotherms at 246.3, 292.5, 307.9, and 338.7K, which represent,
respectively, 0.8, 0.95, 1.0, and 1.1 times T vdw

c . The dashed line gives the ideal gas
isotherm at 307.9 K.

for particular pressure and temperature ranges for particular sets of gases. This
game of find-a-better-analytic-equation-of-state is a classic example of empirical
model-building: trying to model complicated observed behavior with a simple
equation of a few adjustable parameters, relying on underlying physical under-
standing of the important processes seasoned with curve-fitting against real
data.

3.3 The virial equation

The granddaddy of real-gas equations of state is the virial equation of state, which
is a Taylor series expansion of the deviations from ideal gas behavior in the
variable 1/Vm. The expansion is made separately at each temperature. The virial
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equation is most often written as

PVm = RT

(
1+ B(T )

Vm
+ C (T )

V 2
m

+·· ·
)

(3.3)

The function B(T ) is called the second virial coefficient, C (T ) is the third virial co-
efficient, and so on. Notice that if all the virial coefficients are zero, the virial equa-
tion turns into the ideal gas equation. The temperature-dependent coefficients
therefore tell us something about the interactions between the molecules. B(T )
describes the interactions between pairs of molecules; C (T ) describes “three-
body” interactions, and so on.

B(T ) has been measured (at dozens of temperatures) for hundreds of gases;
C (T ) is known for a few dozen gases; only a few D(T ) values have been measured.
At low to medium pressures, B(T ) alone is sufficient for accuracies better than
one percent in most cases.

At low temperature and low density, the attractive interactions between the
molecules are more important than the repulsions, so that the pressure in a
sample of gas is less than the ideal gas law predicts; B(T ) is therefore negative
at low temperatures, and drops steeply at very low T . At high temperature, the
molecules are moving fast enough that they do not really feel the weak attractive
forces, and they act more or less like hard spheres; B(T ) therefore reaches a value
roughly like the liquid density at high T and decreases very slowly at very high T .

It is possible, through statistical mechanics, to calculate the virial coefficients
if the intermolecular potential is known. For spherical particles (not necessarily
hard spheres: this works for realistic potentials) the formula is

B(T ) =−2πNA

∫ ∞

0

(
exp

(−v(r )

kT

)
−1

)
r 2 dr (3.4)

where v(r ) is the intermolecular potential function. For realistic v(r ) this inte-
gration usually has to be done numerically, but there are good techniques for
doing so and the calculation is not very hard. (I’ve done it many times, and have
computer programs available for the job.) This makes a nice test of a model
potential function, since B(T ) can be determined experimentally to within a
few percent. (Actually, Eq. (3.4) is approximate: it is the prediction of classical
mechanics, which is usually very good at room temperature and above but is
inaccurate at low temperature. There are quantum corrections, also not hard to
calculate, which must be used at low temperatures. See Hirschfelder, Curtiss, and
Bird, Molecular Theory of Gases and Liquids, for details.)

Figure 3.4 shows a special kind of virial coefficient, called an interaction virial
coefficient, for H2–CO interactions. (This figure is taken from a paper by Jennifer
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Gottfried and me.) The shape of B(T ) it shows is typical. In addition to the
experimental data, three different sets of B(T ) values calculated from theoretical
potential energy functions v(r ) are shown. You can see that good experimental
data are capable of distinguishing between different theoretical models.

50 100 150 200 250 300

T/K

-100

-80

-60

-40

-20

0

20

B
/c

m
3 /m

ol

experiment
Schinke et al.
SAPT
modified SAPT

Figure 3.4: Interaction second virial coefficients for H2–CO. The three theoretical
B(T ) come from a 1985 calculation (Schinke et al.), a 1998 calculation (SAPT),
and that same 1998 calculation but scaled to make the attractive well about 5%
less deep.
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Chapter 4

First Law of thermodynamics

4.1 Introduction

We already calculated the average kinetic energy of the particles in an ideal gas:
〈εtr〉 = 3kT /2. If the particles have no other kinds of energy (they cannot rotate,
for example), then we can regard the sum of all the particles’ kinetic energies as
the total energy of the gas. We can do anything at all to this sample of gas, but if
in the end, we have the same number of particles and we bring them back to the
same temperature, the total energy will be the same. This total energy, which is
generally called the internal energy of the gas, is a state function: it depends only
on the present condition of the gas sample and not on its previous history.

The internal energy is an extensive property: if we divide the sample in half (by
putting a partition in the container, for example), each half has half the internal
energy the original sample had. The volume of the gas is another extensive
property. The pressure and temperature, though, are not extensive: if we divide
the sample of gas in half, each half has the same pressure and temperature as the
original sample. We say that pressure and temperature are intensive properties.
Internal energy, pressure, temperature, and volume are all state functions.

An extensive property can be converted into an intensive one by dividing it
by the amount of material involved. Chemists frequently use “molar” (per mole)
or “specific” (per gram) intensive versions of various extensive properties: molar
volume Vm =V /n, molar enthalpy of combustion ∆cHm =∆cH/n, specific heat
capacity S =C /m (traditionally called just “specific heat”), and so on.

How might we increase the internal energy of the gas? Obviously, we must
increase its temperature (or the number of gas molecules.) All the myriad ways of
increasing the sample’s temperature fall into two great categories: we can either
heat the gas, or we can do work on the gas.
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Heating the gas is easy: we place the gas into a container whose walls are
“thermally conductive”, then we place that container in contact with some object
whose temperature is higher than that of the gas (for instance, a beaker of hot
water, or an oven of hot air), and we wait. After a while, the gas and its container
will have warmed up, and the formerly warm object will have cooled off, until
the two temperatures are the same. At that point, the two objects have reached
thermal equilibrium and there will be no more energy transfer. This procedure
effectively provides us with a definition of heat: an energy flow caused by a
difference in temperature between two objects.

Doing work on the gas is also simple: we put the gas into a container whose
walls do not conduct heat, but whose volume is adjustable (for example, a syringe
with vacuum-jacket walls). Then we compress the gas. The work we do in this
process is just the force applied times the distance over which the force operates;
when the gas pressure is P , if the piston has face area A and we push it through a
small distance dx, the work we do is dw = PA dx. Adding those small amounts of
work up over some finite change in volume gives the total work done on the gas.
Compressing the gas in this way increases its temperature.

The first law of thermodynamics, which is essentially a statement of conser-
vation of energy, says that the change in total energy of any closed system during
any process is equal to the sum of the heat flow into the system, q , and the work
done on the system, w :

∆E = q +w (4.1)

Calling the system closed means that no molecules can enter or leave.
In most problems of interest to chemists (though not to chemical engineers,

who deal all the time with stuff flowing through pipes) the sample has no impor-
tant external energy (overall kinetic or potential energy), so the total energy E
can be replaced with the internal energy U to give

∆U = q +w (4.2)

Contrary to popular usage, heat in thermodynamics is not something that
a sample contains. Instead, heat measures a process; it’s a quantity of energy
transferred between two things because of a temperature difference. It makes no
sense in thermodynamics to ask “How much heat does 3.4 g of iron contain at
343 K and one bar pressure?” Heat is not a state function. Even so, the old caloric
theory, which regarded heat as a fluid that moved from one object to another
(and was conserved!), is deeply ingrained into our language and produces the
phrases “a container whose walls conduct heat”, “heat capacity”, “heat flow”, and
so on.
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Early data that ultimately supported a serious attack on the caloric theory
were provided in 1798 by Count Rumford, an expatriate American who lived in
Massachusetts but supported England in the American Revolution and moved to
Europe after the war. He was in charge of the Bavarian Army, and recognized that
enormous amounts of heat were produced during the boring of cannons. This
production of heat contradicted the prevailing idea of conservation of heat. In
fact he measured that a cannon borer, driven by one horse for 2.5 hours, produced
enough heat to raise 27 pounds of water from ice-cold to the boiling point.

4.2 Work against constant force

As an example of a simple calculation using the first law, consider the following
problem:

A sample of ideal gas at a pressure of 2 bar and at room tempera-
ture is contained in a syringe. The cross-sectional area of the plunger
is 4cm2, and the external pressure is 1 bar. (The weight of the plunger
is negligible compared to the force of the atmosphere acting on the
plunger.) We let the plunger rise slowly (it rises because of the higher
pressure inside). We let it rise by 2 cm, then stop it. The gas inside is
now cooled; as it warms back up to room temperature, how much
heat flows from the room into the gas?

Because the gas is ideal, its internal energy depends only on its temperature
and not its volume (since attractive and repulsive forces between the molecules,
which would depend on the volume, are zero in an ideal gas.) In this problem the
gas ends at the same temperature as it began, so its internal energy is unchanged
(∆U = 0). Also, the force against which it is pushing is constant, and the piston is
moving only in a single direction (call it the x direction) so we can calculate the
work the gas does with the formula w =−F∆x.

The force against which the plunger must work is the force of the external
atmosphere, that is,

Fext = Pext A, (4.3)

where Pext is the external atmospheric pressure and A is the area of the plunger
face. Plugging in the values and changing units appropriately, we find Fext =
(105 Pa)(4×10−4 m2) = 40 N, so that w =−F∆x =−(40 N)(0.02 m) =−0.80 J. Since
∆U = 0, we have q = −w , and 0.80 J of energy flows as heat between the room
and the gas to bring it back to room temperature.

I have used the convention that work done on the system is positive, while
work done by the system on the surroundings is negative; this convention is the
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most common one in modern chemistry and is adopted by all recent textbooks.
(Older books, or books by engineers, sometimes switch the sign on w so that
work done by the system on the surroundings is positive. Should you encounter
such a text, be careful with the signs!)

4.2.1 Expansion work against constant pressure

In the piston-and-cylinder apparatus, the work done against external pressure
Pext is

dw =−Pext A dx =−Pext dV (4.4)

where dV is the change in volume. We can regard any expansion against an
external pressure, independent of the shape of the expanding container, as a
collection of small pistons, and the overall work done in any expansion is still

dw =−Pext dV . (4.5)

To find the total work done in an expansion we must integrate that expression. If
the external pressure is constant, then we can integrate easily to give

w =−
∫ V2

V1

Pext dV =−Pext

∫ V2

V1

dV =−Pext(V2 −V1) =−Pext∆V. (4.6)

If the volume change is positive (the system gets bigger), the work is negative;
this agrees with our convention that work done on the system is positive.

4.3 General PV work

In an expansion-work problem we do not know, or care, what the pressure of
the gas is; it is only the external pressure, against which the system expands,
that matters. That is still true even if the external pressure changes during the
expansion; that is,

w =−
∫ V2

V1

Pext(V )dV (4.7)

still holds. That formula says that the work is the area under the curve Pext(V ) on
a P −V diagram. Notice that the work depends on what “path” we follow on the
diagram. In Figure 4.1, say our system is expanding from point A to point C. If
we move along path ABC , the work done on the surroundings is larger than if we
move along path ADC .

In fact, we can think about recompressing the sample somehow, bringing
it back to point A. If we expand along route ABC , we do work w ABC on the
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V

P
ex

t

A
B

C

D

Figure 4.1: Work done in expansion of the system. If the system moves in a cyclic
way, eventually returning to point A, the work done is given by the area enclosed
within the cycle on the diagram.

surroundings; then to move back along route C D A, we must do work wC D A on
the system. The net work we extract from the system (think “steam engine”) is
the area between the two curves.

4.4 Reversible processes

It is useful to describe a sort of process in thermodynamics that corresponds to
“frictionless” processes in mechanics. The appropriate sort is one that is nearly at
equilibrium all the way through. Of course, a system truly at equilibrium (inter-
nally and with its surroundings) does not change with time; that is essentially the
definition of equilibrium. But, a system very slightly displaced from equilibrium
will move; if you change the displacement very slightly in the other direction, the
motion will reverse direction. Such a process, held nearly at equilibrium all the
way through, is called a reversible process in thermodynamics.

As an example, consider our piston and cylinder apparatus expanding against
external pressure. If we adjust the external pressure to be exactly equal to the
internal pressure, the piston will not move at all. If we then very slightly reduce
the external pressure, the piston will move slowly outward; we can stop it, and in
fact reverse it, by a very small increase in the external pressure. If we let the piston
move outward very slowly, by continuously adjusting the external pressure to
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be very slightly below the internal pressure, then we are carrying out a reversible
expansion of the system.

A true reversible expansion is not a practical thing to do, because it takes
forever to make a finite change in the volume. Therefore, real devices do not act
reversibly. Reversible processes nevertheless play an important role in thermody-
namics for several reasons. First, some devices do act very nearly like reversible
ones (for instance, many electrochemical processes occur nearly at equilibrium.)
Second, and more important, it is often possible to calculate changes in a sys-
tem’s state functions during some process easily if we assume the process occurs
reversibly; since state functions do not depend on paths, we can substitute a
reversible change for the real one and get the same answer with less effort. We
cannot, of course, use this trick for calculating q or w , since those are not state
functions. Third, those (easier) calculations of system properties often give reli-
able limits on the behavior to be expected from real systems. That is, they may
provide firm statements of the type “It is not possible to do better than this.”

Example: reversible isothermal expansion of an ideal gas If we allow an ideal
gas to expand reversibly, then we know that Pext = P during the entire expansion;
we can therefore replace the external pressure Pext with the system pressure P in
the expression for the work. Let us say we allow our system to expand reversibly
from state 1, (P1,V1,T ) to state 2, (P2,V2,T ). How much work is done?

We don’t know yet. Many different paths could carry the system from state 1
to state 2, and before we can calculate the work we must specify a path. We can
do that by specifying T at each point on the path; since V is the independent
variable, and n is held constant, the specification of T at each point suffices to
uniquely identify a path.

In the reversible isothermal expansion, we keep the temperature of the gas
constant throughout the expansion (perhaps by immersing the cylinder into a
large constant-temperature bath.) Then we have

w =−
∫ V2

V1

Pext(V )dV (4.8)
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Since the expansion is reversible we replace Pext with P :

=−
∫ V2

V1

P (V )dV (4.9)

=−
∫ V2

V1

nRT

V
dV (4.10)

=−nRT
∫ V2

V1

dV

V
(4.11)

=−nRT [lnV ]V2
V1

(4.12)

w =−nRT ln

(
V2

V1

)
. (4.13)

4.5 Enthalpy

For any process at constant volume, if we consider no work other than PV work,
then w = 0, so that

∆U =U2 −U1 = qV (4.14)

(where the subscript V indicates constant volume.)
If, instead, we carry out a process at constant pressure, then

∆U =U2 −U1 = qp +wp = qp −P (V2 −V1), (4.15)

so that
(U2 +PV2)− (U1 +PV1) = qp . (4.16)

(We have substituted P = Pext and assumed it constant so we could write w =
P (V2 −V1), so constant pressure means constant pressure throughout the system:
P = Pext = constant, not just constant external pressure.) This equation suggests
that it might be useful to define a new state function H :

H =U +PV (4.17)

H is called the enthalpy. It is clearly a state function since U , P , and V are all
state functions. Now we have

H2 −H1 =∆H = qp (4.18)

The change in enthalpy of a system that undergoes a process at constant pressure
is just the heat that enters the system during the process. H , like U and V , is
extensive.
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4.6 Heat capacities

How does the system temperature change for a given amount of heating? If an
amount of heat dq enters the system, the temperature changes by dT and we
define the heat capacity C from

dq =C dT (4.19)

or

C = dq

dT
(4.20)

Since other things may happen to the system as it is heated (for instance, it
might expand, or its pressure might rise, or it might undergo some chemical reac-
tion), we can expect different temperature changes under different conditions.
It is conventional to define two kinds of heat capacities, CV for the heat capac-
ity when the volume is held constant, and Cp for the heat capacity at constant
pressure. Then we have

CV = d qV

dT
=

(
∂U

∂T

)
V

(4.21)

Cp = d qp

dT
=

(
∂H

∂T

)
P

(4.22)

Cp ≥ CV for a given system because some of the heat entering a system at
constant pressure can leave in the form of work done on the surroundings. (For
gases the difference is important, while for liquids and solids at ordinary pressures
it is negligible.) At constant volume it is not possible to do expansion work
on the surroundings, so all the heat that enters serves to increase the system’s
temperature.

Heat capacity is extensive; if you double the amount of material in your
system, you will have to add twice as much heat to get its temperature to change
by the same amount. An entire system, even a complicated one, can have a well-
defined heat capacity; the system, for example, might be an entire combustion
calorimeter, including the sample, the oxygen gas, the steel bomb enclosing the
sample and gas, the water surrounding the bomb, and the thermometer.

It is traditional to define intensive heat capacities for pure substances in two
ways. One, the specific heat (or, more recently, specific heat capacity) S =Cp /m,
is the ratio of the heat capacity to the mass; it is the amount of heat required
to raise the temperature of 1 g or 1 kg of a specified substance by 1 K. (Only the
constant-pressure version of S is commonly used.) The other is the molar heat
capacity, CV ,m =CV /n or Cp,m =Cp /n, which is the amount of heat required to
raise the temperature of one mole of substance by 1 K.
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4.6.1 Heat capacities for ideal gases

Let us find the relation between CV and Cp for an ideal gas. Begin with

H =U +PV (4.23)

Differentiating with respect to T at constant P gives(
∂H

∂T

)
P
=

(
∂U

∂T

)
P
+P

(
∂V

∂T

)
P

(4.24)

and, recognizing the definition Eq. (4.22), we have

Cp =
(
∂U

∂T

)
P
+P

(
∂V

∂T

)
P

. (4.25)

From the ideal gas law we can evaluate the last term to give

Cp =
(
∂U

∂T

)
P
+P

nR

P
(4.26)

=
(
∂U

∂T

)
P
+nR (4.27)

Now I must make a qualitative physical argument that we will be able to replace
with a more mathematical one in a week or so. For an ideal gas, U represents only
the energy (internal and translational) of individual gas molecules, since there
are no intermolecular interactions (and therefore no intermolecular potential
energies). Therefore U cannot depend on V or on P ; the distance between the
molecules does not change anything about their total energy. U is therefore a
function of T only. The same must be true of H , since H =U +PV and PV is a
function only of T for an ideal gas. Therefore for an ideal gas

CV =
(
∂U

∂T

)
V
=

(
∂U

∂T

)
P
= dU

dT
, (4.28)

so finally
Cp =CV +nR. (4.29)

Thermodynamics does not give us theoretical tools to predict heat capacities;
they are quantities that must be measured for each substance. (Statistical me-
chanics does provide formulas for prediction of heat capacities from molecular
properties.) Heat capacities for most substances change with temperature; an
exception is that for a monatomic ideal gas, for which we calculated from the
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kinetic theory of gases that U = 3
2 nRT . We therefore have for a monatomic ideal

gas that

CV =
(
∂U

∂T

)
V
= 3

2
nR. (4.30)

The heat capacity at constant pressure is therefore

Cp =CV +nR = 5

2
nR. (4.31)

The heat capacity ratio Cp /CV is traditionally called γ; it plays an important role
in the study of gas dynamics. For a monatomic gas the heat capacity ratio is

γ= Cp

CV
=

5
2 nR
3
2 nR

= 5

3
. (4.32)

The quantity γ is observable experimentally and is accurately 1.667 for noble
gases at low densities.

4.6.2 Reversible adiabatic expansion of an ideal gas

We now have the tools to analyze a reversible adiabatic expansion of a gas. We
did the reversible isothermal expansion before; the adiabatic expansion is a little
harder because the temperature of the gas changes as the expansion goes on.

Adiabatic means no heat flows: q = 0, so ∆U = w . We can find two different
expressions for dw:

dw =−P dV =−nRT

V
dV (4.33)

dw = dU =CV dT (4.34)

Equating those two and dividing by T separates the variables:

CV
dT

T
=−nR

dV

V
(4.35)

Integrate both sides: ∫ T2

T1

CV
dT

T
=−nR

∫ V2

V1

dV

V
(4.36)

If we assume that CV is independent of temperature (true for a monatomic ideal
gas, an excellent approximation for many diatomic gases at ordinary tempera-
tures), we can integrate both sides to get

CV ln

(
T2

T1

)
=−nR ln

(
V2

V1

)
. (4.37)
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Now we know how the temperature will change during the expansion. Notice
that for an adiabatic expansion (V2 >V1), the gas cools. Given the initial tempera-
ture and volume, and the final volume, you can now find the final temperature;
since CV is constant you then have simply ∆U =CV∆T , and since q = 0 the work
done by the gas is just −∆U .

Application: supersonic expansions A common laboratory technique in spec-
troscopy and collision experiments is to use a reversible, adiabatic expansion
from high to low pressure to cool a gas. Let me show an example calculation.

We know for an ideal gas that Cp =CV +nR. We can therefore substitute for
nR in Eq. (4.37) to get

CV ln

(
T2

T1

)
=−(Cp −CV ) ln

(
V2

V1

)
(4.38)

and writing Cp /CV = γ gives

ln

(
T2

T1

)
= (1−γ) ln

(
V2

V1

)
(4.39)

It is more convenient in the laboratory to think about the ratio of initial and final
pressures in the expansion than the ratio of volumes. For ideal gases,

V2

V1
= T2

p2

p1

T1
(4.40)

and substituting for the ratio of volumes gives

ln

(
T2

T1

)
= (1−γ) ln

(
T2p1

T1p2

)
. (4.41)

Using a lnb = ln(ba) and exponentiating both sides gives

T2

T1
=

(
T2p1

T1p2

)1−γ
=

(
T1p2

T2p1

)γ−1

, (4.42)

and we can gather terms to get(
T2

T1

)γ
=

(
p2

p1

)γ−1

(4.43)

(
T2

T1

)
=

(
p2

p1

) γ−1
γ

. (4.44)
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In a typical application in the laboratory, a monatomic gas (most often helium
or argon: γ= 5/3) expands from a pressure of about 2 bar and a temperature of
300 K to a pressure of 10−2 mbar. We then have

T2

T1
=

(
10−2

2000

) 2/3
5/3

= (5×10−6)2/5 = 0.0076, (4.45)

so that the final temperature is (.0076)(300 K) = 2.3 K! This experiment can be
carried out in an apparatus that uses a medium-size diffusion pump (20cm throat)
and a vacuum chamber perhaps a foot in diameter. One of the most important
applications is in spectroscopy of medium-sized molecules; at room temperature
their spectra are hopelessly complicated, but at 2 K only a few rotational levels
are populated and it is much easier to figure out what is going on.
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4.7 Standard enthalpy changes

4.7.1 Hess’s law and enthalpies of formation

Well before the First Law was known, Hess formulated the Law of Constant Heat
Summation: ∆U or ∆H for any chemical reaction at constant pressure and tem-
perature is independent of the path, and in particular, independent of any inter-
mediate reactions that may occur. (Hess made a real discovery: the heat evolved
in most processes was not independent of path, but for chemical reactions car-
ried out at constant pressure, it was!) This means that if you can find any set
of reactions that can combine (on paper, even if not in the lab) to transform
your reactants to your products, and the ∆H has been measured under some
conditions for each, you can figure out ∆H for the reaction you are interested in.
The use of Hess’s Law is usually covered in general chemistry.

Because of Hess’s Law, it is useful to tabulate “standard enthalpies” for specific
reactions of many substances; if the reactions are chosen carefully, it will then
be possible to calculate enthalpy changes for many other reactions involving
those substances. The most widely tabulated standard enthalpy is the standard
enthalpy of formation, which gives the enthalpy change for the reaction that
forms one mole of the substance in question from the constituent elements in
their “standard states” (that is, the most stable pure form at the temperature in
question.) The enthalpy of formation of any pure element in its standard state at
a specified temperature is defined to be zero.

To make such reaction enthalpies truly standard, it is necessary to specify both
the pressure and the temperature at which the reaction occurs. The temperature
is generally specified explicitly; most enthalpies of formation are given at 298.15K,
but values are sometimes available at other temperatures. For many years the
standard pressure was 1 atm, but in 1982 the standard changed to 1 bar and most
tables now use that value. The change in standard pressure really only matters
for reactions involving gases.

So, for example, the standard enthalpy of formation of cyclopropane at 298.15
K is the heat absorbed by the chemical system when the reaction

3C(s)+3H2(g) −−→ C3H6(g) (46)

is carried out at 1 bar pressure and 298.15 K. The symbol for this quantity is
∆fH

◦
298.15. The ∆ indicates a change in a state function. (It is important, when

looking at tables of thermodynamic functions, to always keep in mind what kind
of change the tables refer to!) The subscript f indicates what kind of change: in
this case, it is a formation reaction. H , of course, tells you what quantity is being
monitored during the change: the enthalpy. The superscript ◦ indicates “stan-
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dard state”, which is some agreed-upon set of conditions that together with the
temperature fix the state of the system. For systems whose chemical composition
is otherwise specified (as here: we are considering one mole of cyclopropene
being formed from its elements), the only condition implied by the standard-state
symbol is the standard pressure. Finally, the temperature is listed as a subscript.
The older practice (now obsolete, but followed by some authors anyway) was to
attach the subscript f to the H rather than to the ∆.

Example Let us evaluate the enthalpy change in the isomerization of cyclo-
propane to propene at 298 K and 1 bar pressure. We can construct the reaction
from two formation reactions, as follows:

C3H6(g)(cyclopropane) −−→ 3C(s)+3H2(g) (47)

3C(s)+3H2(g) −−→ C3H6(g)(propene) (48)

C3H6(g)(cyclopropane) −−→ C3H6(g)(propene) (49)

Eq. (48) is the formation reaction for propene; the corresponding enthalpy
change is the enthalpy of formation (also called heat of formation) of propene,
20.41 kJ/mol. Eq. (47) is the reverse of the formation reaction of cyclopropene;
the enthalpy of formation of cyclopropene is 53.3 kJ/mol, so the enthalpy change
in Eq. (47) is −53.3kJ/mol. The overall enthalpy change is the sum of those two, or
−32.9kJ/mol. The negative sign indicates that heat is released when cyclopropane
isomerizes to propene under those conditions; the reaction is exothermic.

4.7.2 Reactions at nonstandard temperatures

What happens if you want the enthalpy change for a reaction at some temperature
other than 298.15 K? You must think of your reaction as occuring in a series of
steps, calculate the enthalpy change for each, then sum them up to get the overall
enthalpy change. For example, if we wanted to know the enthalpy change for
the isomerization of cyclopropane to propene at 350 K and 1 bar pressure, the
following series of steps would be useful:

1. Cool cyclopropane from 350 K to 298.15 K under constant pressure of 1 bar.
The enthalpy change for this process is

∆H =
∫ 298.15

350
C c

p dT (4.50)

where C c
p is the constant-pressure heat capacity of cyclopropane.
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2. Convert cyclopropane to propene at 298.15 K at 1 bar; the enthalpy change
for that process we already worked out to be ∆rH◦

298.15 =−32.9 kJ/mol.

3. Heat propene from 298.15 to 350 K. The enthalpy change for that process is

∆H =
∫ 350

298.15
C p

p dT (4.51)

where in this case C p
p is the heat capacity of propene.

This procedure is shown in schematic form in Figure 4.2.

cyclopropane, 350K

cyclopropane, 298K propene, 298K

propene, 350K

∆H = ∫ 298
350 C c

p dT ∆H = ∫ 350
298 C p

p dT

desired ∆H

∆H =∆rH◦
298

T

composition

Figure 4.2: Schematic path diagram for finding the standard enthalpy change for
cyclopropane isomerization at 350 K.

To carry out this program we need to know the two heat capacities as func-
tions of temperature. The NIST WebBook gives the data shown in Table 4.1; it is
plotted in Figure 4.3.

When I look at the heat capacity data on a plot, it seems like a linear fit will be
perfectly reasonable; such a fit is shown, for both compounds. With slopes and
intercepts from those fits it is possible to carry out the integrations corresponding
to the heating and cooling stages. Note that it is really the difference between the
two heat capacities we need:

∆H =
∫ 298.15

350
C c

p dT +∆rH◦
298.15 +

∫ 350

298.15
C p

p dT (4.52)

=∆rH◦
298.15 +

∫ 350

298.15

(
C p

p −C c
p

)
dT (4.53)

=∆rH◦
298.15 +

∫ 350

298.15
∆Cp dT (4.54)

GCM December 1, 2016



78

Table 4.1 Heat capacity data for cyclopropane and propene, from the NIST Chem-
istry WebBook (webbook.nist.gov/chemistry).

T/K Cp (propene )/ J/mol K T/K Cp (cyclopropane)/ J/mol K
298.15 63.79 298.15 55.6
299.33 64.73 300.48 56.48

300. 64.71 313.9 59.29
320. 67.89 316.7 59.27

323.15 67.88 325.1 60.90
333.86 70.04 332.8 62.17

340. 71.03 333.70 63.18
348.15 71.78 338.9 64.27

360. 74.13 339.6 63.26
368.46 70.17

280 300 320 340 360 380
T/K

55

60

65

70

75

C
p/
J/
m
ol
K

cyclopropane
propene

Figure 4.3: Heat capacity data from Table 4.1. Lines are fitted through both sets;
for cyclopropane, the slope is 0.200 J/molK2 and the intercept is −4.16 J/molK,
while for propene the slope is 0.158 J/molK2 and the intercept is 17.19 J/molK.
The shaded area is the correction that needs to be applied to ∆rH◦

298.15 to give
∆rH◦

350.
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The second term corresponds to the shaded area in Figure 4.3. I can evaluate
it using the lines fitted through the two sets of Cp data. Writing C c

p = a +bT ,

C p
p = c +dT , I have ∆Cp = (c −a)+ (d −b)T , so that

∆H =∆rH◦
298.15 +

∫ 350

298.15
∆Cp dT (4.55)

=∆rH◦
298.15 +

∫ 350

298.15
(c −a)+ (d −b)T dT (4.56)

=∆rH◦
298.15 +

[
(c −a)T + d −b

2
T 2

]350

298.15
(4.57)

=∆rH◦
298.15 +

[
(17.19− (−4.16))T + .158− .200

2
T 2

]350

298.15
(4.58)

=−32.9 kJ/mol+401 J/mol (4.59)

=−32.5 kJ/mol (4.60)

You should be able to see how to take into account other kinds of processes
that relate your reaction conditions of interest to the standard conditions. If
you want to carry out the reaction at some pressure other than one bar, you
can evaluate the enthalpy changes for an isothermal, reversible compression or
expansion before and after the reaction. If there is a phase change in reactants
or products at a temperature intermediate between your reaction temperature
and the known reaction enthalpy, you must include the enthalpy for that phase
change (using ∆fusH or ∆vapH) in your thermodynamic path. The whole game is
to be able to identify some path that will get you from your reactants at the desired
conditions to products at the desired conditions, and for which you are able to
evaluate the enthalpy changes for each step. Because H is a state function, it does
not matter whether the path you choose is related to the actual experimental
path at all.

4.7.3 Other kinds of standard enthalpy changes

Many processes other than “formation from elements” also have standard en-
thalpy changes that can be looked up. You have already met the standard enthalpy
changes for phase changes, ∆fusH◦ and ∆vapH◦. For sublimation there is also a
∆subH◦. In all cases, these values give the amount of heat absorbed by one mole
of the substance while it undergoes a phase change at constant temperature and
pressure (typically, though by no means always, the transition temperature at 1
bar pressure).

One of the most important standard enthalpy changes is that for combustion,
not for any theoretical reason but because enthalpies of combustion ∆cH◦ are
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relatively easy to measure for many substances. In fact, it is nearly impossible
to carry out many “formation” reactions cleanly. Therefore, most enthalpies
of formation that appear in tables have in fact been determined by measuring
the heats of combustion of the reactants and products and using Hess’s Law to
calculate the heats of formation.
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Chapter 5

Mathematical interlude

5.1 Properties of partial derivatives

For many kinds of thermodynamic calculations, it is useful to be able to manip-
ulate partial derivatives easily. In this section I will give, without proof, several
formulas that can be used in such manipulations.

Order of partial differentiation Most functions we will be concerned with will
have continuous derivatives. For such functions, a “mixed second partial deriva-
tive” can be taken in either order:(

∂

∂y

(
∂ f (x, y)

∂x

)
y

)
x

=
(
∂

∂x

(
∂ f (x, y)

∂y

)
x

)
y

. (5.1)

That is, if you need to differentiate something with respect to two variables, you
can switch the order of differentiation if you need to.

Chain rule The chain rule works for partial derivatives just as with ordinary
derivatives, so long as the same variable is held constant for all the terms:(

∂ f

∂z

)
x
=

(
∂ f

∂y

)
x

(
∂y

∂z

)
x

(5.2)

For example, (
∂p

∂V

)
T
=

(
∂p

∂Vm

)
T

(
∂Vm

∂V

)
T
= 1

n

(
∂p

∂Vm

)
T

. (5.3)
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Inversion rule Just as for regular derivatives, you can switch the “differentiator”
and the “differentiatee” if you invert the derivative (this is the great insight of the
Leibniz notation for derivatives:)(

∂y

∂x

)
z
= 1(

∂x
∂y

)
z

(5.4)

This property is often very handy when you work with real gases. The van der
Waals equation is difficult to write in the form Vm = f (p,T ), but you sometimes
need derivatives of Vm with respect to the other variables. Let us calculate the
isothermal compressibility of a van der Waals gas:

κT =− 1

V

(
∂V

∂p

)
T

(5.5)

=− 1

V

1(
∂p
∂V

)
T

(5.6)

The van der Waals equation is most conveniently written in terms of Vm, so apply
the chain rule:

=− 1

V

1(
∂p
∂Vm

)
T

(
∂Vm
∂V

)
T

(5.7)

=− 1

V

1(
∂p
∂Vm

)
T

1
n

(5.8)

=− 1

Vm

1(
∂p
∂Vm

)
T

(5.9)

The remaining partial derivative can be evaluated easily from the van der Waals
equation; evaluating it and rearranging gives

κT = V 2
m(Vm −b)2

RT V 3
m −2a(Vm −b)2

(5.10)

Shifting the constant quantity If you need to change which of several variables
is held constant during a partial differentiation, you must add a correction term:(

∂ f

∂x

)
z
=

(
∂ f

∂x

)
y
+

(
∂ f

∂y

)
x

(
∂y

∂x

)
z

(5.11)
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We already had an opportunity to apply this rule, though we swept it under
the rug. Eq. (4.27) was

Cp =
(
∂U

∂T

)
P
+nR

and I claimed that the partial derivative was equal to (∂U /∂T )V because U de-
pends on neither P nor V . Let’s use the shift rule to show that explicitly. Here U
plays the role of f , T plays the role of x, P plays the role of z, and V plays the role
of y . So we have

(
∂U

∂T

)
P
=

(
∂U

∂T

)
V
+

(
∂U

∂V

)
T

(
∂V

∂T

)
P

(5.12)

=
(
∂U

∂T

)
V
+0

(
∂V

∂T

)
P

(5.13)

because U does not depend on V , so (∂U /∂V )T = 0. So we get

(
∂U

∂T

)
P
=

(
∂U

∂T

)
V

(5.14)

as I claimed before.

Permutation rule This rule is a version of the chain rule that lets the constant
quantities shift. Note the “permutation” that occurs among the numerator, de-
nominator, and subscript, and also note the (surprising, at first) minus sign.

(
∂x

∂y

)
z
=−

(
∂x

∂z

)
y

(
∂z

∂y

)
x

(5.15)

Real gases have nonzero Joule-Thompson coefficients, µ:

µ=
(
∂T

∂p

)
H

. (5.16)

A quantity that is easier to measure than µ is the isothermal Joule-Thompson
coefficient,

µT =
(
∂H

∂p

)
T

. (5.17)
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We can find a relation between these two with the permutation rule.

µ=
(
∂T

∂p

)
H

(5.18)

=−
(
∂T

∂H

)
p

(
∂H

∂p

)
T

(5.19)

=−

(
∂H
∂p

)
T(

∂H
∂T

)
p

(5.20)

=−µT

Cp
(5.21)

5.2 Exact and inexact differentials

The existence of equations of state means that it is only necessary to specify two
of the three variables p,V ,T for a system containing a single substance. There-
fore, thermodynamic functions for one-component systems can be regarded as
functions of only two variables (rather than three), and which two to choose is
purely a matter of convenience. Usually U is thought of as a function of T and V
and H as a function of T and p; some formulas take on somewhat simpler forms
if those choices are made, but there is nothing magic about them.

If we want to know a change in U during some process, we can write the total
differential of U as

dU =
(
∂U

∂T

)
V

dT +
(
∂U

∂V

)
T

dV (5.22)

All sorts of quantities in thermodynamics have total differentials that can be
written in that way. Carrying out integrations of such quantities, to find overall
changes during some process, usually requires knowing how T and V change
while the process is going on (in the language of multivariable calculus, you
must be able to carry out a “line integral” in the T,V plane.) For some special
differentials, called exact differentials, it does not matter what path in the T,V
space is used; the integral is the same in any case. These are the differentials of
state functions. How can we tell whether a particular differential is exact or not?

There’s a rule, called the Euler criterion, for deciding whether a particular
differential is exact. If you have a differential

dz = f (x, y)dx+ g (x, y)dy, (5.23)

then the differential dz is exact if and only if(
∂ f (x, y)

∂y

)
x
=

(
∂g (x, y)

∂x

)
y

. (5.24)
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Here’s a trivial example. Consider the internal energy change during an
expansion of an ideal gas. We can rewrite Eq. (5.22) as

dU =CV dT +
(
∂U

∂V

)
T

dV (5.25)

For an ideal gas,
(
∂U
∂V

)
T
= 0, so

dU =CV dT +0dV (5.26)

In terms of the form needed for the Euler criterion, we have x = T , y =V , f (x, y) =
CV , and g (x, y) = 0. Then the Euler criterion says that dU is exact if and only if(

∂CV

∂V

)
T
=

(
∂0

∂T

)
V

(5.27)

On the left, we have (
∂CV

∂V

)
T
=

(
∂

∂V

(
∂U

∂T

)
V

)
T

(5.28)

The order of partial differentiation does not matter if the derivatives are continu-
ous, so (

∂CV

∂V

)
T
=

(
∂

∂T

(
∂U

∂V

)
T

)
V

(5.29)

But we know that
(
∂U
∂V

)
T
= 0 for an ideal gas. Since both sides are equal to 0, we

find that dU is an exact differential (which we knew all along.)

5.2.1 Prelude to the Second Law: the quantities dq and dq/T

Let us consider the differential dq for a reversible process in an ideal gas. We have

dq = dU −dw =CV dT +P dV (5.30)

For this to be exact, we would have to have(
∂P

∂T

)
V
=

(
∂CV

∂V

)
T

. (5.31)

For an ideal gas,
(
∂P
∂T

)
V
= nR

V . As above, for an ideal gas, the right hand side is

equal to 0. Therefore dq is not an exact differential, because nR
V 6= 0.
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If we consider, still for the reversible process, dq
T , we find

dq

T
= CV

T
dT + P

T
dV (5.32)

and the Euler criterion is (
∂(CV /T )

∂V

)
T
=

(
∂(P/T )

∂T

)
V

(5.33)

1

T

(
∂CV

∂V

)
T
=

(
∂(nR/V )

∂T

)
V

(5.34)

0 = 0 (5.35)

so that dq/T is exact. We have shown this only for reversible processes in ideal
gases, but it holds true in general: dq/T is the differential of a state function,
called the entropy, for all processes in all substances. The Second Law of thermo-
dynamics, which states what processes can happen without the expenditure of
work from the surroundings, is most simply stated in terms of the entropy.
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Chapter 6

The Second Law

6.1 Statements of the Second Law

We now come to one of the most interesting topics in all of science. Like all scien- Levine §3.1
tific “laws”, the Second Law of thermodynamics is an abstraction from experience:
it is a succinct statement of a large collection of experimental observations. It is
not something that can be proven, but is a rule that Nature has appeared to follow
any time anyone has looked carefully. The Second Law does, however, appear
naturally in statistical mechanics as the overwhelmingly most likely behavior of
macroscopic systems. This “derivation” came historically much later than the
development of the macroscopic law itself.

In this section I want to state the second law and show that it implies the
existence of a state function that does not change along any reversible adiabatic
path. We will name this state function “entropy”; it underlies every discussion
of chemical equilibrium. My development in this section follows that given in
Physical Chemistry by Berry, Rice, and Ross (Wiley, 1980).

Many different but equivalent statements of the Second Law have been given.
Let me list a few:

1. (Clausius) It is impossible to devise a continuously cycling engine that
produces no effect other than the transfer of heat from a colder to a hotter
body.

2. (Kelvin) It is impossible to devise a continuously cycling engine that pro-
duces no effect other than the extraction of heat from a reservoir at one
temperature and the performance of an equivalent amount of work.

3. (Caratheodory) In the neighborhood of every equilibrium state of a closed
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system there are states that cannot be reached from the first state along
any adiabatic path.

Notice the importance given to cyclic processes: those that return the system
to its original state. This emphasis arose historically from the study of mechanical
engines. An engine is useless unless it is cyclic; if the pistons can only move up
and down once in the cylinders before the engine must be thrown away, it isn’t
much good. A useful engine gets energy from somewhere, converts some of it
(but not all of it, as we shall see), to work, the remainder to heat, and returns to
its original state to start again. The motivation for the work that led up to the
Second Law was to find out what controlled how much of the available energy
could be converted to work.

It is easy to come up with processes that move heat from a colder to a hotter
body. For example, we can put some gas in a cylinder and let it come to thermal
equilibrium with an object at temperature T1. If we then pull the piston out, so
that the gas expands isothermally, as we have seen it will extract heat from the
object. Now, we remove the cylinder from the object, isolate it thermally, and
compress the gas. Since the cylinder is isolated, the compression is adiabatic, and
the gas temperature will rise; by doing enough work on the gas, we can make its
temperature rise to temperature T3. Now we bring the gas into thermal contact
with another object whose temperature is T2, such that T3 > T2 > T1. Heat will
flow from the gas into the second body. We have now moved heat from the
first object to the second, even though the second was at a higher temperature.
However, the gas in the cylinder is no longer in the same state it was before; its
volume is smaller, and its temperature higher, than at the beginning. This process
does not violate the Second Law.

6.2 Existence of the entropy

Figure 6.1 shows the T,V diagram for a one-component, closed system. The path
from point 1 to point 2 is a reversible, adiabatic path. The path from point 2 to
point 3 is a reversible, isothermal path. I now ask the question: can we find any
reversible, adiabatic path from point 3 back to point 1?

Let me assume we can. We know, because the system returns to point 1, that
∆U = 0 for the whole cycle. Therefore, w =−q for the whole cycle.

The path 1 → 2 is a reversible adiabat; adiabatic means q1→2 = 0. The path
2 → 3 is a reversible isothermal expansion; such an expansion requires q2→3 > 0.
Finally, the path 3 → 1 is a reversible adiabat with q3→1 = 0. Therefore, overall,
q > 0, and since q =−w , we have w < 0. This cycle therefore converts heat drawn
from a reservoir at temperature T2 (the temperature of points 2 and 3, and the
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Figure 6.1: A cycle in the T,V plane. Section 1 → 2 is a reversible adiabat; section
2 → 3 is a reversible isotherm.

temperature of the only section of the cycle where any heat is transferred) into an
equivalent amount of work. It therefore violates Kelvin’s statement of the Second
Law. There is no reversible adiabat connecting points 1 and 3.

This argument holds for any substance and any isothermal path 2 → 3, so
we find that through point 1 there is only one reversible adiabatic path. In other
words, reversible adiabats cannot cross on a T,V diagram.

Because the reversible adiabats cannot cross, we can describe any reversible
adiabatic curve with a function T (V ), or equivalently, f (T,V ) = constant. Let me
name such a function S(T,V ); I will call it the entropy, and it will be constant
along any reversible adiabatic curve. Therefore dS(T,V ) = 0 along any reversible
adiabat through (T,V ).

I have not given any detailed formula for S(T,V ) yet; I still need to find a
formula. But the existence of such a function is guaranteed by the uniqueness of
the reversible adiabats.

We already saw, in the Mathematical Interlude section, that the differential
dq/T was exact for a reversible process, that is, was the differential of a state
function. Since the entropy is constant along any reversible adiabatic path,
changes in entropy in a reversible system must involve a nonzero heat flow.
Those observations lead to an acceptable formula for changes in the entropy:

dS = dqrev

T
. (6.1)

For any change,

∆S =
∫ T2

T1

dqrev

T
. (6.2)
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This formula lets us compute changes in entropy, but does not give an absolute
value for S for a particular system. Statistical mechanics, and the Third Law of
thermodynamics, do allow for the assignment of absolute entropy values; we
will encounter those shortly. Nonetheless, for S as well as for H and U , it’s the
changes that will concern us most.

The formula for dS involves the heat transfer in a reversible process. If the
process you are interested in is (like most processes) not reversible, then to
calculate ∆S you must find some reversible path that gets you from the same
initial to the same final state, evaluate ∆S for each leg of that path, and add them
all together. Since S is a state function, that gives you the correct answer even
though the real path is not reversible.

6.3 Examples of entropy calculations

The following examples are typical of entropy calculations for reversible pro-
cesses; you must figure out an expression for dqrev, then integrate it over the
process. For irreversible processes, you must identify some reversible path that
takes your system between the same initial and final states.

Remember that a simple symbol like ∆S refers to the system; we will see
shortly how to calculate entropy changes in the surroundings.

6.3.1 Reversible isothermal processes

In an isothermal change, T is constant. If the change is reversible, or (since S is aLevine §3.4
state function) can be replaced by a reversible change with the same initial and
final states, then we have simply

∆S =
∫

dqrev

T
= 1

T

∫
dqrev =

qrev

T
. (6.3)

Reversible isothermal expansion of ideal gas For reversible isothermal expan-
sion of an ideal gas we have ∆U = 0 so qrev =−w = nRT ln(V2/V1). So

∆S = qrev

T
= nR ln

(
V2

V1

)
. (6.4)

Notice that the entropy change is positive for an expansion, negative for a
compression.
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Phase changes in pure substances Phase changes — melting, boiling, sublima-
tion, and transitions from one crystalline phase to another — generally occur at
constant temperature. We can bring them about reversibly in a very natural way,
by making sure the source of heat is held very nearly at the transition tempera-
ture (for example, at the melting point.) If the phase change occurs at contant
pressure, then we have qrev =∆H , so that

∆trsS = qrev

T
= ∆trsH

Ttrs
, (6.5)

where Ttrs is the transition temperature. So, for example, the molar entropy
change for melting of ice at 1 bar is

∆fusS◦ = ∆fusH◦

Tfus
= 6.01kJ/mol

273.15K
= 22.0Jmol−1 K−1. (6.6)

6.3.2 Reversible heating or cooling at constant P

To heat or cool something reversibly, you bring it in contact with another object
(the “reservoir” or “bath”) whose temperature is almost exactly equal to your
object. In this case, the direction of heat flow could be reversed by changing the
temperature of the object infinitesimally, so the heat flow is reversible. As your
object warms or cools, you must adjust the temperature of the bath so that it
“tracks” your object. Then dqrev =Cp dT , and

∆S =
∫ T2

T1

Cp

T
dT . (6.7)

If Cp is constant over the temperature range of interest we find

∆S =Cp

∫ T2

T1

dT

T
=Cp ln

(
T2

T1

)
. (6.8)

6.3.3 Irreversible heat transfer

Say 100 g of water at 80 ◦C is mixed in a Dewar flask with 100 g of water at 20 ◦C.
You can show that the final temperature will be 50 ◦C. What is the total entropy
change?

This mixing is irreversible; the two temperatures are not the same when the
samples come into contact, so an infinitesimal change in the temperature of
one sample will not reverse the direction of the heat transfer. To find the overall
entropy change, we must find a reversible path between the two states.

A simple reversible path is this:
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1. Cool sample A reversibly from 80 to 50 ◦C.

2. Heat sample B reversibly from 20 to 50 ◦C.

3. Add the two samples together; no heat flows in this process, so ∆S = 0.

We must calculate the entropy changes for the heating of sample A and the
cooling of sample B, and add them together.

For the heating process, we have

dS = dqrev

T
=Cp

dT

T
(6.9)

∆SA =
∫ T f

TA

Cp
dT

T
(6.10)

=Cp ln

(
T f

TA

)
(6.11)

Similarly, for sample B we find

∆SB =Cp ln

(
T f

TB

)
(6.12)

so the total entropy change in the sample is

∆S =Cp

[
ln

(
T f

TA

)
+ ln

(
T f

TB

)]
. (6.13)

Since the heating and cooling steps were carried out reversibly, the change in
entropy in the surroundings (which supplied the heat to warm sample B, and
received the heat from the cooling of sample A) were exactly opposite those in
the samples, so the overall change in entropy of the universe for this reversible
path is zero. That is another possible definition of “reversible”.

6.3.4 Entropy changes in the surroundings

If we can regard the surroundings of any thermodynamic process as existing at
constant temperature and pressure, then

dHsurr = dqsurr, (6.14)

and since the enthalpy is a state function, changes in it are independent of
whether the heat transfer occurs reversibly or not; therefore, when the surround-
ings are at constant T and P ,

∆Ssurr = ∆Hsurr

T
. (6.15)
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Similarly, if the surroundings are at constant T and V , then

∆Ssurr = ∆Usurr

T
. (6.16)

So under those conditions it is easy to calculate entropy changes in the sur-
roundings. This idea is extremely powerful in considerations of chemical equi-
librium, and is the motivation for the introduction of the familiar Gibbs and
Helmholz energies.

6.3.5 Irreversible processes: the Clausius inequality

Consider again our water-mixing problem. We found that for the sample,

∆S =Cp

[
ln

(
T f

TA

)
+ ln

(
T f

TB

)]
, (6.17)

while along the reversible path the entropy changes in the surroundings exactly
cancelled those of the system so that the total entropy change was zero. What
about along the original, irreversible path? If we just dump both samples into a
Dewar flask together, then no heat flows into the surroundings, so the entropy
change in the surroundings is zero. The entropy change in the system is the same
as before (entropy is a state function.) Examine the sign of the entropy change in
the system:

∆S =Cp

[
ln

(
T f

TA

)
+ ln

(
T f

TB

)]
(6.18)

=Cp

[
ln

(
T f

TA

T f

TB

)]
(6.19)

(6.20)

The entropy change in the system will be positive if the argument of the logarithm
is greater than 1. Examine that argument:

T f

TA

T f

TB
=

(
TA+TB

2

)2

TATB
(6.21)

= T 2
A +2TATB +T 2

B

4TATB
(6.22)

= 1

2
+ T 2

A +T 2
B

4TATB
(6.23)

= 1

2
+ 1

4

(
TA

TB
+ TB

TA

)
(6.24)

GCM December 1, 2016



94

Under what conditions will that argument be greater than 1? We need

1

2
+ 1

4

(
TA

TB
+ TB

TA

)
> 1 (6.25)

TA

TB
+ TB

TA
> 2 (6.26)(

TA

TB

)2

+1 > 2
TA

TB
(6.27)(

TA

TB
−1

)2

> 0 (6.28)

which will be true for any TA 6= TB. In other words, the entropy change of this
isolated system is greater than zero for the irreversible process. That is true in
general, not just for irreversible heat transfers, and is known as the inequality
of Clausius: for any spontaneous process in an isolated system, ∆S > 0. That
inequality will drive all the rest of our discussions of equilibrium.
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Chapter 7

Gibbs and Helmholtz energies

7.1 Total entropy changes

In any isolated system, for any spontaneous (that is, natural) process, ∆S > 0. It is
useful to regard the entire universe—system plus surroundings—as an isolated
system. This outlook lets us, as Atkins puts it, “concentrate on the system” while
making reliable predictions about what processes will be spontaneous.

If we divide the universe into system and surroundings (or at least that part
of the surroundings that interacts with the system) then we must have, for any
small spontaneous change,

dS+dSsurr > 0. (7.1)

(Keep in mind that unsubscripted quantities refer to the system.) If the system
is at constant temperature and pressure, then the heat that flows into the sur-
roundings is −d qp =−dH , where dH is the enthalpy change in the system. The
entropy change in the surroundings is, since the surroundings may be assumed
isothermal,

dSsurr =−dH

T
(7.2)

leading to

dS− dH

T
> 0. (7.3)

If we multiply both sides by −T , (a negative quantity, so we must reverse the
inequality), we find

dH −T dS < 0. (7.4)

We have found a requirement on changes in state functions of the system that
specifies whether a process is spontaneous or not on the basis of entropy changes
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in the universe, under the assumption that the system (and universe) are at
constant temperature and pressure.

An analogous argument, for the case of a system at constant temperature and
volume, is the same except that the heat flow into the surroundings is given by
−d qV =−dU . Following the argument exactly as before gives us the criterion for
spontaneous processes at constant temperature and volume

dU −T dS < 0. (7.5)

Those two inequalities, which are criteria for spontaneous change in systems
at constant pressure or constant volume, suggest the definitions of two new state
functions:

G = H −T S (7.6)

A =U −T S (7.7)

These are called the Gibbs and Helmholtz energies (or “free energies”). With them
the spontaneity criteria become

dG < 0 (7.8)

d A < 0 (7.9)

Often you will hear a statement something like “There is a tradeoff between
changes in energy and entropy; systems want to be at low energy and high entropy,
and whichever one “wins” determines the direction of spontaneous change.” That
statement, while operationally workable, misses the fundamental point. The
direction of spontaneous change is determined entirely by changes in overall
entropy of the universe. Under conditions of constant temperature and pressure,
the Gibbs function will decrease if a system undergoes a change that increases
the universe’s entropy. That is why the Gibbs function is useful. A large negative
∆H indicates that the reaction will dump a lot of heat into the surroundings,
increasing the entropy of the surroundings; that helps increase the entropy of the
universe, and can compensate for decreases of the system’s entropy. Similarly,
if the system is at constant T and V , its Helmholtz function will decrease if the
entropy of the universe increases. Both are useful because they let you predict
entropy changes in the universe on the basis of more-easily-calculable changes
in the system itself.

7.1.1 Aside: reversibility and maxima

From the Clausius inequality we can draw some conclusions that will be useful

shortly. You know that for any change in the system, dS = d qrev

T , and you know that
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dS+dSsurr ≥ 0 (where the equality holds only for reversible processes). We already
saw that entropy changes in the surroundings at constant T do not depend on

whether the process is carried out reversibly or irreversibly, so dSsurr = −d q
T . Then

we have
d qrev

T
+ −d q

T
≥ 0, (7.10)

whence

d qrev ≥ d q, (7.11)

or

dS ≥ d q

T
, (7.12)

where all variables without subscripts apply to the system. In fact, Eq. (7.12) is
sometimes called the Clausius inequality.

Straightforward arguments (outlined in your text) can show that ∆A for a pro-
cess gives the maximum amount of work that can be extracted from an isothermal
process, and ∆G for a process gives the maximum amount of non-expansion
work that can be extracted from the process. I will not prove those things; after
a brief demonstration that the maximum work is obtained when a process acts
reversibly, we will go on toward relations that apply to reacting systems.

7.2 Alphabet soup: Maxwell relations and thermodynamic
equations of state

We now begin finding formulas that we can use to make predictions about chem-
istry.

The First Law gives
dU = d q +d w. (7.13)

Restrict the discussion to reversible (equilibrium) processes doing only expansion
(PV ) work. Then d q = d qrev = T dS and d w =−P dV so we have

dU = T dS −P dV. (7.14)

dU is an exact differential. We could have regarded U as a function of S and
V and written immediately

dU =
(
∂U

∂S

)
V

dS +
(
∂U

∂V

)
S

dV. (7.15)
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Comparing Eq. (7.14) and Eq. (7.15) gives(
∂U

∂S

)
V
= T (7.16)(

∂U

∂V

)
S
=−P (7.17)

Also, because dU is an exact differential, the Euler criterion holds so that(
∂T

∂V

)
S
=−

(
∂P

∂S

)
V

(7.18)

Eq. (7.18) is one of four Maxwell relations that provide routes between things one
is interested in (like, how the internal energy changes with volume) and things
one can measure (like heat capacities, changes of temperature with pressure, and
so on.) The other three are derived in exactly the same way, by applying the Euler
criterion to the differentials of H , G , and A. In Table 7.1 I list the results; you
should be able to derive any expression in the later columns from the equation in
the first.

Table 7.1 The Gibbs equations (first column), the resulting thermodynamic iden-
tities (second and third), and the corresponding Maxwell relations (last column).

dU = T dS −P dV

(
∂U

∂S

)
V
= T

(
∂U

∂V

)
S
=−P

(
∂T

∂V

)
S
=−

(
∂P

∂S

)
V

d H = T dS +V dP

(
∂H

∂S

)
P
= T

(
∂H

∂P

)
S
=V

(
∂T

∂P

)
S
=

(
∂V

∂S

)
P

d A =−S dT −P dV

(
∂A

∂T

)
V
=−S

(
∂A

∂V

)
T
=−P

(
∂S

∂V

)
T
=

(
∂P

∂T

)
V

dG =−S dT +V dP

(
∂G

∂T

)
P
=−S

(
∂G

∂P

)
T
=V

(
∂S

∂P

)
T
=−

(
∂V

∂T

)
P

7.2.1 Application: internal pressure of a van der Waals gas

That ferocious-looking table can be used to answer real questions. The first I will

show is one that you did part of in your homework: show that
(
∂U
∂V

)
T
= a

V 2
m

for a

van der Waals gas.
The trick is to change things you don’t know how to evaluate into things you

do by looking for substitutions. Here we go:

notes-8



7.2. Alphabet soup: Maxwell relations and thermodynamic equations of state99

We don’t have
(
∂U
∂V

)
T

in our table anywhere. But we do have
(
∂U
∂V

)
S

. Recall

that we have a formula that lets you change the subscript on a partial derivative,
by adding a fixup term. Looking up that formula (several pages back) gets us(

∂U

∂V

)
T
=

(
∂U

∂V

)
S
+

(
∂U

∂S

)
V

(
∂S

∂V

)
T

. (7.19)

In our table, we find simple expressions for two of those things:(
∂U

∂V

)
S
=−P (7.20)(

∂U

∂S

)
V
= T (7.21)

giving (
∂U

∂V

)
T
=−P +T

(
∂S

∂V

)
T

. (7.22)

The remaining partial derivative has an S in it, which does not appear in our van
der Waals equation of state, but there is a substitution for it in the table, giving us(

∂U

∂V

)
T
=−P +T

(
∂P

∂T

)
V

. (7.23)

So far nothing we have done has made any approximations or assumed any
properties of a particular substance. Now we assume that the substance is a van
der Waals gas, and we can evaluate that last term directly from the van der Waals
equation. We have

P = RT

Vm −b
− a

V 2
m

(7.24)

so that (
∂P

∂T

)
V
= R

Vm −b
(7.25)

Substituting that into Eq. (7.23) gives(
∂U

∂V

)
T
=−P + RT

Vm −b
= a

V 2
m

(7.26)

after a simple substitution from the van der Waals equation.
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7.3 The chemical potential

The Gibbs equations and their associated formulas we saw in the last section hold
for closed systems undergoing only reversible processes (possibly including re-
versible changes in composition, but not ordinary irreversible chemical reactions
beginning far from equilibrium). To make thermodynamics useful in chemistry
we need to extend it to account for open systems and irreversible composition
changes. We can therefore no longer regard our state functions G , S, and so on as
functions of two variables only, but must add additional variables to account for
composition changes. In chemistry, the Gibbs energy is the most valuable energy
function, so I will concentrate on its dependence on composition.

We had, for systems at mechanical, thermal, and material (reaction) equilib-
rium, with only PV work possible,

dG =−S dT +V dP (7.27)

That equation is a friendlier-looking version of

dG =
(
∂G

∂T

)
P

dT +
(
∂G

∂P

)
T

dP. (7.28)

To account for addition of material (by reaction or simple addition), we just add
terms. If we want to evaluate a small change in G when the pressure, temperature,
or number of moles of substance k changes, we write

dG =
(
∂G

∂T

)
P,nk

dT +
(
∂G

∂P

)
T,nk

dP+
(
∂G

∂nk

)
T,P

dnk (7.29)

If we have many different components, with numbers of moles of each one
written as ni , i = 1,2,3 . . .k, then we write

dG =
(
∂G

∂T

)
P,ni

dT +
(
∂G

∂P

)
T,ni

dP+
(
∂G

∂n1

)
T,P,ni 6=1

dn1

+
(
∂G

∂n2

)
T,P,ni 6=2

dn2 +·· ·+
(
∂G

∂nk

)
T,P,ni 6=k

dnk (7.30)

which I can write as

dG =
(
∂G

∂T

)
P,ni

dT +
(
∂G

∂P

)
T,ni

dP+
k∑

i=1

(
∂G

∂ni

)
T,P,n j 6=i

dni (7.31)

We define the chemical potential of species i in a one-phase system (not
necessarily a pure material: this holds for different chemical species in a solution,
for example) as

µi ≡
(
∂G

∂ni

)
T,P,n j 6=i

(7.32)
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The chemical potential tells how the Gibbs energy of a system changes when
a substance is added to it. It is an intensive quantity since it is the ratio of two
extensive quantities (G and n).

Our Gibbs equation now returns to a friendlier-looking form:

dG =−S dT +V dP+
k∑

i=1
µi dni (7.33)

According to Levine: “(Eq. (7.33)) is the key equation in chemical thermody-
namics.” It applies to a single-phase system, internally at thermal and mechanical
(but not chemical) equilibrium, where only PV work is considered.

If you go through all the thermodynamic energy functions U , H , A, and G ,
you will find by simple substitutions that their Gibbs equations are all extended
to the variable-composition case by adding a term

+
k∑

i=1
µi dni

to them. The same chemical potentials can be used for all four.

As an example, let me find the new, variable-composition total differential for
the internal energy U . We have G = H −T S =U +PV −T S, so U =G −PV +T S.
Then taking the total differential gives

dU = dG−PdV −V dP+T dS+SdT (7.34)

=−S dT +V dP+
k∑

i=1
µi dni −PdV −V dP+T dS+SdT (7.35)

dU = T dS−PdV +
k∑

i=1
µi dni , (7.36)

and you can see that this result is just the old one (dU = T dS−PdV ) with an
added term for composition changes that is the same one we added to dG.

The new Gibbs equations, with chemical potential terms added, apply to
single-phase systems, either open or closed, in mechanical and thermal equilib-
rium. (“Mechanical and thermal equilibrium” implies that P and T are uniform
throughout the phase.) They are applicable to systems undergoing chemical
reactions far from equilibrium and also to systems to which material is being
added or removed. The expressions do not yet apply to multi-phase systems,
though as we will see shortly the extension to multiple phases is straightforward.
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7.3.1 Chemical potential of a pure substance

If there is only one component, then we have

µ=
(
∂G

∂n

)
T,P

=
(
∂nGm

∂n

)
T,P

=Gm, (7.37)

since the molar Gibbs energy Gm is an intensive quantity independent of n.
Therefore for a pure substance the chemical potential is simply the molar Gibbs
energy.

Variation of chemical potential with pressure of ideal gas

We have for a one-component system in equilibrium

dG =−S dT +V dP

If we consider an isothermal change of pressure of an ideal gas, we find

∆G =
∫ P2

P1

V dP (7.38)

=
∫ P2

P1

nRT

P
dP (7.39)

= nRT ln

(
P2

P1

)
(7.40)

Now if we define one particular pressure (nowadays usually one bar) as the
“standard pressure”, then we can say

G(P ) =G◦+nRT ln

(
P

P◦

)
(7.41)

Differentiating with respect to n, we find (since for a pure substance µ=Gm =
G/n)

µ(P ) =µ◦+RT ln

(
P

P◦

)
(7.42)

This tells us, for a pure ideal gas, how the chemical potential varies with pressure.

7.3.2 Multiple phases

In many problems more than one phase is present. For example, in the prepa-
ration of a Grignard reagent the organohalogen compound is typically present
in solution, in contact with solid Mg. In the melting of ice both solid and liquid

notes-9



7.4. Conditions for material equilibrium 103

water are present, and so on. It is easy to extend Eq. (7.33) to multiple phases; in
addition to a sum over the different substances present, we also need a sum over
the phases. Each substance has a chemical potential for each phase (that is, the
chemical potential of a given substance might be different in different phases.)
We write, for k substances in m phases,

dG =−S dT +V dP+
m∑
α=1

k∑
i=1

µαi dnαi (7.43)

where the superscriptα denotes the phase. In Eq. (7.43), S and V refer to the total
entropy and volume of the system (the sums of those quantities for all phases).

7.4 Conditions for material equilibrium

At the beginning of this chapter we saw that the criterion for spontaneous (that is,
natural, or possible) change at constant T and P is downhill in G , that is, dG < 0.
At equilibrium, then, when neither direction is downhill, we expect dG = 0; at
constant T and P , Eq. (7.43) then reads

m∑
α=1

k∑
i=1

µαi dnαi = 0. (7.44)

If we consider a system at constant T and V , then the equilibrium condition
is dA = 0; because the chemical potential terms are the same for dA as for dG,
the condition for equilibrium is still given by Eq. (7.44). In fact, Eq. (7.44) is a
general condition for material equilibrium; it is true for any closed system in
material equilibrium, not matter what the conditions are. If the system is at
constant T and P , Eq. (7.44) corresponds to dG = 0; if it is at constant T and V , it
corresponds to dA = 0; under other conditions it corresponds to neither, but it
still is the requirement for material equilibrium to be achieved.

In general, material will “flow” from a phase with high chemical potential
to one with low chemical potential. The “flow” may correspond to a chemical
reaction or to a phase change (evaporation, dissolving, etc.) At equilibrium, there
is no change in composition that is “downhill”; changing a tiny amount of A into
a tiny amount of B generates no net decrease in the overall chemical potential.

Chemical potentials are intensive, like T and P , and they depend on the
concentrations of all the substances present in a phase. We have not proved it,
but the chemical potential of a substance in a particular phase always increases if
the mole fraction of that substance is increased by simple addition of more of it at
constant T and P (see Levine, 6th edition, section 4.7 for references.) So stuffing
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more and more of a substance into a particular phase becomes harder and harder.
Some authors refer to the chemical potential as a measure of “escaping tendency”;
the higher the chemical potential, the more a substance wants to leave a given
phase (by transfer to another phase or by reaction) and go somewhere else.

7.4.1 Phase equilibrium

Consider the simplest sort of phase equilibrium, the partitioning of a single pure
substance between two phases (for instance, the evaporation of water in a closed
flask). Eq. (7.44) says that at equilibrium, the sum

µl dnl +µg dng = 0, (7.45)

where the subscript l indicates liquid and g indicates gas. Because the system is
closed, and only the two phases are present, we must have dnl =−dng. Substitut-
ing for dnl and rearranging I find

(µg −µl)dng = 0 (7.46)

or, dividing by dng,

µg =µl. (7.47)

In other words, equilibrium is reached when the chemical potentials of the water
in the liquid and the gas are equal. That is the general case: in a closed system, at
material equilibrium every substance has the same chemical potential in all the
phases in which it appears.

7.4.2 Reaction equilibrium

When a chemical reaction occurs in a closed system, the change dnA in the
number of moles of A is proportional to its stoichiometric coefficient νA in the
balanced chemical equation (νA is positive if A is a product, negative if it is a
reactant). The proportionality constant, commonly called the “extent of reaction”,
is often written ξ. For instance, in the reaction

C3H6O3 +3O2 −−→ 3CO2 +3H2O (48)

if ξ= 0.1 mol then 0.1 mol of C3H6O3 and 0.3 mol of oxygen have been consumed
and 0.3 mol each of carbon dioxide and water have been produced.

In a closed system at equilibrium, we just saw that the chemical potential
of any species is the same in any phase in which it appears. Therefore, we can
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simplify our study of reaction equilibrium by assuming phase equilibrium also
holds. Then we have

0 =
m∑
α=1

k∑
i=1

µαi dnαi (7.49)

=
k∑

i=1

m∑
α=1

µαi dnαi (7.50)

Since the chemical potential of substance i is the same in all phases α, I can drop
the superscript on µi and move it through the sum over phases:

0 =
k∑

i=1
µi

m∑
α=1

dnαi (7.51)

=
k∑

i=1
µi dni (7.52)

where the last line follows because the sum of the changes in the amount of
substance i in all phases is just the total change in the amount of that substance.

Now we consider the change in numbers of moles of each substance brought
about by a small increase in the extent of reaction dξ. For each substance we
have dni = νi dξ. Then the equilibrium condition becomes

0 = dξ
k∑

i=1
µiνi (7.53)

or, dividing by dξ,
k∑

i=1
µiνi = 0. (7.54)

This is the general condition for chemical equilibrium in a closed system.
So far I have given several “rules of equilibrium”, which can be written com-

pactly in terms of chemical potentials. They are not useful, though, unless we
can find ways to calculate the chemical potentials or to convert the rules into
equations relating more easily measureable quantities. I want next to examine
chemical equilibria in ideal gas mixtures, giving a concrete example of the power
of the chemical potential idea.

7.5 Reaction equilibrium in ideal gases

We saw earlier that for a pure ideal gas at pressure P , the chemical potential
µ= µ◦+RT ln(P/P◦), where µ◦ is the chemical potential at pressure P◦. For an
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ideal gas mixture, we regard each mixture component as independent, so that
the same equation holds, but with P interpreted as the partial pressure of each
gas. Then

µi (T ) =µ◦
i (T )+RT ln

(
Pi

P◦

)
(7.55)

The equilibrium condition, Eq. (7.54), becomes

k∑
i=1

νi

[
µ◦

i (T )+RT ln

(
Pi

P◦

)]
= 0 (7.56)

Collecting the standard-state chemical potentials on the left, I have

k∑
i=1

νiµ
◦
i (T ) =−RT

k∑
i=1

νi ln

(
Pi

P◦

)
(7.57)

In an ideal gas mixture, where there are no interactions between the different
gas species, the individual gases act as though they were pure. Therefore, the
chemical potentials on the left side are the chemical potentials of the pure gases,
that is, they are the molar Gibbs energies of the different gases. The sum on the
left side is therefore the standard molar Gibbs energy of the reaction:

k∑
i=1

νiµ
◦
i (T ) =

k∑
i=1

νi G◦
i ,m(T ) =∆rG

◦
T (7.58)

Now we have

∆rG
◦
T =−RT

k∑
i=1

νi ln

(
Pi

P◦

)
(7.59)

A multiplier in front of a logarithm becomes an exponent inside the logarithm,
and a sum of logs is the log of a product, so this is

∆rG
◦
T =−RT ln

k∏
i=1

(
Pi

P◦

)νi

(7.60)

This is a very familiar equation, though you might not recognize it yet! Take, as
an example, the ideal gas reaction

aA+bB −−→ cC+dD (61)

Now νa =−a, νc = c, and so on, and we have

∆rG
◦
T =−RT ln

(
(PC/P◦)c (PD/P◦)d

(PA/P◦)a(PB/P◦)b

)
. (7.62)
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You should recognize the standard pressure equilibrium constant,

K ◦
P =

(
(PC/P◦)c (PD/P◦)d

(PA/P◦)a(PB/P◦)b

)
, (7.63)

where all the species pressures are equilibrium values. In the more general
notation,

K ◦
P =

k∏
i=1

(
Pi

P◦

)νi

(7.64)

Our equilibrium condition is now

∆rG
◦
T =−RT lnK ◦

P (T ) (7.65)

and we have derived the existence of a standard equilibrium constant that de-
pends only on T .
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7.6 Phase equilibrium: the Clapeyron equation

I want to use the chemical potential idea to determine the behavior of phase
equilibrium in a two-phase system. Imagine that we have water and ice in equilib-
rium at 0◦C and 1 bar. If we raise the temperature without changing the pressure,
the ice will melt. If we lower the temperature without changing the pressure,
the water will freeze. Similarly, if we change the pressure without changing the
temperature, either the ice will melt (if we raise the pressure, since ice occupies
more volume than water) or the water will freeze (if we lower the pressure). But,
it’s possible to change both the pressure and the temperature simultaneously and
maintain both liquid and solid phases in equilibrium. It’s the relation between P
and T along that “equilibrium line” that is the topic of this discussion.

You should recall the elementary P–T “phase diagram” from freshman chem-
istry; an example is shown in Figure 7.1. Each curve on the phase diagram shows
a function P (T ) along which two phases can coexist in equilibrium; at any other
point on the diagram, only one phase can be present.

Figure 7.1: Phase diagram for water, from the UC Davis ChemWiki at chemwiki.
ucdavis.edu.

Our general condition for material equilibrium, applied to any point where
two phases α and β coexist, is

µα(T,P ) =µβ(T,P ) (7.66)

or, taking the total differential of both sides so that we can study what happens
when a small amount of one phase changes into the other,

dµα(T,P ) = dµβ(T,P ). (7.67)
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Writing out the total differentials gives(
∂µα

∂T

)
P

dT +
(
∂µα

∂P

)
T

dP =
(
∂µβ

∂T

)
P

dT +
(
∂µβ

∂P

)
T

dP (7.68)

Recall that for a pure substance (that is, either phase in our case) the chemical
potential is just the molar Gibbs energy:

µ=
(
∂G

∂n

)
T,P

, (7.69)

so that the partial derivatives of µ are “mixed second partial derivatives”, the
derivative of G with respect to both n and either P or T . In such a mixed derivative,
the order of differentiation is unimportant, so we can switch the order and do the
differentiation with respect to T or P first. Then we have

∂

∂nα

(
∂Gα

∂T

)
P

dT + ∂

∂nα

(
∂Gα

∂P

)
T

dP = ∂

∂nβ

(
∂Gβ

∂T

)
P

dT + ∂

∂nβ

(
∂Gβ

∂P

)
T

dP (7.70)

Now, from our thermodynamic relations table, we find the expressions
(
∂G
∂P

)
T
=

V and
(
∂G
∂T

)
P
=−S to give us

− ∂

∂nα
SαdT + ∂

∂nα
VαdP = ∂

∂nβ
SβdT + ∂

∂nβ
VβdP (7.71)

and those derivatives with respect to n just give us the molar entropy and molar
volume:

−SmαdT +VmαdP =−SmβdT +VmβdP (7.72)

or (
Vmβ−Vmα

)
dP = (

Smβ−Smα

)
dT . (7.73)

Now we can get an expression for dP/dT , the slope of the line on the phase
diagram, directly:

dP

dT
=

(
Smβ−Smα

)(
Vmβ−Vmα

) (7.74)

=∆trsS/∆trsV. (7.75)

We are considering the reversible conversion of one phase to another, with P
and T constant during the transition. so ∆trsS =∆trsH/T . That gives us

dP

dT
= ∆trsH

T∆trsV
. (7.76)
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This equation, exact for any equilibrium phase transition, is the Clapeyron equa-
tion. It gives the relation between the equilibrium pressure and temperature
of a one-component, two-phase system. It is applicable to all kinds of phase
transitions: melting, vaporization, sublimation, and transitions from one solid
phase to another.

7.6.1 Phase equilibrium involving gases

In transitions from condensed phases to gas, if the pressure is far below the critical
pressure (where the densities of liquid and gas are the same), the volume of the
gas is much larger than the volume of liquid. For example, at ordinary conditions,
a mole of water vapor occupies about 25 L while a mole of liquid occupies about
0.018 L, more than a thousand times less. It’s therefore a good approximation to
replace ∆trsV = Vgas −Vliq with simply Vgas. If in addition we assume the gas is
ideal, so that Vgas = nRT /P , then we obtain the Clausius-Clapeyron equation

dP

dT
= P∆trsH

nRT 2 (7.77)

1

P

dP

dT
= ∆trs,mH

RT 2 (7.78)

d lnP

dT
= ∆trs,mH

RT 2 (7.79)

This expression, useful for both vaporization and sublimation, is widely used
to predict changes of boiling points with pressure and vapor pressures with
temperature.

If instead of assuming the gas is ideal ( PVm
RT = 1), we describe its behavior

using the compression factor Z so that PVm
RT = Z , then the Clausius-Clapeyron

equation becomes
d lnP

dT
= ∆trs,mH

RT 2Z
. (7.80)

The expression can be brought to a roughly linear form by using the chain rule to
change variables from T to 1/T . We have

d lnP

dT
= d lnP

d(1/T )

d(1/T )

dT
= −1

T 2

d lnP

d(1/T )
. (7.81)

Substituting that on the left side of Eq. (7.80) and then multiplying by −T 2 gives

d lnP

d(1/T )
= −∆trs,mH

R Z
(7.82)

If ∆trs,mH and Z are independent of temperature, then this equation says that

a plot of lnP against 1/T will yield a straight line with slope −∆trs,m H
R Z . If ∆trs,mH
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changes with temperature, then the line will show nonstant slope (that is, cur-
vature). For example, ∆vap,mH for water changes from 44.0 kJ/mol at 25 ◦C to
41.6 kJ/mol at 100 ◦C.

If we make the assumptions that ∆trs,mH and Z are independent of T , then
we can separate Eq. (7.80) by moving dT to the right side and integrating to get

lnP = −∆trs,mH

RT Z
+C . (7.83)

If we know one pressure-temperature pair, say (T1,P1), we can use those to find
C and obtain (assuming now Z = 1)

ln

(
P2

P1

)
= −∆trs,mH

R

(
1

T2
− 1

T1

)
(7.84)

which is the “freshman chemistry version” of the Clausius-Clapeyron equation.

7.7 Reaction equilibrium: the van’t Hoff equation

We have (Eq. (7.65))
∆rG

◦
T =−RT lnK ◦

P (T ) (7.85)

so that

lnK ◦
p (T ) =−∆rG◦

T

RT
(7.86)

Differentiate both sides with respect to T , with P constant:(
∂ lnK ◦

P (T )

∂T

)
P
=− 1

R

(
1

T

(
∂∆rG◦

T

∂T

)
P
− ∆rG◦

T

T 2

)
(7.87)

Use
(
∂G
∂T

)
P
=−S:

= 1

R

(
1

T
∆rS◦

T + ∆rG◦
T

T 2

)
(7.88)

Now multiply numerator and denominator of the entropy term by T , and recog-
nize G +T S = H :

= 1

R

(
1

T 2 T∆rS◦
T + ∆rG◦

T

T 2

)
(7.89)

= ∆rH◦
T

RT 2 (7.90)
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Since K ◦
P (T ) is a function of T only, the partial derivative is the same as a total

derivative, and we have the van’t Hoff equation

d(lnK ◦
P (T ))

dT
= ∆rH◦

T

RT 2 (7.91)

This equation describes the temperature dependence of equilibrium con-
stants. If you know ∆rH◦ for a reaction, it lets you calculate how the equilibrium
constant will change with temperature. Conversely, if you can measure the equi-
librium constant for a reaction at several temperatures, it lets you figure out∆rH◦

without doing any calorimetry. Often this is easier than directly measuring the
heat evolved from a reaction.
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7.8 Equilibrium in real gases and solutions

7.8.1 Definition of activity

For ideal gases we found that

µi =µ◦
i (T )+RT ln

(
Pi

P◦

)
(7.92)

and from that
∆G◦

T =∑
i
νiµ

◦
i (T ) =−RT lnK ◦

P (7.93)

In dealing with reactions in condensed phases (especially solutions) and in real
gases, it is useful to try to continue writing chemical potentials in that way. We
define the (dimensionless) activity ai of substance i such that

µi =µ◦
i (T )+RT ln ai , (7.94)

where µ◦
i (T ) is the chemical potential of substance i in some specified reference

state (the “standard state”). The chemical potential of substance i itself, µi , does
not depend on the choice of standard state; but since µ◦

i (T ) clearly does, the
activity ai will as well.

With this definition of activity we find, by the same procedure as before, that
there is an equilibrium constant with the form

K ◦ =∏
i

aνi

i . (7.95)

This is now a general expression for an equilibrium constant, based on the general
requirement for material equilibrium. The task of describing an equilibrium has
now been converted to the task of finding appropriate values of the activities a
for each system of interest.

Activities for ideal gases Simply by matching up Eq. (7.95) with our earlier
expression for the ideal-gas equilibrium constant, you can see that for ideal gases,
the activity of species i must be simply its partial pressure Pi divided by the
standard state pressure P◦. That is, the activity for an ideal gas is simply is partial
pressure measured in units of the standard pressure.

7.8.2 Real gas activities: the fugacity

Eq. (7.94) applies to real gases as well as to solutions, but to preserve a concept of
“effective pressure” in real gases, we define the fugacity fi of a gas i such that

µi =µ◦
i (T )+RT ln

(
fi

P◦

)
, (7.96)
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that is, ai = fi /P◦. The fugacity has units of pressure, and to make explicit the
deviations from ideal gas behavior we write fi =φi Pi where Pi is the true partial
pressure of gas i and φi is the fugacity coefficient. Fugacity coefficients approach
1 at low gas density, so that the equilibrium properties of real gases become those
of ideal gases at low density. The “standard state” for real gases is therefore not
a real state, but an imaginary state where the gases are at pressures of 1 bar but
behaving ideally.

Fugacity coefficients for pure gases can be calculated from

lnφ(P ) =
∫ P

0

(
Z (P ′)−1)

P ′

)
dP ′ (7.97)

where Z is the compression factor of the gas, Z = PVm
RT . For gas mixtures, a first

approximation (called the “Lewis-Randall rule”) is to set the fugacity coefficients
for all gases in the mixture to those of the pure gases. If the intermolecular
interactions between the different gases are very different, though, that is not a
good approximation. Methods for calculating fugacity coefficients for mixtures
are given in Reid, Prausnitz, and Poling, The Properties of Gases and Liquids, 4th
edition (McGraw-Hill, 1987).

With fugacity coefficients in hand, we have

K ◦ =∏
i

(
fi

P◦

)νi

=∏
i

(
φi Pi

P◦

)νi

, (7.98)

which can be factored to give

K ◦∏
i (φi )νi

=∏
i

(
Pi

P◦

)νi

. (7.99)

A sensible way to evaluate equilibrium pressures in reacting real gas mixtures
is as follows. You calculate K ◦ in the usual way from tabulated values of∆fG

◦
T , and

work out initial estimates of the equilibrium pressures by assuming all the gases
are ideal. With the approximate equilibrium pressures thus obtained, you find
fugacity coefficients of the mixture components, then “correct” K ◦ by dividing
by the appropriate quotient of fugacity coefficients of the reacting gases. After
that, the equilibrium pressures in the reacting mixture can be found again. A
couple of iterations of this procedure is usually enough to converge it, since the
gas behavior is not usually very far from ideal.

7.8.3 Ideal and ideally dilute solutions

To define useful standard states for solution equilibrium calculations, we need to
construct a solution equivalent of the ideal gas law. In an ideal gas, there are no
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intermolecular interactions. The intermolecular interactions in liquid solutions
are so important that it would be foolish to ignore them. Instead, we imagine two
kinds of solutions in which the intermolecular interactions are simplified:

1. In an ideal solution, the interactions between species A and B are the same
as those between A and A and those between B and B.

2. In an ideally dilute solution, there are so few B (solute) molecules that only
A–A and A–B interactions exist; no B–B interactions need be considered.

A mixture of two similar liquids often makes a nearly ideal solution; for
example, benzene and toluene, acetone and methyl ethyl ketone, or ethanol and
isopropanol. An ideally dilute solution, on the other hand, generally must be
very dilute (more so for electrolyte solutes), but there is no requirement that
solute and solvent be chemically similar. Glucose in water can be an ideally dilute
solution at low concentration, but is not an ideal one under any circumstances.

Raoult’s Law

I will follow the convention of denoting properties of pure substances with aster-
isks. The chemical potential of pure liquid A (at some specified T and P ) is µ∗

A. At
liquid-vapor equilibrium, that must be equal to the chemical potential of pure
vapor A, so we have (treating vapor A as an ideal gas)

µ∗
A =µ◦

A +RT ln

(
P∗

A

P◦

)
(7.100)

where µ◦
A is the chemical potential of vapor A at the standard pressure, and P∗

A is
the vapor pressure of pure A.

Now if we have a solution, with some B mixed in with the A, the chemical
potential of A in the liquid changes, and its vapor pressure also changes (since at
equilibrium the chemical potentials of A in the two phases must be the same.)
We write

µA =µ◦
A +RT ln

(
PA

P◦

)
(7.101)

Eliminating µ◦
A between those two equations gives

µA =µ∗
A +RT ln

(
PA

P∗
A

)
(7.102)

Now if you make a mixture of benzene and toluene, and measure the vapor
pressure above the liquid, you do not get a value that is the sum of the vapor
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pressures of the two pure substances. You would not expect to, since that would
mean that if you put a very tiny amount of toluene into a benzene sample its
vapor pressure would nearly double! Instead, you would expect that the vapor
pressure above a nearly-pure benzene sample would be nearly that of benzene,
and the vapor pressure above a nearly-pure toluene sample would be nearly that
of toluene. In fact that is the case, and Raoult’s Law is the statement that for ideal
solutions, the vapor pressure above a mixed solution will vary linearly with the
composition of the solution. More specifically,

PA = xAP∗
A , (7.103)

where xA is the mole fraction of A in the solution. Even for solutions that are not
ideal, this expression gives a limiting behavior for the majority component as the
solution becomes very dilute. That is, adding a small amount of solute to any
solvent will change the vapor pressure of the solvent according to Eq. (7.103).

Substituting Eq. (7.103) into Eq. (7.102) gives

µA =µ∗
A +RT ln xA. (7.104)

We will use this equation shortly to define activity coefficients for nonideal solu-
tions.

Henry’s Law

Raoult’s Law gives the vapor pressure behavior for the solvent (the majority com-
ponent) in the limit of high dilutions for real solutions. There is a corresponding
limiting law for the solute (the minority component): the vapor pressure of the
solute above the solution is still proportional to the mole fraction of solute, but
the proportionality constant is not simply the vapor pressure of the pure solute.
Instead, we write

PB = xBKB, (7.105)

where KB is called the “Henry’s Law constant” for the solute. The Henry’s Law
constant has units of pressure (it is sometimes defined in terms of the molality
instead of the mole fraction, in which case it has units ofbar mol kg−1). It depends
on the solvent and on the temperature, but only very weakly on pressure.

Henry’s Law plays an important role in environmental chemistry, since it
determines the partitioning of surface water contaminants between aqueous
and gas phases. Henry’s Law constants for many substances in water, and for
fewer substances in other solvents, are available in tables; the NIST WebBook has
Henry’s Law constants in water for many compounds.
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Figure 7.2 shows how Raoult’s and Henry’s Laws apply to a real solution in
several cases. Raoult’s Law works for the majority component and Henry’s Law
for the minority component at either extreme of solution composition, while
neither works particularly well in between.

Figure 7.2: Vapor pressure behavior of real solutions. From Lewis and Randall,
Thermodynamics, 2nd edition; original data from J. von Zawidzki, Z. Phys. Chem
35, 129 (1900).
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7.8.4 Activity conventions for solvents and solutes

Solvent activities

Eq. (7.102) was

µA =µ∗
A +RT ln

(
PA

P∗
A

)
If the solution is ideal, then Raoult’s Law holds, PA = xAP∗

A , and we have

µA =µ∗
A +RT ln xA. (7.106)

But even if the solution is not ideal, we can write instead

µA =µ∗
A +RT ln aA, (7.107)

with

aA = PA

P∗
A

, (7.108)

and everything still works. Now you can see that the activity aA is a sort of
“effective mole fraction”; if the solution is ideal, it is exactly the mole fraction, but if
it is not, the activity is different from the mole fraction but can still be determined
by measuring the partial pressure of A above the solution. To emphasize the
limiting mole-fraction behavior, we can write

aA = γAxA, (7.109)

where γA is an activity coefficient.

Example In an acetone-chloroform solution with the liquid mole fraction of
acetone was 0.2003, the mole fraction of acetone in the vapor was 0.1434 and the
total vapor pressure above the solution was 262 torr. At the same temperature, the
vapor pressure of pure acetone is 344.5 torr. Let us evaluate the activity coefficient
of acetone in the solution.

Leaving out subscripts, we have a = P/P∗, and a = γx. The partial vapor
pressure P of acetone is the total vapor pressure times the mole fraction of
acetone in the vapor. Combining all those gives

γ= xvaporPtot

xliquidP∗ (7.110)

= (.1434)(262)

(.2003)(344.5)
(7.111)

= 0.544 (7.112)
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The activity coefficient is less than one; the acetone is less likely to leave the
solution and appear in the vapor than it would be in pure acetone. The attractive
interactions between acetone and chloroform produce “negative deviations”
from Raoult’s Law.

Activities calculated in the way I just showed are called Raoult’s Law activities,
or “solvent activities”. Solvents are always treated this way, and in mixtures of
liquids with relatively large mole fractions of both components this treatment
might be used for both. This mole-fraction convention is always used for pure
materials as well; this is the reason that in ordinary equilibrium constant expres-
sions, we can leave out terms for the solvent or for any pure materials (like the
solid at the bottom of a saturated solution in a solubility equilibrium problem).

In this convention, all the components of the solution are treated on an equal
footing. Usually, though, there is a clear “solvent” and one or more “solutes” with
much lower mole fractions. Next let us examine the usual convention for that
case.

Solute activities

The difficulty with the Raoult’s Law convention for activities when solutes are
considered is that the activity coefficients approach 1 as the mole fraction ap-
proaches 1, and that is very far from typical conditions for solutes. Were we to
use that convention for solutes, we would be dealing with activity coefficients far
from 1 most of the time, which would be painful. Instead, we model our activity
coefficients on the ideally-dilute solution, which shows Henry’s Law behavior,
and write

aB = PB

KB
(7.113)

Note that we use the Henry’s Law constant this time, in place of the vapor pressure
of the pure liquid. Once again we determine activity coefficients with vapor
pressure measurements. The vapor pressure behavior of a solute obeys Henry’s
Law in the limit of small mole fraction, so activity coefficients in this convention
will approach 1 as the solute become more dilute. This definition for the activity
is called (big surprise) the Henry’s Law convention.
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7.8.5 Molality scale activities

In fact, in tables of thermodynamic functions, solution activities are usually
given in terms of the molality (moles solute/kg solvent) scale rather than the
mole fraction scale. This change makes a difference in the absolute values of
the tabulated numbers but does not change the value of any ∆G or ∆H that you
would calculate. We write

µB =µ◦
B +RT ln

b

b◦ , (7.114)

where b indicates the molality of the solution, b◦ is the “standard molality” (one
mol/kg), and µ◦

B is the chemical potential of B in the “molality-scale standard
state”, which is a hypothetical state in which the concentration of B is 1 molal but
it behaves as though it was at very high dilution.

7.8.6 Molar concentration scale activities

Similarly, some thermodynamic tables define their functions in terms of the
molar concentration of a solute instead of the molality or mole fraction. In those,
the standard state is a (hypothetical) state in which the solute is at a concentration
of 1m but is behaving as though the solution was ideally dilute.

At high dilution, all three conventions for solute activities give the same
numerical values for activity coefficients. As the concentration increases, the dif-
ferent definitions for activity coefficients diverge. You just have to look carefully
to see which standard state your thermodynamic table uses! Then any equilib-
rium constant you calculate from the ∆rG◦ will be defined in terms of activities
based on that scale.

7.8.7 Practical activity calculations

How do you actually use all this information about activities? We saw that in the
real-gas case there was an equation that would give us the fugacities directly for
real gases, and in some gas mixtures that’s good enough for practical work.

For binary solutions where both components are present in substantial quan-
tity, we saw earlier how to calculate activity coefficients based on vapor pressure
data.

When one component is definitely the minor one (the “solute”), if that com-
ponent is volatile it’s still possible to get activities from vapor pressure measure-
ments, from Eq. (7.113).

If, as is often the case, a nonelectrolyte solvent does not have enough vapor
pressure to be measured, you can get its activity coefficients by measuring the
vapor pressure of the solvent as a function of solute concentration, and using the
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Gibbs-Duhem equation. The application to nonvolatile solutes is described in
Levine, Physical Chemistry 6th edition, §10.3.).

For electrolytes, there is a relatively simple and successful formula (the Debye-
Hückel limiting law) that can let you estimate activity coefficients for solvated
ions directly at very low concentrations. For higher concentrations there are
some empirical fitting laws, and tabulated data are extensive. Activity coefficients
for electrolytes are often far from 1 even at relatively modest concentrations, and
it’s more important to include them for ionic reactions than for other solution
reactions.

In each case, the practical application is similar to that I described in the
real-gas case: you calculate an equilibrium constant from your thermodynamic
data, you estimate final concentrations/molalities/ mole fractions assuming all
the activity coefficients are 1, you then estimate (by the methods described above)
a set of activity coefficients and “adjust” the equilibrium constant to account for
them, then calculate a new set of final concentrations and go around until you
converge.

7.8.8 Fractional distillation

Let’s look at the distillation process for an ideal liquid-liquid solution. I want Levine §9.4
to introduce a “temperature-composition phase diagram” to help describe the
qualitative behavior.

Consider an ideal binary solution at fixed total pressure; use the example of
1-propanol and 2-propanol. One component has a lower boiling point than the
other. If the temperature of the mixture is lower than the lower boiling point, the
system will be all liquid. If the temperature is higher than the higher boiling point,
the system will be all vapor. At temperatures between those two, both liquid and
vapor can exist.

Figure 7.3 shows the temperature-composition phase diagram. The region
below the lower curve (the “boiling point curve”) is the all-liquid region. In
between the two curves we can have both liquid and vapor. A horizontal (fixed-T )
line connecting points on the lower and upper curves is called a tie line. The
intersection of the tie line with the two curves gives the compositions of the liquid
and vapor phases in equilibrium at that T .

It is important to realize that the x-axis on this diagram is the total or bulk
or average mole fraction of the whole system, liquid and vapor together. This is
different from the mole fraction x-axis we used in the discussion of Raoult’s Law,
which was the mole fraction in the liquid. In the region where the system is all
liquid, of course the average mole fraction is that of the liquid; in regions where
the system is all vapor, the average mole fraction is that in the vapor. In regions
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where both liquid and vapor are present, the average mole fraction of the system
will not equal either the liquid or vapor mole fractions.

Figure 7.3: Temperature-composition phase diagram for an ideal binary solution.

It is not difficult to calculate the two curves point-by-point. The general
formulas, derived easily from Raoult’s Law, are

x l
B = Ptot −P∗

A (T )

P∗
B (T )−P∗

A (T )
(7.115)

xv
B = P∗

B (T )

Ptot

Ptot −P∗
A (T )

P∗
B (T )−P∗

A (T )
(7.116)

Think about what happens when you distill a solution starting with the com-
position at point A in the diagram (about one-fourth mole fraction B). We heat
the solution until we reach the boiling point of the mixture at point A. Then the
liquid starts to boil. The vapor that first comes off has the composition at the
other end of the tie line that begins at A, that is, it has the composition at point B ,
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which looks to be between two-thirds and three-quarters B. If we then condense
some of that vapor, we get a solution at point C . Now if we boil that stuff and take
off the first vapor that appears, we get the composition at point D , and so on.

If your two components have very similar boiling points, the two-phase region
in the diagram will be very narrow, and it will take many successive evaporations
and condensations to get to nearly pure B. On the other hand, if the two boiling
points are very different, it may take only one or two stages to do the job. In that
case, a rotovap or a simple Vigreux column may suffice.
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7.8.9 Phase rule

There is a formula called the “phase rule” that tells you how many things you
can adjust in a system at equilibrium without disturbing the number of different
phases present. The rule was first given by Gibbs, and is based on the idea that
the chemical potential of each component must be the same in each phase.
Your text will describe Gibbs’s variable-counting derivation, which is not hard to
understand.

The quantities related by the phase rule are (Atkins uses capital letters, Levine
lowercase ones)

• F , the number of “degrees of freedom”, that is, the number of intensive
quantities (usually T , P , or mole fractions) that you can adjust, at least over
small ranges, without changing the number of phases in equilibrium;

• P , the number of different phases;

• C , the number of different chemical components in the system (not in each
phase; water, for example, will count as one component even if it is present
in the gas phase and two different liquid phases.) C represents only the
chemical components that are independent of one another and could be
adjusted separately. A solution of a salt in water has C = 2 even though the
salt dissociates in solution, because the numbers of anions and cations are
constrained by the requirement that the total charge be zero.

The phase rule in the absence of chemical reactions says

F =C −P +2. (7.117)

One component, one phase In, say, the “liquid” region of a P–T phase diagram
for a pure substance, we have only one phase (P = 1) and one component
(C = 1) so we have F = 2. We can adjust the temperature and pressure
independently as we like over the entire liquid region.

One component, two phases On the liquid-gas equilibrium line in a pure-substance
P–T phase diagram, we still have C = 1 but now P = 2 since both liquid and
gas phases are present. We obtain F = 1. We get to choose the pressure, for
example, but once the pressure is chosen we have no ability to change T if
we want to keep two phases present.

One component, three phases If we want three phases to be present, we have
no degrees of freedom left. Only one T and one P will permit three phases
to be present for a pure substance. Those values of T and P define the
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triple point. There cannot be a “quadruple point” for a pure substance;
there is no set of conditions that will permit gas, liquid, and two different
solid phases to be present at once.

Two components, one phase In the all-liquid or all-vapor regions of a two-component
temperature-composition phase diagram like those we have been using to
study distillation, we have P = 1, C = 2, so F = 3. We can adjust the temper-
ature and pressure of the mixture and the mole fraction of one component
as we like. (The other component’s mole fraction is not independently
adjustable since the two mole fractions must sum to 1; that constraint is
built into the phase rule.)

Two components, two phases In the two-phase region of a two-component phase
diagram, we obtain F = 2. We can still adjust T and P if we wish, but we find
that we have no control over the mole fractions in each phase. For a given
P and T , the mole fractions in the liquid and the vapor are fixed; changing
the overall mole fraction of one component will only affect how much of
each phase is present, not the composition of each phase. Similarly, in a
two-phase system that represents a solid in equilibrium with a saturated
solution, adjusting T and P will change the concentration of the saturated
solution. The amount of solid in the system will therefore shift but once T
and P are chosen the solution concentration (or mole fraction solute in the
solution) cannot be varied independently.

When chemical reactions can occur, the value of C must be reduced by the
number of independent chemical reactions (reactions that cannot be written as
sums of one another) as well as by stoichiometric constraints like the relations
between cation and anion concentrations when a salt dissolves.
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Chapter 8

Statistical mechanics

Statistical mechanics, the last major field of physical chemistry, is the one that
connects the molecular properties of the quantum world with the thermody-
namic properties of the macroscopic world. Its task is to permit the calculation
of macroscopic properties (pressure, equilibrium constants, boiling points, and
so on) from the properties of the molecules themselves. It began with Maxwell
and Boltzmann and the kinetic theory of gases, and took great strides with the
work of Gibbs and Einstein. There is a large and busy research community now
applying it to liquid and solid systems and especially to biological problems.

Statistical mechanics has two principal postulates:

1. We can calculate the time-averaged value of any macroscopic property of
a single system by instead imagining very many similar systems (“similar”
meaning with a sufficient set of macroscopic properties defined: for ex-
ample, volume, temperature, and composition), and averaging over that
collection of imagined systems. Such an average is called an average over
the ensemble.

2. For a macroscopic system of specified volume, temperature, and composi-
tion, all quantum states of equal energy have equal probability of occuring.

With those two postulates you can get remarkably far. The quantity of central
importance in statistical mechanics is the partition function:

Q =∑
j

e−E j /kB T , (8.1)

where the sum is over all quantum states (not energy levels; each state of a
degenerate group is treated separately) of the macroscopic system, and E j is the
total energy of each state.
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If the partition function is known (a nearly impossible condition in the general
case), then all the thermodynamic properties of the system are calculable. For
example:

U = kB T 2
(
∂(lnQ)

∂T

)
V ,Ni

(8.2)

S = kB T

(
∂(lnQ)

∂T

)
V ,Ni

+kB lnQ (8.3)

A =−kB T lnQ (8.4)

The actual calculation of partition functions for macroscopic systems of
interacting particles (for example, liquids) is very difficult, because the number
of possible quantum states of a system of many molecules is enormous. Practical
calculations require approximations. Some very clever approaches are known,
but let’s move to noninteracting systems (ideal gases!) where concrete results are
easier to come by.

8.1 Molecular partition functions

If we have a collection of identical, noninteracting molecules, then the overall
partition function becomes

Q = q N

N !
, (8.5)

where N is the number of molecules and q is the molecular partition function:

q =∑
r

e
− εr

kB T , (8.6)

where r labels the individual quantum states of a single molecule, and εr is the
energy of each level. The molecular partition function can be rewritten in terms
of energy levels, as opposed to individual quantum states, giving

q =∑
j

g j e
− ε j

kB T , (8.7)

where g j is the degeneracy of level j with energy ε j .

8.2 The Boltzmann distribution

One of the most fundamental results of molecular statistical mechanics is the
Boltzmann distribution law. The probability of finding a molecule in energy level
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i is given by

Pi = gi e
− εi

kB T

q
(8.8)

For example, the fraction of molecules in a sample of CO at 300 K in the
rotational level J is

P J = (2J +1)e
− B J (J+1)

kB T

∞∑
J=0

(2J +1)e
− B J (J+1)

kB T

(8.9)

With B = 1.9225 cm−1, at 300 K we get q = 106.9 and P (10) = 0.067. To evaluate
the partition function I carried out the sum up to J = 50, which is plenty high to
converge the sum to three decimal places.

8.3 Equilibrium constants for gas reactions

The Boltzmann distribution extends in an interesting way even to chemical
reactions. You can think of a reacting system as distributing its molecules among
different states that actually have different chemical compositions. For example,
in a sample of bromine gas at 500 K, some of the bromine molecules will be
dissociated. The dissociated molecule has a higher energy (because energy had
to be put in to break the bond) but also a higher degeneracy (because there are
many more ways to have two atoms moving inside a container than to have a
single molecule moving around; with the molecule, many possible motions that
have the atoms far apart or moving in wildly different directions are impossible).
Extension of the idea of the Boltzmann distribution to reacting ideal gases gives
us a formula for the equilibrium constant of the reaction aA+bB −)−−*− cC+dD in
terms of the molecular partition functions:

Kc (T ) = (qC /V )c (qD /V )d

(qA/V )a(qB /V )b
(8.10)

To use this expression you must include all the relevant degrees of freedom
(translational, rotational, vibrational, and electronic) in your molecular partition
functions. Atoms in their ground states have only translational energies, though
they usually have electronic degeneracies (2 for doublet states, 3 for triplet states,
and so on.) Molecules, on the other hand, have all these sorts of energies, and
it is also necessary to include the bond energies in the partition function. Over
the next few days we will see how to compute the different factors in the molec-
ular partition function for diatomic molecules, drawing on our earlier study of
molecular quantum mechanics.
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8.3.1 Rotational partition function for a heteronuclear diatomic

In the rigid rotor approximation, the energy levels of a rotor are given by E J =
B J (J +1), where B is the rotational constant (traditionally specified in cm−1) and
J is the rotational quantum number. The rotational level with quantum number
J represents 2J +1 degenerate states corresponding to different values of m J . It is
straightforward to insert that formula into the general expression for the partition
function, giving

qR =
∞∑

J=0
(2J +1)exp

−B J (J +1)

kBT
. (8.11)

For most molecules at ordinary temperatures, that sum can be carried out directly
(with a computer); by the time J reaches 100 or so, the terms become very small
so the sum can be truncated without substantial loss of accuracy.

For most diatomics not including H atoms, a shortcut is available. The sum
cannot be evaluated analytically. But, if the spacing between energy levels is small
compared to kBT , it is a good approximation to replace the sum by an integral,
treating J as a continuous variable:

∞∑
J=0

(2J +1)exp
−B J (J +1)

kBT
≈

∫ ∞

0
(2J +1)exp

−B J (J +1)

kBT
dJ . (8.12)

It may seem surprising that turning a sum into an integral makes a problem easier,
but in this case it does: the derivative of J (J +1) is (2J +1)dJ , so that integral can
be done analytically. The result is

qR ≈ kBT

B
. (8.13)

Note that kBT and B must have the same units; if you have the usual B expressed
in cm−1, then the “Boltzmann constant in wavenumbers” kB/hc = 0.695cm−1/K
can be used directly.

This “high temperature” approximation is good for non-hydride diatomics at
room temperature and above. You test it for CO in your homework. For hydrides,
and especially for H2 (with B = 60cm−1), it’s not very good.

Homonuclear diatomics When a molecule contains two identical atoms, the
partition function becomes a little more complicated. Because two orientations
of the molecule look the same, the simple formula for the partition function
produces a “double counting” of states, and it is necessary to divide qR by a
“symmetry number” σ. σ= 2 for homonuclear diatomics, and can have higher
values for polyatomics.
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8.3.2 Vibrational partition function for diatomics

If we treat the stretching of a diatomic molecule with the harmonic oscillator
approximation, we have the simple formula Ev = (v +½)ħω for the energy lev-
els. The energy levels are nondegenerate. The vibrational partition function is
therefore

qV =
∞∑

v=0
exp

[−(v +½)ħω
kBT

]
. (8.14)

That sum can be done analytically. We factor out the ½ piece and rewrite the
remainder as a geometric series:

qV = exp

[−(½)ħω
kBT

] ∞∑
v=0

(
exp

[−ħω
kBT

])v

(8.15)

The exponential inside the sum is always < 1, so the sum converges and can be
evaluated with the geometric series formula

∑∞
i=0 r i = 1

1−r , yielding

qV = e−ħω/2kBT

1−e−ħω/kBT
(8.16)

For diatomic molecules, you usually have information about the energy levels
through the quantity ħω/hc, called either ν̃0 or ωe depending on the source. It
has units of cm−1, so you need kB in cm−1 as well.

For diatomics with light atoms and stiff bonds (HCl, N2, etc) ħω/hc is on
the order of 1500–3000 cm−1, while kBT at room temperature is about 200 cm−1.
The excited vibrational levels will have almost no thermal population and qV

will be very close to 1. At elevated temperature or for heavier diatomics with
weaker bonds (I2, for example), several vibrational levels may be populated and
the vibrational partition function may become larger. It also can be quite a bit
larger than 1 for polyatomic molecules with many vibrational degrees of freedom.

8.3.3 Translational partition function

How are we to perform a sum over levels for translational motion, since those are
not quantized for a free particle? And why would it matter?

It matters because in chemical reactions the total number of particles may
change, and there are a lot more ways to arrange two particles moving in a
container than only one. So the number of particles has an important effect on the
overall probability of a state. To evaluate the translational partition function, we
do something simple. We say the particle is contained in some sort of container
(a flask or a room) and use the ordinary particle-in-a-box energy levels. Because
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the box is large, the energy levels will be very close together and we expect that
many of them will be populated.

For motion in just one dimension, if we assume a box length L, we have

En = n2h2

8mL2 , (8.17)

where n is the PIB quantum number (starting at 1) and m is the particle mass.
The partition function is then

qT,1d =
∞∑

n=1
exp

[ −n2h2

8mL2kBT

]
. (8.18)

There’s no hope of evaluating this sum directly: it has too many nonnegligible
terms, because L is so large and h is so small. For example, if we assume an H
atom in a 1-m box, the billionth term (n = 109) has the value exp(−3.3×10−23) ∼ 1;
that is, the sum is nowhere near converging. We therefore must look for some
better way.

In this case, the same trick used for the high-temperature approximation to
the rotational partition function works. We can turn the sum into an integral, and
the approximation is excellent because the energy levels are very closely spaced
compared to kBT . Collecting the constants into α= h2

8mL2 , we obtain

qT,1d ≈
∫ ∞

n=0
exp

[−αn2

kBT

]
dn. (8.19)

That’s an ordinary Gaussian integral. You knew how to do it six months ago. You

might have forgotten:
∫ ∞

0 e−ax2
dx = 1

2

√
π
a . So we get

qT,1d = 1

2

√
πkBT

α
(8.20)

Substituting back in for α we find

qT,1d = (2πmkBT )½L/h. (8.21)

Sometimes that result is written in terms of the thermal de Broglie wavelength
Λ = h/

√
2πmkBT . The 1D translational partition function is then just qT,1d =

L/Λ.
Handling three dimensions is trivial; motions in the three directions are

independent so the 3D partition function is just the cube of the 1D. Therefore
(noticing L3 =V , the volume)

qT = L3

Λ3 = (2πmkBT )3/2 V

h3 . (8.22)
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8.3.4 Equilibrium constant for diatomic dissociation

Eq. (8.10) gave the “concentration-scale equilibrium constant” Kc . We convert
that to the ordinary KP with the usual ideal gas law expression Kp = (kBT )∆ng Kc

where ∆ng is the change in the number of moles of gas in the reaction. The
equilibrium constant for the reaction X2 −)*− 2X then becomes

KP = kBT
(qNa/V )2

qNa2 /V
(8.23)

We now have all the pieces assembled for computation of the equilibrium
constant for a gas-phase reaction among diatomics. There is one last problem:
we need to measure the energies in our formulas for reactants and products from
the same origin. In the case of a diatomic dissociating to two atoms, that’s fairly
easy to handle: the difference between the “zero point” for the diatomic and the
zero point for the atoms is just the dissociation energy εD of the diatomic. We
should just add that amount of energy to all the atomic (product) energies. A
constant added to all the energies factors out of the partition-function sum to
give a term like e−εD /kBT . So we end up with

KP = kBT
(qNa/V )2

qNa2 /V
e−εD /kBT (8.24)

That equation can be used directly. For qNa you need only translational and
electronic molecular partition functions. For qNa2 you need all four: qT , qR , qV ,
and qel.

There remains one more annoying detail. Values for εD come in two flavors:
D0, the energy difference between v = 0 of the diatomic and the separate atoms,
and De , the difference between the bottom of the diatomic potential well and the
separated atoms. They are different by 1

2ħω, the zero point energy of the diatomic.
If you have De , then you use Eq. (8.16) for qV . If you have D0, which leaves out
the zero-point energy, then you also need a qV that leaves out the zero-point
energy. That energy is what produces the e−ħω/2kBt numerator in Eq. (8.16), so
the modified qV is

q ′
V = 1

1−e−ħω/kBT
(8.25)

And that’s it!

[two fists raised in triumph]
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