McNair photo

James N. McNair, Ph.D.

Associate Professor

Annis Water Resources Institute
Grand Valley State University
740 West Shoreline Drive Muskegon, MI 49441

Office: 133 Lake Michigan Center
Phone: 616-331-3987
Fax: 616-331-3864
E-mail: mcnairja@gvsu.edu


General Information


Research Areas


Teaching


Research Interests and Approach

My three main research interests at the present time are methods of estimating components of stream metabolism based on free-water dissolved-oxygen (DO) dynamics, evolutionary ecology of invasive aquatic and terrestrial plants, and turbulent transport of suspended particles (e.g., fine particulate organic matter, microorganisms, and invertebrate larvae) in streams.

Exchange of carbon between the biosphere and atmosphere is dominated by rates of photosynthetic CO2 uptake and respiratory CO2 release by aquatic and terrestrial ecosystems worldwide. Obtaining accurate estimates of these rates is therefore important. In streams and lakes, the most common estimation method is based on a model of DO dynamics and a corresponding time series of DO concentrations measured in the water colum. O2 production and consumption are inferred from changes in DO concentration, then converted to estimates of carbon uptake and release using photosynthetic and respiratory quotients. The traditional method of this type (first used systematically by H. T. Odum in 1956) uses a simple accounting procedure to estimate daily gross primary production (GPP), total respiration (R), and net production (NP). However, it assumes that the time series of measured DO concentrations contains no error, and its estimates of R and GPP hinge on a subjectively assumed value for daytime respiration. In 1975, Hornberger and Kelly published a prediction-based statistical method that resolves these problems. I have developed several alternative extensions of the prediction-based method for estimating GPP, R, and NP in streams. These methods allow one to estimate daytime and nighttime respiration rates independently, acknowledge statistical error in the measured time series, and facilitate assessment of model adequacy. Together with my graduate students and summer interns, I am applying these new methods to high-frequency time-series data acquired with multisensor sondes in streams of West Michigan.

My work on the evolutionary ecology of invasive aquatic and terrestrial plants involves collaborative efforts with Dr. Ryan Thum of Montana State University (Eurasian watermilfoil and hybrids) and Dr. Charlyn Partridge of AWRI (baby's breath). We are exploring both purely ecological models and eco-evolutionary models that include evolution of quantitative and categorical traits in finite populations coupled by migration. The watermilfoil research is focused to a large extent on the role of hybridization in both the evolution of invasiveness and the evolution of herbicide resistance. The baby's breath research currently is focused on genetic evidence regarding population structure and spatial spread, characterizing the phenology of seed maturation, and assessing the efficacy of commonly-used management techniques such as manual removal and foliar application of herbicide (glyphosate).

My work on turbulent transport of suspended particles centers on a stochastic diffusion model called the Local Exchange Model, which I developed to describe the random-like dynamics of individual particles suspended in a turbulent fluid. The model can be applied to the transport of molecules, seston, microorganisms, and invertebrates in aquatic systems characterized by turbulent flowing water (e.g., streams, estuaries, and marine systems), and to a variety of other turbulent transport problems, as well.

A complete theory of particle transport in turbulent aquatic systems can be decomposed into at least four problems: (1) The entrainment problem how does a particle on the bottom (or other solid surface) become entrained into the water column? (2) The travel-time problem how long does a suspended particle take to hit the bottom for the first time, following release from a given initial elevation? (3) The travel-distance problem how far does a suspended particle travel before hitting the bottom for the first time, following release from a given initial elevation? And (4) the settlement problem what determines whether a particle settles on the bottom when it hits, rather than bouncing off and immediately returning to the water column? Thus far, I have derived equations governing the probability distribution and moments of the hitting time, hitting distance, settling time, and settling distance (the hitting time and distance are the travel time and distance at which a suspended particle hits the bottom for the first time; the settling time and distance are the travel time and distance at which a suspended particle settles for the first time). I have applied these theoretical results to empirical settling-distance distributions for 14C-labeled natural FPOM in streams, and I am currently applying them to data for additional types and sizes of particles in streams and flumes.


Selected Publications

Taylor, L. L., McNair, J. N., Guastello, P., Pashnick, J., and Thum, R. A. 2017. Heritable variation for vegetative growth rate in ten distinct genotypes of hybrid watermilfoil. Journal of Aquatic Plant Management 55: 51-57.

Thum, R. A., Parks, S. R., McNair, J. N., Tyning, P., Hausler, P., Chadderton, L., Tucker, A., and Monfils, A. 2017. Survival and vegetative regrowth of Eurasian and hybrid watermilfoil following operational treatment with auxinic herbicides in Gun Lake, Michigan, USA. Journal of Aquatic Plant Management 55: 103-107.

Parks, S. R., McNair, J. N., Hausler, P., Tyning, P., and Thum, R. A. 2016. Divergent responses of cryptic invasive watermilfoil to treatment with auxinic herbicides in a large Michigan lake. Lake and Reservoir Management 32: 366-372.

McNair, J. N., Sesselmann, M. R., Gereaux, L. C., Weinke, A. D., Kendall, S. T., and Biddanda, B. A. 2015. Alternative methods for estimating components of lake metabolism using process-based models of dissolved-oxygen dynamics. Fundamental and Applied Limnology 186: 21-44.

Ruetz, C. R. III, Harris, B. S., McNair, J. N., and Homola, J. J. 2014. Removal and mark-recapture methods for estimating abundance: empirical and simulation results for Mottled Sculpin in streams. North American Journal of Fisheries Management 35: 62-74.

McNair, J. N., Gereaux, L. C., Weinke, A. D., Sesselmann, M. R., Kendall, S. T., and Biddanda, B. A. 2013. New methods for estimating components of lake metabolism based on free-water dissolved-oxygen dynamics. Ecological Modelling 263: 251-263.

Sisson, A.J., Wampler, P.J., Rediske, R.R., McNair, J.N., and Frobish, D. 2013. Long-term field performance of the Biosand Filter in the Artibonite Valley, Haiti. American Journal of Tropical Medicine and Hygiene 88: 862-867.

Homola, J.J., Scribner, K.T., Elliott, R.F., Donofrio, M.C., Kanefsky, J., Smith, K.M., and McNair, J.N. 2012. Genetically-derived estimates of contemporary natural straying rates and historical gene flow among Lake Michigan lake sturgeon populations. Transactions of the American Fisheries Society 141: 1374-1388.

McNair, J.N., and Newbold, J.D. 2012. Turbulent particle transport in streams: Can exponential settling be reconciled with fluid mechanics? Journal of Theoretical Biology 300: 62-80.

McNair, J.N., Sunkara, A., and Frobish, D. 2012. How to analyze seed germination data using statistical time-to-event analysis: nonparametric and semiparametric methods. Seed Science Research 22: 77-95.

McNair, J.N. 2009. Two new methods for predicting effects of landcover-related stressors on stream biotic integrity at the catchment scale. Proceedings of the Academy of Natural Sciences of Philadelphia 158: 61-88.

Sieg, A.E., O'Connor, M.P., McNair, J.N., Grant, B.W., Agosta, S.J., and Dunham, A.E. 2009. Mammalian metabolic allometry: do intraspecific variation, phylogeny, and regression models matter? American Naturalist 174: 720-733.

Araujo, A. and McNair, J.N. 2007. Individual- and population-level effects of antimicrobials on the rotifers, Brachionus calyciflorus and B. plicatilis. Hydrobiologia 593: 185-199.

Johnson, T.E., McNair, J.N., Srivastava, P., and Hart, D.D. 2007. Stream ecosystem responses to spatially variable landcover: a model for developing riparian restoration strategies. Freshwater Biology 52: 680-695.

O'Connor, M.P., Agosta, S.J., Hansen , F., Kemp, S.J., Sieg, A.E., McNair, J.N. and Dunham, A.E. 2007. Phylogeny, regression, and the allometry of physiological traits. American Naturalist 170: 431-442.

O'Connor, M.P., Agosta, S.J., Hansen , F., Kemp, S.J., Sieg, A.E., Wallace, B.P., McNair, J.N. and Dunham, A.E. 2007. Size, selection, and physiology: Reconsidering the mechanistic basis of the metabolic theory of ecology. Oikos 116: 1058-1072.

McNair, J.N. 2006. Probabilistic settling in the Local Exchange Model of turbulent particle transport. Journal of Theoretical Biology 241: 420-437.

Srivastava, P., McNair, J.N., and Johnson, T.E. 2006. Comparison of process-based and artificial neural network approaches for streamflow modeling in an agricultural watershed. Journal of the American Water Resources Association 42: 545-563.

Fingerut, J.T., Hart, D.D. and McNair, J.N. 2006. Silk use enhances benthic invertebrate settlement. Oecologia 150: 202-212.

Bram, M.R. and McNair, J.N. 2004. Seed germinability and its seasonal onset in three populations of Japanese knotweed. Weed Science 52: 759-767.

McNair, J.N., and Newbold, J.D. 2001. Turbulent transport of suspended particles and dispersing benthic organisms: the hitting-distance problem for the Local Exchange Model. Journal of Theoretical Biology 209: 351-369.

McNair, J.N. 2000. Turbulent transport of suspended particles and dispersing benthic organisms: the hitting-time distribution for the Local Exchange Model. Journal of Theoretical Biology 202: 231-246.

Goulden, C.E., Moeller, R.E., McNair, J.N., and Place, A.R. 1999. Lipid dietary dependencies in zooplankton. Pages 91-108 in: Arts, M.T. and Wainman, B.C. (Eds.) Lipids in Freshwater Ecosystems. New York: Springer-Verlag.

McNair, J.N., Boraas, M.E., and Seale, D.B. 1998. Size-structure dynamics of the rotifer chemostat: a simple physiologically structured model. Hydrobiologia 387/388: 469-476.

Boraas, M.E., Seale, D.B., Boxhorn, J.E., and McNair, J.N. 1998. Rotifer size distribution changes during transient phases in open cultures. Hydrobiologia 387/388: 477-482.

McNair, J.N., Newbold, J.D., and Hart, D.D. 1997. Turbulent transport of suspended particles and dispersing benthic organisms: how long to hit bottom? Journal of Theoretical Biology 188: 29-52.

McNair, J.N. 1995. Ontogenetic patterns of density-dependent mortality: contrasting stability effects in populations with adult dominance. Journal of Theoretical Biology 175: 207-230.

McNair, J.N., Goulden, C.E., and Ziegenfuss, M.C. 1995. Is there a place for ecotoxicology? Setac News 15: 18-21.

McNair, J.N. and Goulden, C.E. 1991. The dynamics of age-structured populations with a gestation period: density-independent growth and egg ratio methods for estimating the birth rate. Theoretical Population Biology 39: 1-29.

McNair, J.N. 1989. Stability effects of a juvenile period in age-structured populations. Journal of Theoretical Biology 137: 397-422.


Page last modified September 10, 2017