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Source–sink dynamics affects population connectivity, spatial genetic struc-

ture and population viability for many species. We introduce a novel

approach that uses individual-based genetic graphs to identify source–sink

areas within a continuously distributed population of black bears (Ursus
americanus) in the northern lower peninsula (NLP) of Michigan, USA. Black

bear harvest samples (n ¼ 569, from 2002, 2006 and 2010) were genotyped at

12 microsatellite loci and locations were compared across years to identify

areas of consistent occupancy over time. We compared graph metrics esti-

mated for a genetic model with metrics from 10 ecological models to

identify ecological factors that were associated with sources and sinks. We

identified 62 source nodes, 16 of which represent important source areas

(net flux . 0.7) and 79 sink nodes. Source strength was significantly correlated

with bear local harvest density (a proxy for bear density) and habitat suit-

ability. Additionally, resampling simulations showed our approach is robust

to potential sampling bias from uneven sample dispersion. Findings

demonstrate black bears in the NLP exhibit asymmetric gene flow, and

individual-based genetic graphs can characterize source–sink dynamics in

continuously distributed species in the absence of discrete habitat patches.

Our findings warrant consideration of undetected source–sink dynamics

and their implications on harvest management of game species.
1. Introduction
When habitat quality varies across heterogeneous landscapes, occupancy and

relative abundance can concomitantly vary [1]. As population densities increase

in higher-quality habitats, intraspecific competition for resources can force

individuals to disperse to lower-density and lower-quality habitats [2]. This

phenomenon is commonly referred to as source–sink dynamics [3]. Source

areas are characterized by higher-quality habitat and a surplus of individuals

that emigrate to other areas. By contrast, sink areas are characterized by lower-

quality habitat, have negative population growth rates and require an influx of

dispersing individuals from source areas to maintain population persistence

[4,5]. Source–sink dynamics fundamentally affect population connectivity

and spatial genetic structure of species, and have evolutionary and ecological

implications that could influence population viability, species persistence and

evolutionary potential [3,6,7]. Furthermore, source–sink dynamics may influence

the evolutionary trajectory of species by disrupting local adaptation to low-

quality (sink) habitats as directional selection is mitigated by an influx of

individuals from high-quality (source) habitats [8–10]. Genetic variation may

be lost as alleles present in the source populations, which have higher mean

fitness across all populations, tend to be fixed [11]. Thus, detecting sources

and sinks is critical for understanding microevolutionary processes that affect

populations, and for managing wildlife and conserving at-risk species.
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Traditionally, source–sink dynamics have been detected

using direct methods including field observations or capture–

mark–recapture studies [12]. An alternative method is to

apply graph theory to estimate asymmetrical connectivity

[13]. Graphs are simple visual representations of real systems

[14] that are composed of nodes (representing biological units

like individuals, populations or habitat patches) that are charac-

terized by attributes like size or quality. Nodes are connected by

edges that represent biological phenomena like dispersal. Edges

can be symmetric, with uniform weighting between nodes.

Alternatively, asymmetric edges are directionally weighted

where, for instance, dispersal from patch i to patch j is greater

than from patch j to patch i, a pattern commonly found in

source–sink dynamics [15].

Combining population genetics and graph theory offers a

compelling framework [7,12,16] for understanding source–

sink dynamics and population connectivity. However, for

species that are continuously rather than patchily distributed,

use of genetic data to estimate gene flow has been hampered

by an inability to delineate populations. Use of individual-

based measures of pairwise genetic relatedness allows for

investigations of fine-scale genetic structure and dispersal

patterns of continuously distributed species without a priori
delineation of populations [17,18]. Pairwise relatedness rep-

resents the degree of shared ancestry, or the probability that

two alleles at a locus, one taken at random from each of

two individuals, are identical by descent [19].

When applied in a graph context, nodes can represent indi-

viduals or populations connected by edges representing shared

ancestry [13,20]. Continuously distributed species commonly

exhibit a pattern of isolation by distance (IBD), where individ-

uals closer in geographical proximity are more genetically

similar [21]. Alternatively, if habitats are highly heterogeneous,

habitat quality can more strongly impact genetic structure than

distance alone [22]. Differential occupancy in heterogeneous

landscapes will ultimately affect patterns of relatedness. For

example, within source areas with high recruitment and little

immigration, average pairwise relatedness will be higher

than in sinks due to accumulation of multi-generational

family groups. By contrast, average pairwise relatedness will

be lower in sink areas, which are characterized by high rates

of immigration of individuals with mixed ancestry [12].

Graph theory also provides metrics that quantify the con-

tributions of individual nodes and edges to overall graph

connectivity. When applied to management questions, such

metrics can provide a novel and powerful means for managers

and conservationists to predict the impact of future policy

decisions or land use changes. For example, wildlife managers

can predict how increasing regional harvest quotas will impact

global population connectivity. A need for landscape genetic

methods that move beyond assessing the influences of land-

scape features on gene flow to predicting the impacts of

management decisions and landscape change has recently

been recognized [23,24].

To characterize source–sink dynamics, which we define

here as asymmetric gene flow, we developed an individual-

based graph approach to investigate source–sink dynamics

in a population of American black bears (Ursus americanus) in

the northern lower peninsula (NLP) of Michigan, USA. Black

bears have home ranges that can overlap depending on

resource availability [25–27] and habitat quality (electronic

supplementary material, figure S1). Bears in the NLP are geo-

graphically isolated as the population is bounded to the
south by a matrix of unsuitable urban and agricultural habitat,

and on all other sides by the Great Lakes; thus the population

experiences little to no emigration and immigration that could

confound results. Our objective was to apply graph theory to a

dataset spanning a 9-year period (2002–2010) to identify

specific regions in the NLP that function as source and sink

areas. In addition, to demonstrate the utility of our approach,

we present a case study using remotely sensed and biological

data to examine the importance of landscape and ecological

features on directional dispersal and show how graphs can

be used to provide insight into the mechanisms underlying

source–sink dynamics.
2. Material and methods
(a) Study area
Michigan’s NLP is a 47 739 km2 (figure 1) fragmented mosaic of

variable land cover and land use types including development, agri-

culture, upland non-forested openings, northern hardwood and

mixed hardwood, oak, aspen, pine, forested wetland, and non-

forested wetland (electronic supplementary material, figure S1)

[25]. Teeth were collected from harvested black bears registered at

hunter check stations during autumn harvest (September–October)

of 2002 (n ¼ 263), 2006 (n ¼ 385) and 2010 (n ¼ 336). Locations of

bear harvest samples were recorded as township, range and sec-

tions, which were then georeferenced to the section (area of a

section ¼ 2.6 km2) centroid and converted into UTM coordinates.

(b) Laboratory analysis
We extracted DNA from bear teeth using Qiagen DNEasy Tissue

Kits following manufacturer protocols (Qiagen Inc., Valencia,

CA). DNA was quantified using a Nanodrop spectrophotometer

(Thermo Scientific, Waltham, MA) and diluted to a 20 ng ml21

working concentration. We amplified 12 microsatellite loci using

polymerase chain reaction (PCR), including G10X, G10L, G10D,

G10M, G10B [28], UarMU50 and UarMU59 [29], UT29, UT35,

UT38 [30], ABB1 and ABB4 [31], using methods described by

Moore et al. [32]. In total, 10% of samples were randomly selected

and genotyped twice to provide a genotyping error rate of less than

2%. Using MICRO-CHECKER [33] and GENAlEX v. 6.0, [34], no loci

were found to deviate significantly from Hardy–Weinberg and

linkage equilibrium, so all 12 were retained for further analyses

(electronic supplementary material, table S1).

(c) Defining the nodes
Graphs are composed of nodes connected by edges, and both can

be assigned weights. When applied in a landscape context, nodes

are traditionally defined as the spatial centroid of a patch or popu-

lation, and are generally weighted by attributes representing

measures of quality (e.g. patch size or habitat suitability) [13]. As

it is not feasible to assign node weights representing local land-

scape or ecological characteristics to a location representing a

single individual, we defined nodes as areas that were consistently

occupied in both space and time. Our sample includes individuals

collected from 2002, 2006 and 2010, representing three generations

in this population (average age of reproductive females ¼ 3 [35]).

We used the harvest locations from each year to generate polygon

layers using Voronoi tessellations. Briefly, Voronoi tessellations

are polygons created around each point such that the borders of

each polygon are equidistant from their two nearest points.

Annual polygon layers were then overlaid and areas of consistent

occupancy were identified where polygons from 2002, 2006 and

2010 overlapped and contained at least one bear from each of

those years. We used STAMP (spatial-temporal analysis of

http://rspb.royalsocietypublishing.org/


(a)

node location

N

0 15 30 60 90 120
km

(b)

individual sample locations

N

0 15 30 60 90 120
km

Figure 1. Study area in the northern lower peninsula (NLP) of Michigan showing (a) node locations (n ¼ 141) and (b) sample locations of black bear harvest
samples collected during 2002, 2006 and 2010 (n ¼ 569).
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moving polygons [36]) in ARCGIS v. 10.0 to identify overlap areas.

Nodes were thus defined as areas of consistent polygon overlap

(i.e. occupancy) across the three time points (electronic supplemen-

tary material, figure S2). Node locations were defined as the

centroids of overlapping polygons that contained at least one

bear from 2002, 2006 and 2010.
(d) Graph construction
We generated a genetic graph and a set of ecological graphs to

explore genetic, habitat and demographic connectivity of the

NLP black bear population:

(1) Genetic modelling. We calculated pairwise relatedness among

individuals using a maximum-likelihood estimator of related-

ness (K [37]), in the program ML-RELATE [38]. We constructed a

genetic ‘saturated graph’ in which each node was connected to

every other node. We assigned node weights as the mean relat-

edness among individuals within each node, and edge

weights as the mean pairwise relatedness between individuals

at node i and node j. We tested for effects of sample size on

mean relatedness at the nodes (node weight) and found no

significant association (liner regression; R2 ¼ 0.007, p ¼ 0.50).

(2) Ecological modelling. We created ecological graphs to test

associations between factors that affect node importance

(strength) and overall graph connectivity. Edges were calcu-

lated using Euclidean or least-cost distance (based on habitat

permeability) from node i to node j. We assigned node

weights based on habitat suitability or local harvest density

(a proxy for bear population density). We performed

Spearman’s rank correlation analyses between the genetic

model and our set of ecological candidate models (table 1) in

R (R Development Core Team, 2012).

(a) Weighting nodes. To obtain weights for each node based on

measures of habitat suitability, we reclassified the 2006
National Oceanic and Atmospheric Administration

(NOAA) Coastal Change Analysis Program (C-CAP)

Land Cover dataset (resolution ¼ 30 m) into eight land

cover classifications and ranked them based on bear habi-

tat suitability (1–100, least to most suitable; electronic

supplementary material, table S2) including: mixed

deciduous forest (MF, 100), forested wetland (FW, 100),

evergreen forest (EF, 90), non-forested upland (NFU, 80),

agriculture (AG, 50), non-forested wetland (NFW, 1),

developed (DEV, 1) and open water (NA) using a habitat

suitability model developed independently for Michigan’s

NLP black bears [25]. In addition, we reclassified land

cover data into a coarser habitat suitability classification

as either bear habitat (MF, FW; 100) or non-habitat (EF,

NFU, AG, NFW, DEV; 1).

We used localized harvest density, based on bear har-

vest locations, as a proxy for local bear population

density, as in Moore et al. [32,39]. To estimate local har-

vest density we used annual harvest locations from

2002–2010, generated kernel density grids in ARCGIS v.

10.0 and reclassified them into a range of 1–10 (low to

high as previously defined [32]). We then created a har-

vest grid by calculating the median values over the

nine annual harvest grids (electronic supplementary

material, figure S3). We extracted a local harvest density

and land cover value based on majority of grid cells

within the nodes.
(b) Weighting edges. Edges for ecological graphs were

weighted by either Euclidean distance or least-cost dis-

tance (one path of least resistance through a resistance

surface, reflecting permeability through habitat types or

boundaries) in ARCGIS v. 10.0. Least-cost distance was cal-

culated using three resistance surfaces to model habitat

permeability (table 1). The 2006 CCAP dataset was reclas-

sified into eight cover types reflecting the ecological

model [25] and two coarse cover types (bear habitat

http://rspb.royalsocietypublishing.org/


Table 1. Spearman’s rank correlations between genetic and ecological measures of node importance (source strength). The three graph metrics compared are net
flux (Fout2Fin), area-weighted flux (AWF) and probability of connectivity (PC). ‘High’ indicates maximum magnitude weights (e.g. 1 – 100) and ‘low’ indicates
minimum magnitude weights (e.g. 1 – 5) used to test the sensitivity of analyses to the magnitude of cost values. All correlations were significant ( p , 0.05).

ecological model graph metrics

node weight edge weight Fout2Fin AWF PC

habitat suitability (high) habitat suitability (high) 0.1865 0.2040 0.2094

habitat suitability (low) habitat suitability (low) 0.1947 0.2160 0.2050

habitat suitability (high) road (high) 0.1836 0.2270 0.2160

habitat suitability (low) road (low) 0.1809 0.2150 0.2040

habitat suitability (high) distance only 0.1799 0.2270 0.1980

habitat/non-habitat (high) habitat/non-habitat (high) 0.1712 0.2030 0.1985

habitat/non-habitat (low) habitat/non-habitat (low) 0.1690 0.2100 0.2081

habitat/non-habitat (high) road (high) 0.1681 0.2120 0.1970

habitat/non-habitat (low) road (low) 0.1581 0.2040 0.2030

habitat/non-habitat (high) distance only 0.1490 0.2100 0.1970

density habitat suitability (high) 0.2021 0.2630 0.2590

density habitat suitability (low) 0.2032 0.2780 0.2750

density habitat/non-habitat (high) 0.2020 0.2740 0.2700

density habitat/non-habitat (low) 0.2020 0.2820 0.2770

density road (high) 0.2034 0.2800 0.2760

density road (low) 0.2020 0.2830 0.2790

density distance only 0.2021 0.2820 0.2780
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versus non-habitat; table 1). In addition, we obtained

and reclassified a road-only resistance surface from the

Michigan Geographic Data Library (Center for Geo-

graphic Information; electronic supplementary material,

table S2). Pairwise least-cost distances were calculated

using the landscape genetic toolbox in ARCGIS [40].

Least-cost analysis and node weights may be sensitive to

relative cost values assigned to land cover types [41] and

could potentially influence our results. Thus, we per-

formed a sensitivity analysis on the range of relative cost

values between resistance surface land cover types by

comparing least-cost distances between rasters weighted

using large differences (i.e. maximum weights ¼ 1, 10,

20, 50, 100) and small differences (minimum weights ¼

1, 2, 3, 4, 5) in the relative cost values for land cover

types (table 1).

(e) Node importance and source – sink analysis
Graph metrics were calculated to define node importance to

identify source areas. We calculated dispersal probability ( pij)

for each pair of nodes,

pij ¼ exp(k � dijÞ, ð2:1Þ

where k is a decay coefficient calculated from a tail dispersal

distance (an arbitrarily selected point on the flat tail of a nega-

tive-exponential dispersal-distance function) and dij is the

distance from node i to j [42]. Area-weighted flux (AWF) was

estimated using the previous metric (dispersal probability) mul-

tiplied by the quality area (i.e. genetic graph, qi ¼mean

relatedness; ecological graph, qi ¼ density or habitat quality) of

the nodes [43],

AWF ¼ qi � pij: ð2:2Þ
Probability of connectivity (PC) is a graph metric that com-

bines the attributes of the nodes with the maximum product

probability of all the possible paths between every pair of nodes,

PC ¼
Pn

i¼1

Pn
j¼1 aiajpij

AL
2

, ð2:3Þ

where AL is the total quality measure of the entire graph, and ai

and aj are the qualities of node i and j, respectively [44]. AWF

and PC were calculated using program CONEFOR v. 2.6 [45].

Influx (flux entering a node) and outflux (flux exiting a node)

were calculated to account for asymmetric dispersal as there are

two distinct edges for each pair of nodes. Edges were based on

distances so that pij ¼ pji. However, influx and outflux at a particu-

lar node may differ, as flux also incorporates quality area qi of the

donor node i (i.e. fij¼ qi � pij versus fji ¼ qj � pij). Total flux out of

node i and total flux into node i were calculated as

Fout i ¼
X

f ji ð2:4Þ

and

Fin i ¼
X

fij: ð2:5Þ

To determine the magnitude and direction of the net flux

associated with each node, we calculated the flux difference

(Fout i 2 Fin i) [43]. High outflux indicates a large number of emi-

grants and high influx indicates a large number of immigrants.

Thus, source nodes were characterized by high total outflux (posi-

tive net flux, Fout i . Fin i) and sink nodes were characterized by

high influx and low outflux (negative net flux, Fout i , Fin i). To

visualize the spatial configuration of source and sink nodes, we

generated interpolated surfaces of node importance (source

strength) using inverse distance weighting (IDW).

http://rspb.royalsocietypublishing.org/
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Figure 2. Interpolated surfaces of black bear node importance (source strength) based on net flux at the nodes across the NLP study area using inverse distance
weighting (IDW). Interpolated surfaces of (a) the genetic model, (b) Carter et al. [25] habitat suitability model, (c) a habitat/non-habitat model and (d ) a bear
density model are shown for comparison. Warm colours represent sources and cool colours represent sinks. Circles are the node locations.
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( f ) Resampling simulation
Harvest samples are opportunistically collected, and therefore

samples may be predisposed to erroneous inference due to

uneven sampling commonly encountered in empirical datasets.

To test whether our approach is robust to uneven sample density

and dispersion, we performed a series of simulations by creating

10 randomly resampled datasets under two different sampl-

ing scenarios. The two scenarios differed with respect to the

degree with which sampling was correlated with population

density. The first scenario was a stratified resampling approach

where sample density and dispersion were weakly correlated

or uncorrelated with population density. The second scenario

was a density-biased sampling where sample density and dis-

persion were correlated with population density. The second

scenario reflects our original dataset. For stratified sampling,

we randomly sampled 125 individuals without replacement

(i.e. individuals could not be selected more than once per iter-

ation) from the 2002, 2006 and 2010 empirical genetic datasets,

and enforced a 7 km minimum distance among sampling

locations. This parameter constrained the density and distri-

bution of samples such that locations were at least 7 km

from each other. We chose a minimum distance of 7 km (i) to

ensure a more even sample density and dispersion and

(ii) to capture the scale of the spatial processes known to drive

genetic patterns (e.g. black bears exhibit female philopatry and

median female bear dispersal distance in our study population

is approximately 7 km [35]). For density-biased resampling, we

performed weighted randomly sampling without replacement

(125 individuals from the 2002, 2006, and 2010 genotyped data-

sets) so the probability of each sample being selected was

influenced by bear density (i.e. harvest samples collected in

areas of higher bear density had a greater probability of being

selected than samples collected in areas of lower sample density).

Sample weights were assigned by overlaying the empirical data-

sets on the median density grid (electronic supplementary
material, figure S3) and assigning the corresponding density

values of the intersecting raster cell. All analyses were performed

using the sampling package in R v. 3.0.1 (R Development Core

Team, 2013) and ARCGIS v. 10.0. For each resampling iteration

for both scenarios, we then used previously described methods

to generate genetic graphs, net flux values and interpolated

surfaces.
3. Results
Based on our saturated genetic graph using 141 nodes (areas

of consistent occupancy), figure 2 presents the juxtaposition

of inferred source and sink nodes over the study area. Of

the 141 nodes in the NLP, 62 are considered source nodes

(positive net flux), with 16 nodes having net flux more

than 0.7. By contrast, 79 nodes were classified as sinks

(negative net flux). We estimated two additional graph

metrics that measure node importance (i.e. source strength):

(i) AWF and (ii) PC. AWF and PC were highly correlated

with net flux (Spearman’s rank correlations r . 0.90, p ,

0.05).

Interpolated surfaces of net flux for each sampling iteration

indicated that areas of high and low net flux are consistent

among original (full) and simulated (resampled) datasets

(figure 2; electronic supplementary material, figure S4a–d). For

all datasets, we observed clusters of source nodes in the northern,

east-central and south-central portions of the study area. We did

observe fine-scale spatial variation among simulation runs (i.e.

specific locations of source and sink nodes differed slightly),

which was probably an effect of random sampling causing

actual node locations to differ between iterations (electronic

supplementary material, figure S4c–d). Nonetheless, our results

http://rspb.royalsocietypublishing.org/
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suggest that broad-scale source–sink patterns will be detected

irrespective of whether sample dispersion is correlated with

population density.

We constructed additional saturated graphs based on the

same 141 nodes using purely ecological data (only habitat or

local harvest density). Correlation analyses of node metrics

derived from genetic and ecological graphs revealed four

major findings. First, correlations between graph metrics

(net flux, AWF and PC) and habitat/local harvest abundance

graph metrics were all significant (r ¼ 0.149–0.283, p , 0.05;

table 1). Second, relative to associations with habitat suit-

ability, genetic graph metrics were most correlated with

local bear harvest density (net flux, mean r ¼ 0.202; AWF,

mean r ¼ 0.277; PC, mean r ¼ 0.273, p , 0.05). Third, ecologi-

cal models where nodes were weighted by habitat suitability

had comparable correlation values irrespective of how finely

or coarsely the land cover was defined (habitat suitability

model: net flux, mean r ¼ 0.185; AWF, mean r ¼ 0.218; PC,

mean r ¼ 0.207; habitat versus non-habitat: net flux, mean

r ¼ 0.163; AWF, mean r ¼ 0.210; PC, mean r ¼ 0.201;

table 1). Lastly, because least-cost distances can be sensitive

to the magnitude of cost values, we performed a sensitivity

analysis of cost values assigned to land cover and found

graph metrics were not sensitive to the range of land cover

cost values used (table 1).
4. Discussion
By combining genetic and ecological graphs, we have ident-

ified source and sink areas using individual-based genetic

data in a landscape genetic framework. Our methodologi-

cal challenge was to find a way to apply genetic graphs to

a continuously distributed population exhibiting clinal IBD.

If populations are patchily distributed and/or strongly

genetically structured, allowing for a priori delineation of

populations or patches, genetic weights can easily be

assigned by calculating the mean genetic similarity (e.g. relat-

edness) over the entire population or patch [2,16]. However,

for continuously distributed species that cannot be unam-

biguously placed into defined populations or patches, such

as black bears, an alternative, individual-based method of

weighting nodes is necessary. We overcame this methodologi-

cal obstacle by using point pattern and spatial analyses to

identify areas of consistent spatial occupancy over time and

assigned node weights based on average pairwise relatedness

of individuals within the nodes.

Genetic graphs can be applied to detect source–sink

dynamics in other systems where populations are not patchily

distributed or strongly genetically structured into discrete popu-

lations. For example, our method may find utility in wide-ranging

and elusive species where source–sink dynamics has gone unde-

tected (e.g. fur-bearing species, carnivores, marine mammals

[46–48]). Undetected source–sink dynamics has potentially

negative consequences, particularly for harvested species. For

example, if the management goal is to reduce abundance in a

specific sink area through harvest, dispersal from surrounding

source areas will confound efforts. Alternatively, a source area

with abundant resources and subsequent high reproduction

may become an ‘attractive sink’ if harvest pressure is high [48].

Our analyses revealed patterns of asymmetric connectivity

in NLP black bears based on areas of high and low net

flux. Findings are consistent with previous local spatial
autocorrelation analyses. Draheim et al. [49] found evidence

of fine-scale spatial genetic structure in NLP black bears but

no strong population structuring across the region. We ident-

ified 62 source areas including 16 nodes we consider to be

important source areas (net flux . 0.7) in the NLP. Interpolated

surfaces of net flux values (figure 2) revealed important source

areas were patchily distributed with clusters of adjacent

high net flux nodes occurring on private and forested public

lands in the northwestern, northern-central and south-central

portions of the study area.

Figure 2 is interpolated from point data (n ¼ 141 nodes),

and observed patterns are dependent on the spatial dis-

persion of nodes (figure 1). Therefore, interpolated maps

should be interpreted as displaying regional patterns and

not the exact locations of source and sink nodes. Net flux esti-

mates along the study area boundary should be interpreted

with caution as interpolations may be prone to edge effects

[50]. Harvest sample collection is often opportunistic and

location may reflect hunter behaviour. Accordingly, because

bear occupancy is based on location of harvest samples, the

spatial structure of sources and sinks may not include all rel-

evant locations where bears are present. However, Draheim

et al. [51] found that black bear sample density and distri-

bution is consistent when samples are opportunistically

collected via harvest or collected via systematic non-invasive

hair snares. Indeed, for NLP black bears, opportunistic and

systematic sampling capture spatial genetic heterogeneity at

the same scale and spatial extent [51].

The spatial dispersion of source and sink areas do not

appear to be unduly influenced by sampling. Through resam-

pling simulations, we detected asymmetric connectivity

regardless of whether the sample density and dispersion was

correlated with population density. Interpolated maps based

on net flux values show the same regional patterns of high

and low net flux as the original dataset, whether we used stra-

tified or density-biased sampling scenarios (electronic

supplementary material, figure S4a,b). We note, however, that

close visual inspection of all interpolated maps does show

some variation in fine-scale spatial patterns among resampling

iterations and among sampling regimes (electronic supplemen-

tary material, figure S4c,d). Smaller sample sizes and reduced

power are probably impacting our resolution and ability to con-

sistently discern fine-scale patterns. Additionally, because

spatial dispersion of the nodes is determined by the underlying

sample locations, subsampling will cause the locations of the

node centroids to differ slightly between iterations based on

the samples that were selected to define the nodes.

We found significant correlations between graph metrics

derived from genetic data and ecological models based on

habitat quality and local harvest density. Our correlation

values were moderate. Low correlations between genetic and

habitat metrics are not surprising as much of the NLP is classi-

fied as high-quality habitat. Indeed, as shown in table 1, how

habitat was classified and subsequently weighted did not

appreciably affect model outcomes. In addition, there is a

degree of uncertainty in how representative land cover reflects

resource availability [52].

Local harvest density at the nodes better explained source

strength than did habitat quality. We predicted source areas

identified using genetic data would be characterized by

areas of high local harvest abundance, which can be used

as a surrogate for population density [53,54]. As an indirect

estimate, we acknowledge that local harvest density may
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not be a strong index of bear density and could potentially

introduce noise into the correlational relationship between

the genetic and density graph metrics. However, associations

between local harvest density and bear density are predicted

based on several factors. First, as mentioned above, density of

bear samples collected via harvest was concordant with the

density of samples collected from a study using systematically

placed hair snares and the geographical distribution of harvest

locations shows little annual variation [51]. Second, the

NLP population undergoes high annual harvest in which

13–29% of the population is harvested each year. At this

level of harvest, local harvest density would probably vary

annually if it were not correlated with bear density. Third,

there are no large areas that are not accessible to hunters in a

motorized vehicle, thus there is no refuge for black bears to

escape hunter pressure (electronic supplementary material,

figure S3). Fourth, land ownership does not limit hunter

access as approximately 48–62% of hunters used private

land during harvest [55]. Finally, local harvest density has

repeatedly been found to be associated with other features of

the NLP population, including natal dispersal distance [32]

and mate selection [39], based on pedigree analysis.

Our approach is centred on genetic data; therefore, our level

of inference is limited to spatial patterns of asymmetric gene

flow. Indeed, rigorous identification of source and sink areas

requires a great deal of detailed demographic information on

population survival rates, fecundity, immigration and emigra-

tion [3,6,56]. However, such detailed information is difficult to

acquire for an elusive, highly mobile animal such as the black

bear. Dispersal studies that use traditional methods (i.e. cap-

ture–mark–recapture or radio-telemetry) are expensive and

labour-intensive [57], and may lead to underestimates due

to small sample size and limited geographical scope. For

conservation and management, one compelling feature of a

graph framework is the ability to identify nodes that are

important for landscape-scale connectivity, using graph

metrics or node removal. Endangered species or species of con-

servation concern areas, which are critical for maintaining

connectivity, can be identified and given conservation prefer-

ence (e.g. [58]). Alternatively, as a form of biological control

to prevent spread of pests [59], invasive species [60] or patho-

gens [61], habitat patches could be removed when

connectivity is detrimental. The NLP black bear population is

subjected to two factors that could impact connectivity:
intensive harvest and landscape modification. Identification

of source areas could guide managers in determining bound-

aries for bear management units, in setting regional harvest

quotas, and in identifying areas where landscape change

may have a disproportionate effect on black bear connectivity.
5. Conclusion
Graphs are simplified portrayals of natural systems that we have

shown can be powerful tools for assessing and detecting

source–sink dynamics [42,43]. Our method does not estimate

migration rates. Rather, we derived graph metrics based on pair-

wise relatedness within and among nodes to evaluate plausible

spatially explicit hypotheses about degree and directionality of

connectivity among nodes (source–sink dynamics), and the

ecological and environmental factors that affect connectivity.

Genetic graphs provide a viable alternative method for detect-

ing source–sink dynamics in continuously distributed species.

Because genetic graphs provide a flexible framework for under-

standing connectivity, they could be widely integrated into

landscape genetics research and conservation planning at mul-

tiple spatial scales. While genetic graphs may be broadly

applicable across a range of taxa, the graph models need to be

parametrized based on the specific life-history characteristics

of the species or population of interest.
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