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Abstract

In the context of two-path convexity, we study the rank, Helly number, Radon
number, Caratheodory number, and hull number for multipartite tournaments. We
show the maximum Caratheodory number of a multipartite tournament is 3. We
then derive tight upper bounds for rank in both general multipartite tournaments
and clone-free multipartite tournaments. We show that these same tight upper
bounds hold for the Helly number, Radon number, and hull number. We classify all
clone-free multipartite tournaments of maximum Helly number, Radon number, hull
number, and rank. Finally we determine all convexly independent sets of clone-free
multipartite tournaments of maximum rank.

1 Introduction

Convexity has been studied in many contexts. These contexts have been generalized to
the concept of a convexity space, which is a pair C = (V, C), where V is a set and C is a
collection of subsets of V such that ∅, V ∈ C and such that C is closed under arbitrary
intersections and nested unions. The set C is called the set of convex subsets of C. Given
a subset S ⊆ V , the convex hull of S, denoted C(S), is defined to be the smallest convex
subset containing S.

In the case of graphs and digraphs, V is usually taken to be the vertex set and C to
be a collection of vertex subsets that are determined by paths within the graph. For a
(directed) graph T = (V, E) and a set P of (directed) paths in T , a subset A ⊆ V is called
P-convex if, whenever v, w ∈ A, any (directed) path in P that originates at v and ends
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at w can involve only vertices in A. We denote the collection of convex subsets of T by
C(T ).

In the case P is the set of geodesics in T , we get geodesic convexity, which was intro-
duced in undirected graphs by F. Harary and J. Nieminen in [HN81]. Geodesic convexity
was also studied in [CFZ02] and [CCZ01]. When P is the set of all chordless paths, we get
induced path convexity (see [Duc88]). Other types of convexity include path convexity (see
[Pfa71] and [Nie81]), two-path convexity (see [Var76], [EFHM72], [EHM72], and [Moo72])
and triangle path convexity (see [CM99]).

The most studied convexity numbers are the Helly, Radon, and Caratheodory numbers
(see [JN84], [Pol95], and [CM99]). These are based on notions of independence (see
[vdV93, Chap. 3]). Let C = (V, C) be a convexity space, and let F ⊆ V . Then F is
H-independent if

⋂
p∈F C(F − {p}) = ∅. The Helly number h(C) is the size of a largest

H-independent set. Equivalently, it is the smallest number h such that every finite family
of convex subsets has a nonempty intersection whenever every subfamily of size h has a
nonempty intersection.

The set F is C-independent if C(F ) *
⋃

a∈F C(F − {a}). The Caratheodory number
c(C) is the size of a largest C-independent set. Equivalently, it is the smallest number
c such that for every S ⊆ V and p ∈ C(S), there exists F ⊆ S with |F | ≤ c such that
p ∈ C(F ).

F is R-independent if F does not have a Radon partition. That is, there is no partition
F = A ∪ B with C(A) ∩ C(B) 6= ∅. The Radon number r(C) is the size of a largest R-
independent set. This definition is not universally accepted. Often it is defined as the
smallest number r in which every set of size r is R-dependent. This is one larger than in
our definition. The Levi inequality (see, e.g. [vdV93, p. 169]) states that h(C) ≤ r(C).

F is convexly independent if, for each p ∈ F , we have p /∈ C(F−{p}). The rank d(C) is
the size of a largest convexly independent set. Rank is a measure of how computationally
difficult it is to construct the convex subsets of a given multipartite tournament. It is an
upper bound on the maximum number of vertices required to generate all convex subsets
using convex hulls. In [HW96], D. Haglin and M. Wolf used the fact that the collection
of two-path convex subsets in a tournament has rank 2 to construct an algorithm for
computing the convex subsets of a given tournament. The algorithm runs in O(n4) serial
time. They later improved this to O(n3) in [HW99].

Finally, a hull set is a set S ⊆ V such that C(S) = V . The hull number hul(C) is the
size of a smallest hull set (see [ES85]).

Note that since any set that is H-, C-, or R-independent must also be convexly
independent, rank is an upper bound for the Helly, Caratheodory, and Radon numbers.
It is also clearly an upper bound for the hull number.

All work in tournaments has been in two-path convexity, where P is the set of all 2-
paths. This is natural, as J. Varlet noted in [Var76], since if all directed paths are allowed,
then the only convex subsets of strong tournaments are V and ∅. Indeed, this is true even
when all paths of length three or less are allowed.

Our results extend the study of two-path convexity to multipartite tournaments. In
particular, we determine maximum values of convexity invariants relative to the number
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of vertices and classify, when possible, all multipartite tournaments that achieve this max-
imum. We begin with the Caratheodory number in Section 2. In Section 3, we determine
the maximum rank of general multipartite tournaments and classify all such multipartite
tournaments. We then turn our attention to classifying clone-free tournaments of max-
imum rank, Helly number, and Radon number in Sections 4 and 5. We determine the
maximum convexly independent sets of clone-free multipartite tournaments of maximum
rank in Section 6.

Let T = (V, E) be a digraph with vertex set V and arc set E. We denote an arc
(v, w) ∈ E by v → w and say that v dominates w. If U,W ⊆ V , then we write U → W
to indicate that every vertex in U dominates every vertex in W . We denote by T ∗ the
digraph with the same vertex set as T , and where (v, w) is an arc of T ∗ if and only if (w, v)
is an arc of T . Recall that, for p ≥ 2, T is a p-partite tournament if one can partition V
into p partite sets such that every two vertices in different partite sets have precisely one
arc between them and no arcs exist between vertices in the same partite set. Two vertices
are clones if they have identical insets and outsets, and T is clone-free if it has no clones.
If u, v, w ∈ V with u → v → w, we say that v distinguishes the vertices u and w. Note
that in a clone-free multipartite tournament, for every pair of vertices u,w in the same
partite set there is at least one vertex (not in that partite set) that distinguishes u and
w. If A,B ∈ C(T ), we denote the convex hull of A ∪ B by A ∨ B. If v, w ∈ V , we drop
the set notation and write {v} ∨ {w} as v ∨ w.

One can construct the convex hull of a set U ⊆ V in the following way. Define Ck(U)
inductively by

C0(U) = U, Ck(U) = Ck−1(U) ∪ {w ∈ V : x → w → y for some x, y ∈ Ck−1(U)}, k ≥ 1

Thus, C∞(U) = C(U)
To facilitate our study of bipartite tournaments, it will be helpful to consider their

adjacency matrices. In the case of a bipartite tournament, however, the adjacency matrix
is cumbersome. Let P1 = {x1, · · · , xk} and let P2 = {y1, · · · , y`} be the partite sets of T ,
a bipartite tournament. For each i and j with 1 ≤ i ≤ k and 1 ≤ j ≤ `, let mi,j = 1 if
xi → yj and let mi,j = 0 otherwise. We will call M = (mi,j) the matrix of T . Notice that
xi distinguishes yj and yk if and only if mi,j 6= mi,k and yi distinguishes xj and xk if and
only if mj,i 6= mk,i. In addition, identical rows or columns of the matrix of T correspond
to clones.

2 Inequalities Involving the Caratheodory Number

In this section, we explore Caratheodory numbers of multipartite tournaments. The
following two results show that the Caratheodory number of any multipartite tournament
is at most three.

Lemma 2.1. Let T be a multipartite tournament. Suppose U ⊆ V and p ∈ C(U).

1. There is an F ⊆ U with | F |≤ 3 such that p ∈ C(F ).
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2. If U lies in a single partite set of T then there is an F ⊆ U with | F |≤ 2 such that
p ∈ C(F ).

Proof. If |U | ≤ 2 or if p ∈ U , the result is trivial, so assume | U |≥ 3 and p /∈ U . Since
p ∈ C(U) and p /∈ U then there is a smallest positive integer k such that p ∈ Ck(U).

We consider two cases. First assume that U does not lie in a single partite set of T .
Then there are u, v ∈ U such that u and v lie in different partite sets of T . Since k is the
smallest positive integer such that p ∈ Ck(U) then there are x1, y1 ∈ Ck−1(U) such that
x1 → p → y1. Since at least one of u or v is not in the same partite set as p, then u → p,
v → p, p → u or p → v. In any case, p ∈ u ∨ v ∨ x1 or p ∈ u ∨ v ∨ y1 so p ∈ u ∨ v ∨ z1

for some z1 ∈ Ck−1(U). Since k was chosen to be minimal, z1 /∈ Ck−2(U) so there are
x2, y2 ∈ Ck−2(U) such that x2 → z1 → y2. Since at least one of u or v is not in the same
partite set as z1, then u → z1, v → z1, z1 → u or z1 → v. Thus z1 ∈ u ∨ v ∨ x2 or
z1 ∈ u ∨ v ∨ y2, so z1 ∈ u ∨ v ∨ z2 for some z2 ∈ Ck−2(U). Since p ∈ u ∨ v ∨ z1 then
p ∈ u∨v∨z2. Continuing in this way we can generate a sequence of vertices, z1, z2, . . . , zk

such that p ∈ u ∨ v ∨ zi and zi ∈ Ck−i(U) for each i. In particular, zk ∈ C0(U) = U and
p ∈ u ∨ v ∨ zk.

Now suppose U lies in a single partite set of T . Since C(U) 6= U , there exist u1, u2 ∈ U
and v ∈ V such that u1 → v → u2. Repeat the above argument with u1 and v to create
a sequence z1, z2, . . . , zk such that zi ∈ u1 ∨ v ∨ zi+1 for 1 ≤ i ≤ k − 1, p ∈ u1 ∨ v ∨ zi and
zi ∈ Ck−i(U) for each i. Let u3 = zk ∈ U . Then p ∈ C({u1, v, u3}) ⊆ C({u1, u2, u3}). By
construction, either u1 → zk−1 → u3, u3 → zk−1 → u1, v → zk−1 → u3 or u3 → zk−1 → v.

First assume that u1 → zk−1 → u3. If v → u3 then v ∈ u1 ∨ u3 and p ∈ u1 ∨ u3 so
assume u3 → v. Similarly, if zk−1 → u2 then zk−1 ∈ u1 ∨ u2 and p ∈ u1 ∨ u2 so assume
u2 → zk−1. Then u3 → v → u2 and u2 → zk−1 → u3 imply v, zk−1 ∈ u2∨u3. We next show
that zk−2 ∈ u2 ∨ u3. If zk−2 is in the same partite set as U then, by construction, either
v → zk−2 → zk−1 or zk−1 → zk−2 → v. On the other hand, if zk−2 is not in the same partite
set as U then zk−2 is comparable to u1 and u3. If u1 → zk−2 → u3 or u3 → zk−2 → u1

then p ∈ Ck−2(U) which is impossible. Thus either u1, u3 → zk−2 or zk−2 → u1, u3.
By construction, either zk−1 → zk−2 → u1, u1 → zk−2 → zk−1, zk−1 → zk−2 → v or
v → zk−2 → zk−1. In any case we obtain zk−2 ∈ u2∨u3. Continuing in this way, we obtain
p ∈ u2 ∨ u3 proving (ii). The case when u3 → zk−1 → u1 is similar.

If v → zk−1 → u3 then by the above argument we may assume zk−1 → u1. Since
v ∈ C({u1, u2}) then zk−1 and hence p are in C({u1, u2}). The case u3 → zk−1 → v is
similar.

This gives us the following.

Theorem 2.2. Let T be a multipartite tournament. Then c(T ) ≤ 3.

Since singleton subsets are convex, the Radon number of a multipartite tournament
with |V | ≥ 2 must be at least 2. If r(T ) = 2, then every triple {u, v, w} ⊆ V has a Radon
partition, which is, without loss of generality, {u, v} ∪ {w}. Then w ∈ u ∨ v, and so
{u, v, w} is convexly dependent. Thus, c(T ) ≤ d(T ) = 2 = r(T ), giving us the following.
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Corollary 2.3. Let T be a multipartite tournament. Then c(T ) ≤ r(T ).

We also get an inequality between h(T ) and c(T ). We begin with the following lemma.

Lemma 2.4. Let T be a multipartite tournament. Then h(T ) = 2 implies c(T ) = 2.

Proof. If h(T ) = 2, we clearly cannot have c(T ) = 1. Let U ⊆ V , and let p ∈ C(U). If
U lies in a single partite set of T , then p ∈ x ∨ y for some x, y ∈ U by Lemma 2.1(2).
If U does not lie in a single partite set, then we need only show that there is F ⊂ U
with |F | = 2 such that U ⊆ C(F ). By Lemma 2.1(1), we need only consider U with
|U | = 3. Let U = {x, y, z}. If each vertex is in a different partite set, then the graph
induced by U is the transitive tournament on three vertices or a 3-cycle. In either case,
there is a two-path and we let F be the set of the two endpoints of this two-path. If the
vertices lie in two different partite sets, we assume without loss of generality that x and
y lie in the same partite set. Thus, x ∨ z = {x, z} and y ∨ z = {y, z}. Since h(T ) = 2,
(x ∨ z) ∩ (y ∨ z) ∩ (x ∨ y) 6= ∅, implying that z ∈ x ∨ y. This completes the proof.

This gives us the following.

Corollary 2.5. Let T be a multipartite tournament. Then c(T ) ≤ h(T ).

Proof. By Theorem 2.2 and Lemma 2.4, we need only show that if h(T ) = 1, then
c(T ) = 1. But h(T ) = 1 implies that any collection of nonempty convex subsets has
a common vertex. Since all singleton subsets are convex, this implies |V | = 1, and so
c(T ) = 1.

An inequality one might expect is c(T ) ≤ hul(T ). However, as we will see in Exam-
ple 5.2, the bipartite tournament B′

2d−1 has hull number 2 and Caratheodory number 3
for d ≥ 4, so this is not always the case.

By Theorem 2.2, the Caratheodory number of a multipartite tournament must be
either 1, 2, or 3. For a multipartite tournament to have Caratheodory number 1 all
subsets must be convex. This occurs precisely when T is bipartite and every vertex in
one partite set dominates all the vertices in the other partite set.

Distinguishing between multipartite tournaments of Caratheodory number 2 and 3 is
more difficult. The following example gives two infinite classes of bipartite tournaments
of maximum Caratheodory number.

Example 2.6. For each x ∈ {0, 1}, let x ∈ {0, 1}−{x}. For each m ≥ 1, let a, bi ∈ {0, 1}
for 0 ≤ i ≤ 2m + 1. The matrices




a ∗ a ∗ ∗ · · · ∗
b0 b0 b1 b3 b5 · · · b2m−1

b2 b2 b1 b2 ∗ · · · ∗
b4 b4 ∗ b3 b4

. . .
...

...
...

...
. . . b5

. . . ∗
b2m−2 b2m−2 ∗ ∗ . . . . . . b2m−2

b2m b2m ∗ ∗ · · · ∗ b2m−1




,




a a ∗ ∗ · · · ∗ ∗
b0 b1 b3 b5 · · · b2m−1 b2m+1

b0 b1 b3 b5 · · · b2m−1 b2m+1

b2 b1 b2 ∗ · · · ∗ ∗
b4 ∗ b3 b4

. . .
...

...
...

. . . . . . . . . ∗ ∗
...

...
. . . . . . b2m−2 ∗

b2m ∗ · · · · · · ∗ b2m−1 b2m



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represent bipartite tournaments of Caratheodory number 3. Let U consist of the vertices
represented by the first two columns and the second row of the first matrix or the second
and third row and first column of the second matrix. If p is the vertex represented by the
first row (of either matrix), then p ∈ C(U), but p is not in the convex hull of any proper
subset of U . Thus, c(T ) ≥ 3, and so c(T ) = 3 by Theorem 2.2.

While it may be difficult to classify the bipartite tournaments of maximum Caratheodory
number, we do get the following.

Theorem 2.7. Let T be a bipartite tournament with Caratheodory number 3. Then
there exist a, a, bi, bi ∈ {0, 1} with a 6= a, bi 6= bi such that T has an induced bipartite
subtournament with one of the following matrices.




a a a a a a · · · a
b0 b0 b1 b3 b5 b7 · · · b2m−1

b2 b2 b1 b2 b2 b2 · · · b2

b4 b4 b1 b3 b4 b4 · · · b4

b6 b6 b1 b3 b5 b6
. . .

...
...

...
...

...
. . . . . . . . . b2m−4

b2m−2 b2m−2 b1 b3 b5
. . . . . . b2m−2

b2m b2m b1 b3 b5 · · · b2m−3 b2m−1




,




a a a a · · · a a
b0 b1 b3 b5 · · · b2m−1 b2m+1

b0 b1 b3 b5 · · · b2m−1 b2m+1

b2 b1 b2 b2 · · · b2 b2

b4 b1 b3 b4 b4 · · · b4

b6 b1 b3 b5
. . . . . .

...
...

...
. . . . . . . . . b2m−2 b2m−2

b2m b1 · · · · · · b2m−3 b2m−1 b2m




Proof. Since c(T ) = 3, there must exist a set U = {u1, u2, u3} and p ∈ C(U) with u1, u2

in the same partite set and p /∈ u1 ∨ u2. If p = z0 is in the same partite set as u3, then, as
in the proof of Theorem 2.1, there exist vertices z1, · · · , z2m such that zi distinguishes u1

and zi+1 if i is even, zi distinguishes u3 and zi+1 if i is odd, and z2m distinguishes u1 and
u2. Also, let m be minimal with this property. We order the rows and columns of the
matrix of T as follows. We let z0 be the first row, u3 the second row, with the remaining
rows z2, z4, · · · , z2m. The first column is u1, the second column is u2, and the remaining
columns are z1, z3, · · · , z2m−1. Denote the matrix M = [aij].

Let a = a11, b2(k−2) = ak1 for each 2 ≤ k ≤ m + 2, and b2(`−3)+1 = a2` for each

3 ≤ ` ≤ m + 2. By the arcs already given, we have a13 = a, ass = b2s−5, at(t+1) = b2t−4,

and a(2m+2)2 = b2m, where 3 ≤ s ≤ m + 2 and 3 ≤ t ≤ m + 1. If u1 and u2 were to
distinguish any vertex represented by a row of M besides z2m, then either p ∈ u1 ∨ u2 (if
a12 = a or a22 = b0) or the minimality of m is violated. Thus, a12 = a and ar2 = b2(r−2)

for all 2 ≤ r ≤ m + 1. Also, if any zi is distinguished by some uj and zk, where i < k,
then the minimality of m is violated. This determines the rest of the entries of M , and
thus the matrix is of the first form given in the conclusion of the theorem.

The case of z0 in the same partite set as u1 and u2 is similar, which proves the
theorem.
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3 Convex Independence in Multipartite Tournaments

Since rank is an upper bound for the Helly, Radon, and hull numbers, it is helpful to
better understand convexly independent sets.

Lemma 3.1. Let T be a multipartite tournament, and suppose A is a convexly indepen-
dent set.

1. Let P1 and P2 be partite sets of T whose intersection with A is nonempty. Then
either (A ∩ P1) → (A ∩ P2) or (A ∩ P2) → (A ∩ P1).

2. A has a nonempty intersection with at most 2 partite sets of T .

Proof. For (1), let x ∈ A∩ P1 and y ∈ A∩ P2. Without loss of generality, assume x → y.
Suppose x′ ∈ A ∩ P1 and y′ ∈ A ∩ P2 with y′ → x′. Then we have two cases. If x → y′,
we have x → y′ → x′, which makes A convexly dependent. If y′ → x, then y′ → x → y,
again making A convexly dependent. These are both contradictions, so we must have
(A ∩ P1) → (A ∩ P2).

For (2), let x, y, and z be vertices in A in three different partite sets. No matter how
we orient the edges, we must have a 2-path. This makes {x, y, z} convexly dependent, a
contradiction.

We then say that A and B form a convexly independent set if A ∪ B is convexly
independent and A and B are in distinct partite sets.

Lemma 3.1 gives us a quick proof of [Var76, Theorem 2.3]. Varlet’s result refers to
breadth. It turns out that breadth and rank coincide in convexity spaces [].

Corollary 3.2. Let T be a tournament, |V | ≥ 2. Then d(T ) = 2.

Proof. Clearly, d(T ) ≥ 2. Since each partite set of T consists of a single vertex, then
Lemma 3.1(2) gives d(T ) ≤ 2 and the result follows.

A trivial upper bound for d(T ) is |V |. This bound is tight, and it is clear that
d(T ) = |V | if and only if every subset of V is convex. Thus, we get the following.

Theorem 3.3. Let T be a multipartite tournament. Then d(T ) = |V | if and only if V
is bipartite and every vertex in one partite set of V dominates every vertex in the other
partite set.

The multipartite tournaments of maximum rank are bipartite, and tournaments have
rank two, suggesting that having fewer partite sets tends to increase the rank of a multi-
partite tournament. This is supported by the following proposition.

Proposition 3.4. Let T be a p-partite tournament with p ≥ 3. Then there exists a
(p− 1)-partite tournament S such that d(T ) ≤ d(S).
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Proof. Let P1 and P2 be partite sets of T . Define S to be the multipartite tournament
with the same partite sets as T except P1 and P2 are put together as one partite set. The
directed edges of S are the same as T except the elements of P1 ∪ P2 are incomparable.
For F ⊆ V , denote the convex hull of F in T and S by CT (F ) and CS(F ), respectively.

We first claim that every convex set C in T is convex in S. Suppose that x, z ∈ C,
y ∈ S with x → y → z. Then x → y → z in T , so y ∈ C by the convexity of C in T .
Thus, C is convex in S. It follows that if F ⊆ V , then CS(F ) ⊆ CT (F ).

Let F ⊆ V be convexly independent in T , and let x ∈ F . If x ∈ CS(F − {x}) then
CS(F − {x}) ⊆ CT (F − {x}) implies x ∈ CT (F − {x}), a contradiction. Thus, F is
convexly independent in S, and so d(T ) ≤ d(S).

In the next section, we will study the maximum rank of clone-free multipartite tourna-
ments. It is tempting to try to use Proposition 3.4 to reduce this problem to the bipartite
case. Unfortunately, it might be impossible to bring partite sets together without pro-
ducing clones, as seen in the tripartite tournament in Figure 1. Merging of any two of
the partite sets yields at least one pair of clones.

a23a

b3 b2

a1 b1

Figure 1: Merging any two partite sets yields clones

4 Maximizing Convexity Numbers in Clone-Free Mul-

tipartite Tournaments

Recall that in a clone-free multipartite tournament every pair of vertices in a given partite
set is distinguished by at least one other vertex. We are particularly interested in the
vertices that distinguish pairs of vertices in convexly independent sets. Given A ⊆ V , we
define

D→
A = {z ∈ V : z → x for some x ∈ A, y → z for all y ∈ A− {x}}

D←
A = {z ∈ V : z ← x for some x ∈ A, z → y for all y ∈ A− {x}}

These sets have essential properties that are used to prove our main results. The next
three lemmas elucidate these properties.

Lemma 4.1. Let A and B form a convexly independent set in a multipartite tournament
T , and in the case B 6= ∅ suppose A → B.
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1. If |A| ≥ 3, then D→
A intersects at most one partite set nontrivially. Similarly, D←

A

intersects at most one partite set nontrivially.

2. If |A| ≥ 2 and B 6= ∅, then D→
A is a subset of the same partite set as B. If |B| ≥ 2

and A 6= ∅, then D←
B is a subset of the same partite set as A.

3. If |A|, |B| ≥ 2, then D←
B → D→

A .

Proof. For (1), we prove the result for D→
A . The case of D←

A follows similarly. Suppose
that z1, z2 ∈ D→

A with z1 → z2. Then there exist x1, x2 ∈ A with z1 → x1 and z2 → x2.
Since |A| ≥ 3, there exists some x3 ∈ A distinct from x1 and x2. By the definition of
D→

A , we have x3 → z2, so x3 → z2 → x2, giving us z2 ∈ x2 ∨ x3. Similarly, we have
x3 → z1 → z2, and so z1 ∈ x2 ∨ x3. But z1 → x1 → z2, so x1 ∈ x2 ∨ x3. This contradicts
the convex independence of A, so (1) follows.

For (2), suppose that z ∈ D→
A with z not in the same partite set as B. Clearly, z is

also not in the same partite set as A. Since |A| ≥ 2, there exist x1, x2 ∈ A such that
x1 → z → x2. Let y ∈ B. If z → y, then x1 → z → y and z → x2 → y imply x2 ∈ x1 ∨ y,
which contradicts convex independence. If instead y → z, we have z ∈ x1 ∨ x2, and so
x2 → y → z implies y ∈ x1 ∨ x2, which contradicts convex independence. This implies
that z and y are incomparable and are thus in the same partite set. The argument for
D←

B is similar.
For (3), suppose that we have z1 ∈ D→

A , z2 ∈ D←
B with z1 → z2. Since |A|, |B| ≥ 2,

then there exist x1, x2 ∈ A, y1, y2 ∈ B such that x1 → z1 → x2 and y1 → z2 → y2. It
follows that z2 ∈ y1 ∨ y2. Then x1 → z1 → z2 and z1 → x2 → y1 imply x2 ∈ y1 ∨ y2 ∨ x1,
a contradiction. This proves (3).

Thus, the elements of D→
A and D←

B are very well-behaved. Next we explore lower
bounds on |D→

A | and |D←
B |. In the case that |A| ≥ 2 and B 6= ∅, they turn out to be

surprisingly large. They also give us insight into the structure of T .

Theorem 4.2. Let T be a clone-free multipartite tournament, and suppose that A is a
convexly independent set contained in a single partite set of T . Then either |D→

A | ≥ |A|−1
or |D←

A | ≥ |A| − 1. In particular, if A = {x1, · · · , xr}, one can order the elements in A
such that there exist y2, · · · , yr ∈ D→

A (resp., in D←
A ) with yi → xi (resp., xi → yi).

Proof. Note that if we look at A as a set of vertices in both T and T ∗, then D←
A in T is

the same set as D→
A in T ∗. Thus, we need only show that D→

A ≥ |A|− 1 in either T or T ∗.
The case r = 1 is trivial. If r = 2, let y2 be any vertex distinguishing x1 and x2. By

relabelling x1 and x2, if necessary, we have x1 → y2 → x2. If r = 3, let y2 distinguish x1

and x2. By relabelling and considering T ∗, if necessary, we may assume x1 → y2 → x2,
and that x3 → y2. Since T is clone-free, there is some y3 that distinguishes x1 and x3. By
switching x1 and x3 if necessary, we may assume that x1 → y3 → x3. It suffices to show
that x2 → y3. If y3 → x2, then x1 → y2 → x2 and x1 → y3 → x2, so y2, y3 ∈ x1 ∨ x2. But
then y3 → x3 → y2, so x3 ∈ x1 ∨ x2, a contradiction. Thus, x2 → y3.
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Now assume the result for r = m ≥ 3. For r = m + 1, we know there exist y2, · · · , ym

such that yi → xi for all 2 ≤ i ≤ m and xi → yj for all i 6= j. It is easy to see that
xi ∨ xj = yi ∨ yj for all 2 ≤ i 6= j ≤ m.

For the inductive step, we need to find ym+1 ∈ D→
A with ym+1 → xm+1. To this end, we

first show that xm+1 → yi for all i ≤ m. Suppose that yi → xm+1 for some i ≤ m. In this
case, we find that yi → xm+1 for all i ≤ m. For if there is some j for which xm+1 → yj,
then xm+1 ∈ yi ∨ yj = xi ∨ xj, contradicting convex independence. Since m ≥ 3, there
exist yi, yj → xm+1, i 6= j. We have x1 → {yi, yj} → xm, and so xi∨xj = yi∨yj ⊆ x1∨xm,
a contradiction. Thus, xm+1 → yi for all i ≤ m. Now we just take ym+1 to be a vertex
distinguishing x1 and xm+1. By switching x1 and xm+1, if necessary, we can assume that
x1 → ym+1 → xm+1.

Finally, we have to show that xi → ym+1 for all 2 ≤ i ≤ m. If ym+1 → xi, then
arguments similar to the r = 3 case give us xm+1 ∈ x1 ∨ xi, a contradiction. The lemma
is proved.

The following lemma shows that these distinguishing sets contain all vertices that
distinguish vertices in A and B.

Lemma 4.3. Suppose A and B form a convexly independent set, with A → B when
A,B 6= ∅.

1. If |A| ≥ 3, then either D→
A = ∅ or D←

A = ∅. Moreover, any vertex that distinguishes
two vertices in A must be in D→

A ∪D←
A .

2. If |A| ≥ 2 and B 6= ∅, then any vertex that distinguishes two vertices in A is in D→
A .

3. If A 6= ∅ and |B| ≥ 2, then any vertex that distinguishes two vertices in B must be
in D←

B .

Proof. For (1), let u ∈ D→
A , v ∈ D←

A . Let x1, x2 ∈ A with u → x1 and x2 → v. Then
A − {x1} → u and v → A − {x2}. We have the cases x1 = x2 and x1 6= x2. In the
case x1 = x2, ignore the x2 and then let x2, x3 ∈ A − {x1}. In the case x1 6= x2, let
x3 ∈ A− {x1, x2}. In either case, u, v ∈ x1 ∨ x2. Then v → x3 → u implies x3 ∈ x1 ∨ x2,
a contradiction.

For (2), let x, y ∈ A, z ∈ V with x → z → y, and let w ∈ B. Then z ∈ x∨y. If z /∈ D→
A

then there is some v ∈ A− {y} such that z → v. Since z → v → w, v ∈ x ∨ y ∨w, which
contradicts convex independence. Thus, z ∈ D→

A . We get (3) from a similar argument.

An immediate extension of the lemma is

Corollary 4.4. Suppose A and B form a convexly independent set, and A → B.

1. If |A| ≥ 3 and B 6= ∅ then D←
A = ∅.

2. If |B| ≥ 3 and A 6= ∅ then D→
B = ∅.

We now derive lower bounds on |D→
A | and |D←

B | similar to those in Theorem 4.2.
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Corollary 4.5. Suppose that A 6= ∅ and B 6= ∅ form a convexly independent set, and
that A → B. Then |D→

A | ≥ |A| − 1 and |D←
B | ≥ |B| − 1.

Proof. For D→
A , if |A| = 1, the result is obvious. If |A| = 2 then the result follows from T

being clone-free. If |A| ≥ 3 then Corollary 4.4 implies that D←
A = ∅, and so |D→

A | ≥ |A|−1
by Theorem 4.2. By a similar argument |D←

B | ≥ |B| − 1.

The above gives us the following.

Theorem 4.6. Let A = {x1, · · · , xm} and B = {y1, · · · yn} form a convexly independent
set of a multipartite tournament T with m ≥ 2 and n ≥ 1. Then there exist vertex subsets
U = {u2, · · · , un} and W = {w2, · · · , wm} such that A ∪ B ∪ U ∪W induces a bipartite
tournament with partite sets A ∪ U and B ∪W . The arcs are given by A → B, U → W ,
as well as

{wi → xi, xj → wi, yk → uk, uk → y` : i 6= j, k 6= `}
In particular, T has at least 2(m + n)− 2 vertices.

This leads us to the main theorem of this section.

Theorem 4.7. Let T be a clone-free multipartite tournament. Then

1. d(T ) is at most one greater than the order of the second largest partite set in T .

2. d(T ) ≤ b |V |
2

+ 1c.
Proof. Let A and B form a maximum convexly independent set of T with A → B when
A and B are nonempty. Also, let P1 and P2 be the partite sets containing A and B,
respectively.

For (1), if A and B are both nonempty, then Lemma 4.1(2) gives us D→
A ⊆ P2 and

D←
B ⊆ P1. We then have |P1| ≥ |A| + |D←

B | ≥ |A| + |B| − 1 = d(T ) − 1. Thus,
d(T ) ≤ |P1| + 1. Similarly, d(T ) ≤ |P2| + 1. In the case B = ∅, the case of d(T ) = 1
or 2 is clear. If d(T ) ≥ 3, then Lemma 4.1(1) gives us that D→

A lies in one partite set,
and so does D←

A . Also by Theorem 4.2 either |D→
A | ≥ |A| − 1 or |D←

A | ≥ |A| − 1. In
either case, there is a partite set P2 6= P1 that has at least |A| − 1 elements. We have
d(T ) = |A| ≤ |P1| and d(T ) = |A| ≤ |P2|+ 1, which completes the proof of (1).

For (2), note that the second largest partite set of T has at most |V |
2

vertices so that

d(T ) ≤ |V |
2

+ 1 by (1).

Corollary 4.8. Let T be a clone-free multipartite tournament, and let A and B form a
maximum convexly independent set of T . Then

1. If d(T ) = b |V |
2

+ 1c, and if one of A or B is empty, then |V | is odd.

2. Every convex subset of T is the convex hull of at most b |V |
2

+ 1c vertices.
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Proof. For (1), we have |D→
A ∪ D←

A | ≥ |A| − 1 by Theorem 4.2. We then have |V | ≥
|A|+ |A| − 1 = 2d(T )− 1. This gives us d(T ) ≤ |V |+1

2
. But this can happen only if |V | is

odd. The result follows.
Part (2) is a direct result of Theorem 4.7(2) and the definition of rank.

Since rank is an upper bound for the Helly, Radon, and Caratheodory number, we get
the following.

Corollary 4.9. Let T be a clone-free multipartite tournament. Then

1. h(T ), r(T ), and hul(T ) are at most one larger than the second largest partite set of
T .

2. h(T ), r(T ), hul(T ) ≤ bn
2

+ 1c.
We then say that a clone-free multipartite tournament T has maximum rank (resp.

maximum Helly number, maximum Radon number, maximum hull number) if the rank

(resp. the Helly number, Radon number, hull number) is b |V |
2

+ 1c.

5 Classifying Clone-Free Multipartite Tournaments

with Maximum Convexity Numbers

We begin this section by classifying clone-free multipartite tournaments T of maximum
rank d(T ) = b |V |

2
+ 1c. We then use this classification to classify clone-free multipartite

tournaments of maximum Helly, Radon, and hull number. As before, let A and B form
a convexly independent set of T . If A,B 6= ∅, then we assume without loss of generality,
that A → B. For convenience, we write d = d(T ), so |V | = 2d − 1 or 2d − 2. If d = 1,
we just get the trivial tournament, so we may assume that d ≥ 2. Before we commence
with the classification theorems, we first consider some examples of clone-free multipartite
tournaments of maximum rank.

Example 5.1. Tournaments. If T is a tournament, d(T ) ≤ 2. All tournaments with
|V | = 2 or 3 have maximum rank. It is clear that any tournament of order 2 or 3 must
also have maximum Helly, Radon, and hull number. In particular, this applies to C3, the
cyclic tournament on three vertices.

Example 5.2. Bipartite Tournaments. Let B2d−1 be a bipartite tournament consisting
of the partite sets P1 = {x1, · · · , xd}, P2 = {y2, · · · , yd} with yi → xi for all 2 ≤ i ≤ b
and xi → yj otherwise. Note that P1 is H-independent, R-independent, and convexly
independent, so h(B2d−1) = r(B2d−1) = d(B2d−1) = d. Thus, B2d−1 has maximum rank,
Helly number, and Radon number. Also, every hull set must include x1 and at least one
of xi or yi for i = 2, . . . , d. Thus, B2d−1 has maximum hull number.

Let B′
2d−1 be the bipartite tournament consisting of the partite sets P1 = {z, x1, · · · , xd−1}

and P2 = {y1, · · · , yd−1}. The arcs are given by P2 → z, yi → xi for i ≥ 2, and xi → yj
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otherwise. Note that {x1, · · · , xd−1, y1} is H-independent, and thus R-independent and
convexly independent. We get h(B′

2d−1) = r(B′
2d−1) = d(B′

2d−1) = d. Since x1 ∨ z = V ,
hul(B′

2d−1) = 2.
Let B2d−2 be a bipartite tournament consisting of the partite sets P1 = {x1, · · · , xd−1}

and P2 = {y1, y2, · · · , yd−1}. The arcs are given by yi → xi for all i ≥ 2, and xi → yj

otherwise. Then {x1, . . . , xd−1, y1} is a maximum H-, R-, and convexly independent set,
so B2d−2 has maximum rank, Helly number, and Radon number. As with B2d−1, B2d−2

also has maximum hull number. Notice also that B2d−2
∼= B∗

2d−2. This family of bipartite
tournaments was previously identified by Wolf and Haglin as having exponentially many
convex subsets [HW].

Example 5.3. Tripartite Tournaments. Let T2d−1 = B2d−2 ∪ {z}, where z → B2d−2, and
let T ′

2d−1 = B2d−2 ∪ {z}, where P1 → z → P2 (P1 being the partite set containing A and
P2 the partite set containing B). The maximum convexly independent sets of B2d−2 are
also maximum convexly independent sets of T2d−1 and T ′

2d−1, so both T2d−1 and T ′
2d−1 are

of maximum rank. In T2d−1, the maximum convexly independent sets are also H- and
R-independent, so T2d−1 has maximum Helly and Radon number. However, every convex
subset of T ′

2d−1 with more than one vertex contains z. It follows that h(T ′
2d−1) = 2.

It is straightforward to show that r(T ′
3) = 2 and r(T ′

2d−1) = 3 for d ≥ 3. It is also
straightforward to show that T ′

2d−1 has maximum hull number. Notice that T ′
2d−1

∼=
(T ′

2d−1)
∗.

A final example is T ′′
5 = B4 ∪ {z} where z → P1, y2 → z, and z → y1. The unique

maximum H-, R-, and convexly independent set is {x1, x2, y1}, and so T ′′
5 has maximum

rank, Helly number, and Radon number. It also has maximum hull number.

Our classification begins with the case of B = ∅.
Theorem 5.4. Let T be a clone-free multipartite tournament of maximum rank, and let
A and B form a maximum convexly independent set. If B = ∅, then either T ∼= B2d−1 or
T ∼= B∗

2d−1.

Proof. By Corollary 4.8(1), n must be odd. Let A = {x1, · · · , xd}. Theorem 4.2 implies
that, by reordering the xi’s and looking at T ∗ if necessary, there exists C = {y2, · · · , yd} ⊆
D→

A such that yi → xi. Furthermore, we have that y2, · · · , yd are all in the same partite set
(if d = 2, it follows trivially; the d ≥ 3 case follows from Lemma 4.1(1)). Since n = 2d−1,
V = A∪C, and so T ∼= B2d−1 (or, if we had to take T ∗ to get the yi, then T ∼= B∗

2d−1).

We now pursue the case of A,B 6= ∅. The following investigates some possible convexly
independent sets for B2d−2.

Lemma 5.5. Suppose that A and B form a maximum convexly independent set of B2d−2.
Let the xi, yj ∈ B2d−2 be as in Example 5.2.

1. For all i ≥ 2, we cannot have both xi ∈ A and yi ∈ B

2. If A → B, then x1 ∈ A and y1 ∈ B.
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Proof. For (1), suppose that xi ∈ A, yi ∈ B. Since i ≥ 2, we have d ≥ 3. Thus, either
|A| ≥ 2 or |B| ≥ 2. If |A| ≥ 2, we have some xj ∈ A, j 6= i. Thus, xj → yi → xi,
contradicting convex independence. The case |B| ≥ 2 follows similarly.

For (2), the case of d = 2 is obvious. For d ≥ 3, assume for contradiction that
x1 /∈ A. Since each yi dominates at most one xj, we must have A ⊆ P1 and B ⊆ P2. Let
r = |A|. This leaves d − r − 2 vertices among x2, · · · , xd−1 that are not in A. We also
have |B| = d − r, since A and B form a maximum convexly independent set of B2d−2.
One of the vertices in B can be y1, which leaves at least d − r − 1 vertices to be chosen
from y2, · · · , yd−1. Since there are only d − r − 2 yi’s for which xi /∈ A, the pigeonhole
principle implies that yi ∈ B and xi ∈ A for some i ≥ 2. This contradicts (1). The proof
for y1 ∈ B is similar.

We now consider the cases of |V | even and |V | odd separately.

Lemma 5.6. Let T be a clone-free multipartite tournament of maximum rank.

1. If |V | is even, then V = A ∪B ∪D→
A ∪D←

B , |D→
A | = |A| − 1, and |D←

B | = |B| − 1.

2. If |V | is odd and V 6= A ∪ B ∪D→
A ∪D←

B , then there exists a unique z /∈ A ∪ B ∪
D→

A ∪D←
B .

Proof. If |V | is even, we have |V | = 2d − 2. By Corollary 4.5, |D→
A | ≥ |A| − 1 and

|D←
B | ≥ |B| − 1. We thus have

|V | ≥ |A|+ |B|+ |D→
A |+ |D←

B |
≥ |A|+ |B|+ (|A| − 1) + (|B| − 1) = 2d− 2 = |V |

so all inequalities must be equalities, and (1) follows.
If |V | is odd, we still have |A∪B∪D→

A ∪D←
B | ≥ 2d−2. This leaves one other possible

vertex z, which proves (2).

Theorem 5.7. If T is a clone-free multipartite tournament of maximum rank, and if
|V | = 2d− 2, then T ∼= B2d−2.

Proof. The case of |V | = 2 is obvious. We can then assume that |V | ≥ 4 and d ≥
3. Since B2d−2

∼= B∗
2d−2, we consider T ∗ if necessary. Let A = {x1, x2, . . . , xr} and

B = {y1, y2, . . . , ys}. Without loss of generality, r ≥ 2, s ≥ 1 and r + s = d. Assume
for now that s ≥ 2. Then by Lemma 4.1(2), Theorem 4.2, and Lemma 5.6(1), D→

A =
{z2, . . . , zr} ⊆ P2 and D←

B = {w2, . . . , ws} ⊆ P1. Furthermore, zi → xi for i ≥ 2 and
xi → zj otherwise; yk → wk for k ≥ 2 and wk → yl otherwise and D←

B → D→
A by Lemma

4.1. Thus, P1 = {x1, x2, . . . , xr, w2, . . . , ws} and P2 = {y1, z2, . . . , zr, y2, . . . , ys}. This
ordering of the vertices in P1 and P2 and the above arc orientations show that T ∼= B2b−2.

When s = 1 we have B = {y1} and D←
B = ∅. We similarly conclude that T ∼=

B2d−2.
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This brings us to the case of |V | = 2d − 1. Recall that by Lemma 5.6(2), there is at
most one vertex z /∈ A∪B∪D→

A ∪D←
B . When such a z exists, consider the subtournament

T ′ induced by V ′ = V −{z}. Then |V ′| = 2d− 2 and A and B form a maximum convexly
independent set of T ′. Thus, d(T ′) = d, so T ′ ∼= B2d−2 by Theorem 5.7. Thus, T has at
least two partite sets P1 and P2 with P1 ⊇ {x1, · · · , xd−1}, P2 ⊇ {y1, · · · , yd−1} with arcs
as in Example 5.2, and z is the only other vertex in T .

Lemma 5.8. Let T be a clone-free multipartite tournament with d(T ) = d ≥ 3 and
|V | = 2d − 1. Let P1 and P2 be partite sets of T , and let A and B form a convexly
independent set with A ⊆ P1, B ⊆ P2 as above. Finally, assume that z /∈ A∪B∪D→

A ∪D←
B .

1. If z /∈ P2, then z → B or B → z.

2. If z /∈ P1, then z → A or A → z.

3. If z /∈ P1 ∪ P2, then we cannot have B → z → A.

4. If z /∈ P2, then either z → P2, P2 → z, or there exists a unique u ∈ P2 such that
u → z.

5. If z /∈ P1, then either z → P1, P1 → z, or there exists a unique u ∈ P1 such that
z → u.

Proof. For (1), note that if it were not the case that z → B or B → z, then z would
distinguish two vertices in B. Lemma 4.3(3) would then imply z ∈ D←

B , a contradiction.
This proves (1), and (2) follows similarly.

For (3), we have d ≥ 3, so either |A| ≥ 2 or |B| ≥ 2. If u, v ∈ A, w ∈ B, and if
B → z → A, then w → z → u and z → v → w, so v ∈ w ∨ u, a contradiction. The case
|B| ≥ 2 follows similarly.

For (4), suppose that it is not the case that z → P2 or P2 → z. Then there exist
u, v ∈ P2 with u → z → v. For contradiction, assume that there is some w ∈ P2 − {u}
with w → z.

In the case z → B, we have u, w ∈ P2 − B = D→
A , and without loss of generality,

v ∈ B. Then there exist xu, xw ∈ A with u → xu and w → xw. By Lemma 5.5, we have
x1 ∈ A. Thus, x1 → u → xu and u → z → v, so z ∈ x1 ∨ xu ∨ v. But then x1 → w → z
and w → xw → v, which implies xw ∈ x1 ∨ xu ∨ v, a contradiction.

In the case B → z, we have v ∈ P2 − B = D→
A and without loss of generality u ∈ B.

Let xv ∈ A with v → xv. Since w ∈ P2 − {u}, either w ∈ B or w /∈ B. Suppose w ∈ B.
Then x1 → v → xv and u → z → v, so z ∈ x1 ∨ xv ∨ u. But then x1 → w → z, so
w ∈ x1∨xv∨u, a contradiction. Next for a contradiction, suppose that w ∈ P2−B = D→

A .
Let xw ∈ A with w → xw. We have x1 → v → xv and u → z → v, so z ∈ x1 ∨ xv ∨ u.
But then x1 → w → z and w → xw → u, so xw ∈ x1 ∨ xv ∨ u, a contradiction. Thus,
z → P2 − {u}.

In either case, we have u → z for precisely one u ∈ P2, and so (4) is proven. Part (5)
follows similarly.
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Corollary 5.9. Let T be a clone-free bipartite tournament with d(T ) = d, |V | = 2d− 1.
Then T is isomorphic to either B2d−1, B∗

2d−1, B′
2d−1, or (B′

2d−1)
∗.

Proof. Let us first attack the case of V = A ∪ B ∪D→
A ∪D←

B . Since |V | = 2d − 1, then
Corollary 4.5 implies that either |D→

A | = |A| or |D←
B | = |B|. In the first case, we have

T ∼= B∗
2d−1, and in the second, we have T ∼= B2d−1.

In the case V 6= A ∪ B ∪ D→
A ∪ D←

B , we have a unique z /∈ A ∪ B ∪ D→
A ∪ D←

B by
Lemma 5.6(2). If z ∈ P1, then we cannot have z → P2 because z and x1 would be clones.
If P2 → z, then T ∼= B′

2d−1. Otherwise v → z for precisely one v ∈ P2 by Lemma 5.8(4).
We cannot have v = yi for i ≥ 2 because z would be a clone of xi. Thus, v = y1 and
z ∈ D←

B , a contradiction. Arguments are similar if z ∈ P2, where we get T ∼= (B′
2d−1)

∗.

This brings us to the main theorem.

Theorem 5.10. Let T be a clone-free multipartite tournament with d(T ) = b |V |
2

+ 1c.
Then T is isomorphic to one of B2d−2, B2d−1, B∗

2d−1, B′
2d−1, (B′

2d−1)
∗, T2d−1, T ∗

2d−1, T ′
2d−1,

T ′′
5 , (T ′′

5 )∗, or C3.

Proof. We have already proven the case where T is bipartite. Since A, B, D→
A , and D←

B

are all contained in two partite sets, and there is at most one other vertex, only the case
of T tripartite remains. In this case, we must have |V | odd, a partite set P3 consisting of
one element, z, and the bipartite tournament induced by V −{z} is isomorphic to B2d−2.
Thus, we can write the other partite sets as P1 = {x1, · · · , xd−1} and P2 = {y1, · · · , yd−1}
with yi → xi for i ≥ 2 and xi → yj otherwise. By Lemma 5.5, x1 ∈ A and y1 ∈ B.

Suppose that T is not isomorphic to any of T2d−1, T ∗
2d−1, or T ′

2d−1. By Lemma 5.8(3),
we cannot have P2 → z → P1 unless d = 2. In this case, |V | = 3 and so we have T ∼= C3.
Thus, we can assume d ≥ 3. By Lemma 5.8(4),(5), this leaves us two cases: either there
exists a unique v ∈ P2 with v → z or there exists a unique v ∈ P1 with z → v.

Suppose that there exists v ∈ P2 with v → z and z → P2 − {v}. For a contradiction,
suppose v ∈ B, then B → z, so B = {v}. Thus, |A| ≥ 2, and there is some u ∈ D→

A . Let
xu ∈ A with u → xu. If A → z, then x1 → u → xu and xu → z → u, so z ∈ x1 ∨ xu. But
then x1 → v → z, so v ∈ x1 ∨ xu, a contradiction. Thus, z → A by Lemma 5.8(2). But
then B → z → A, contradicting Lemma 5.8(3). This leaves us with v ∈ P2 − B = D→

A .
Since D→

A 6= ∅, this implies that |A| ≥ 2.
Let xv ∈ A with v → xv. As before, either A → z or z → A. If A → z, then

since z → B, x1 → z → y1 and x1 → v → z, so v ∈ x1 ∨ y1. But then v → xv → y1, so
xv ∈ x1∨y1, a contradiction. Thus, z → A. Now, since |A| ≥ 2 and z → A, Lemma 5.8(5),
implies that z → P1.

We now claim that |A| = 2. Suppose that |A| ≥ 3, and let x ∈ A − {x1, xv}. Then
x1 → v → xv, v → z → x1, and z → x → y1 imply x ∈ x1 ∨ xv ∨ y1, a contradiction.
Thus, |A| = 2. This along with Lemma 5.8(5), imply z → P1.

Suppose |B| ≥ 2. Then there is a y ∈ B − {y1} and an xy ∈ D←
B such that y → xy.

As above z ∈ x1 ∨ xv. Then z → xy → y1 and z → y → xy, so y ∈ x1 ∨ xv ∨ y1, a
contradiction. Thus d = 3 and |V | = 5, so T ∼= T ′′

5 .
If there exists a unique v ∈ P1 with z → v, apply the above to T ∗. Then T ∗ ∼= T ′′

5 ,
and so T ∼= (T ′′

5 )∗.
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The clone-free multipartite tournaments of maximum Helly, Radon, or hull number
must also have maximum rank, since rank is an upper bound for these numbers. Thus, we
need only consider the multipartite tournaments in Theorem 5.10. We get the following.

Theorem 5.11. Let T be a clone-free multipartite tournament with n vertices.

1. If h(T ) = bn
2

+ 1c, then T or T ∗ is isomorphic to B2d−1, B′
2d−1, B2d−2, T2d−1, T ′′

5 or
C3.

2. If r(T ) = bn
2

+ 1c, then one of T or T ∗ is isomorphic to B2d−1, B′
2d−1, B2d−2, T2d−1,

T ′
5, T ′′

5 or C3.

3. If hul(T ) = bn
2

+ 1c, then T or T ∗ is isomorphic to B2d−1, B′
3, B2d−2, T ′

2d−1 or C3.

6 Convexly Independent Sets for Clone-Free Multi-

partite Tournaments of Maximum Rank

We now consider the maximum convexly independent sets of clone-free multipartite tour-
naments of maximum rank. The case of rank one is trivial, and in the case of rank two,
we can take A to be any set of two vertices in the same partite set, or we can take A and
B to be singleton sets in different partite sets. Therefore assume that d(T ) ≥ 3. Also
note that, for any multipartite tournament T , convex subsets of T are identical to those
of T ∗.

For w ∈ C(U) let rU(w) be the smallest nonnegative integer k such that w ∈ Ck(U).
Note that rU(u) = 0 for u ∈ U . If a vertex w /∈ C(U), let rU(w) = ∞.

Suppose that U ⊆ V is not a convexly independent set. This means that there is
some x ∈ U such that x ∈ C(U − {x}). In particular, there is some x ∈ U for which
k = rU−{x}(x) ≥ 1 and x ∈ Ck(U − {x}) but x /∈ Ck−1(U − {x}). This observation is
useful in proving the following.

Theorem 6.1. Let T be a clone-free multipartite tournament of maximum rank d ≥
3. With the notation from Section 5, the sets A and B that form maximum convexly
independent sets in T (with A → B) are precisely the following.

1. If T ∼= B2d−2, then A = {x1, xi2 , · · · , xir} and B = {y1, yj2 , · · · , yjs}, where r+s = d
and ik 6= jl for all 2 ≤ k ≤ r, 2 ≤ l ≤ s.

2. If T ∼= B2d−1, then A = {x1, xi2 , · · · , xir} and B = {yj1 , · · · , yjs}, where r + s = d
and ik 6= jl for all 2 ≤ k ≤ r, 1 ≤ l ≤ s.

3. If T ∼= B′
2d−1, then A and B are as in (1), except when d = 3, we also have

A = {y1, y2} and B = {z} or A = {y2} and B = {x2, z}.
4. If T ∼= T2d−1 or T ′

2d−1, then A and B are as in (1).

5. If T ∼= T ′′
5 , then A = {x1, x2} and B = {y1}.
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Proof. For (1), we know by Lemma 5.5 that x1 ∈ A and y1 ∈ B, so the elements in A are
x′is and the elements in B are y′is. If ik = jl for some k, l then we have x1 → yjl

→ xik ,
contradicting convex independence. Thus, it suffices to show that the A and B listed above
are convexly independent sets. Suppose that yj ∈ B makes A ∪ B convexly dependent.
Let U = A ∪ B − {yj}, r = rU(yj) and r′ = rU(xj). Then we must have xi → yj → xk

for some xi, xk ∈ Cr−1(U). This forces k = j and r > r′. Similarly, since xj /∈ A we
must have ym → xj → yn for some ym, yn ∈ Cr′−1(U). As before, we have m = j and so
r′ > r, a contradiction. Thus, A and B form a convexly independent set. Part (2) follows
similarly.

For (3), we must first consider the case of z ∈ A ∪ B. Let P1 = {z, x1, · · · , xd−1} and
P2 = {y1, · · · , yd−1} as in Example 5.2. Since P1 is not a convexly independent set, both
A and B are nonempty. Since P2 → z and A → B, we must have z ∈ B, B ⊆ P1, and
A ⊆ P2. Clearly, x1 /∈ B. If xi ∈ B for i > 1, then since xi → yj for all i 6= j, we have
A ⊆ {yi}. This implies d = 3. Thus, A = {y2} and B = {x2, z}. Otherwise, B = {z}
and A = P2. In this case, it suffices to prove that d = 3. If d > 3, then y1, y2, y3 ∈ A. We
have y2 → x2 → y1 and x2 → y3 → z, so y3 ∈ y1 ∨ y2 ∨ z, a contradiction. Thus, d = 3,
A = {y1, y2}, and B = {z}.

In the case A,B ⊆ V − {z}, the only possible maximum convexly independent sets
of T are those given in (1). We need only show that all the sets from (1) are convexly
independent sets of T . But z cannot be in the convex hull of A ∪ B, since P2 → z, so A
and B need only be a convexly independent set of the bipartite tournament induced by
V − {z}, which is isomorphic to B2d−2. This was shown in (1).

For (4), as in Section 5, A ∪B ∪D→
A ∪D←

B is contained in two partite sets each with
at least two vertices. In particular, z /∈ A ∪ B. Thus, A,B ⊆ V − {z}, which induces a
bipartite tournament isomorphic to B2b−2. As before, we need only prove that all the sets
in (1) are convexly independent sets of T . If T ∼= T2d−1, then this follows as in (1) since
z → V −{z}. If T ∼= T ′

2d−1, then suppose that A∪B is convexly dependent. By (1), A∪B
cannot be made convexly dependent by vertices in P1 ∪ P2. Thus, there must be some xi

(resp. yi) that was brought into the convex hull of (A∪B)− {xi} (resp. (A∪B)− {yi})
by z that could not have been brought in without z. This would occur by yj → xi → z
(resp. z → yi → xj). But since x1 ∈ A and y1 ∈ B, we could just as well have gotten xi

and yi by yj → xi → y1 and x1 → yi → xj. Thus, z has no effect on whether or not xi or
yi make A ∪B convexly dependent, and the result follows from (1).

For (5), we again know z /∈ A∪B. By Lemma 5.5, we have x1 ∈ A and y1 ∈ B. Since
y2 → z → y1, Lemma 5.8(1) implies that y2 /∈ B. Thus, A = {x1, x2} and B = {y1}.

7 Open Problems

We end with three open problems related to our results.

(1) For which multipartite tournaments do we have h(T ) = r(T ) = d(T )? This occurred
for multipartite tournaments of maximum Helly number, but did not occur for T ′

2d−1.
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(2) For which multipartite tournaments do we have hul(T ) = d(T )? This occurred for
multipartite tournaments of maximum hull number, but not for B′

2d−1, T2d−1, and T ′′
5 .

(3) Classify all multipartite tournaments of minimum rank. Certainly, all nontrivial
tournaments have rank 2. It is natural to try to describe other multipartite tournaments
of rank 2.
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