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Abstract

This paper studies the structure of U(g)-Galois extensions. In particular, we use
a result of Bell to construct a “PBW-like” free basis for faithfully flat U(g)-Galois
extensions. We then move to non-faithfully flat extensions and propose a possible
equivalent condition for a U(g)-extension to be Galois. We get a partial result for
this.

1 Introduction

This paper is concerned with Hopf Galois extensions. These extensions come from the
generalizations of classical Galois field extensions given in [CHR65], where a group acts
faithfully on an extension of commutative rings. These concepts have been generalized to
Hopf algebra actions and coactions on extensions of associative algebras in [KT81].

The results that are most important for this paper come from [Bel00]. He considers
faithfully flat H-Galois extensions for certain Hopf algebras H. Using results from [Sch90],
he obtains results in the case when H is connected and, more specifically, when H is a
universal enveloping algebra.

One of Bell’s results states that if H is connected and AcoH ⊆ A is faithfully flat
H-Galois, then we have A ∼= AcoH#σH for some 2-cocycle σ. In particular, A is a free
AcoH-module. For our main result, Theorem 4.6, we give an explicit construction of a
free basis in the case H = U(g). This construction is analogous to the construction of
a PBW-basis for U(g). We also prove other connections between faithfully flat Galois
extensions AcoU(g) ⊆ A and K ⊆ U(g), where K is the ground field.

In Section 5, we consider the case where the extension is not faithfully flat. We
get Proposition 5.2 which suggests that a certain map c̄ determines whether or not an
extension AcoU(g) ⊆ A is U(g)-Galois.
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The author would like to thank the referee for the many helpful suggestions. In
particular, the results for connected Hopf algebras, as well as Lemma 3.3, are given in a
more general context than in the original paper. Also, an observation by the referee led
to a strengthening of Theorem 4.6.

2 Preliminaries

The primary reference is [Mon93]. The ground field is always K, and tensor products are
assumed to be over K unless otherwise specified.

In this paper, we primarily concentrate on the Hopf algebra U(g), where g is a Lie
algebra over K. The Hopf algebra structure is given by ∆(x) = 1⊗ x + x⊗ 1, ε(x) = 0,
and S(x) = −x. We then extend ∆ and ε to algebra homomorphisms and S to an algebra
anti-homomorphism of U(g).

The objects of interest in this paper are Hopf Galois extensions. They are generaliza-
tions of classical Galois extensions, where the group action is replaced by a Hopf algebra
coaction. Let H be a Hopf algebra, with A a right H-comodule algebra. That is, we have
an algebra map ρ : A → A⊗H such that (ρ⊗id)◦ρ = (id⊗∆)◦ρ and (id⊗ε)◦ρ = id⊗1.
Let AcoH = {a ∈ A : ρ(a) = a⊗ 1} denote the coinvariants of A. An extension B ⊆ A of
K-algebras is right H-Galois if B = AcoH and the map β : A ⊗B A → A ⊗K H given by
β(a⊗ b) = (a⊗ 1)ρ(b) is bijective.

If H = KG, then H-comodule algebras are G-graded algebras (see [Mon93, 1.6.7,4.1.7]),
and H-Galois extensions are precisely the strongly G-graded extensions (see [Ulb81] or
[Mon93, 8.1.7]). This gives a close link between KG-Galois extensions and G itself, for if
A = ⊕g∈G Ag is the grading, then G ∼= {Ag : g ∈ G} as groups, where the multiplcation
of the subspaces {Ag} is given by setwise multiplication. One can also show that if G
is a finite group, then (KG)∗-Galois field extensions are precisely classical Galois field
extensions with Galois group G.

The main result of this paper depends heavily on [Bel00]. He studied Hopf Galois
extensions of connected Hopf algebras (i.e. Hopf algebras whose only simple subcoalgebra
is K1H), and obtained the following result.

Proposition 2.1. [Bel00, 1.3] Let H be a connected Hopf algebra and let A be an H-
comodule algebra. Then the following are equivalent.

(i) The extension AcoH ⊆ A is faithfully flat H-Galois.
(ii) The extension AcoH ⊆ A is H-cleft.
(iii) There is a total integral φ : H → A.

Note that a total integral is an H-comodule map φ : H → A such that φ(1) = 1, and
AcoH ⊆ A is an H-cleft extension if there is a total integral which is convolution invertible
(see [Mon93, 1.4, 7.2]).

By [Mon93, 7.2.2], any H-cleft extension is isomorphic to a crossed product AcoH#σH.
This and the above imply that any faithfully flat H-Galois extension is in fact free over
AcoH when H is connected. Since U(g) is connected by [Mon93, 5.5.3], this result applies
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to U(g)-Galois extensions. Our goal will be to construct a free basis in a similar fashion as
the PBW basis for U(g). Bell’s characterization of U(g)-Galois extensions will be useful.

Proposition 2.2. [Bel00, 1.5] AcoU(g) ⊆ A is faithfully flat U(g)-Galois if and only if
there is a map λ : g → A such that ρ(λ(x)) = λ(x)⊗ 1 + 1⊗ x.

Thus, λ(x) plays the same role in the comodule structure of A as x does in U(g).

3 U(g)-comodules

Let us fix some notation for U(g). Let {xi : i ∈ I} be an ordered basis for g. We use the
“multi-index” notation as described in [Mon93, 5.5]. Consider all functions n : I → Z≥0

with finite support. In other words, n(i) 6= 0 for only finitely many i ∈ I. These functions
can be thought of as ordered m-tuples (n(i1), · · · ,n(im)), where i1 < · · · < im are the
only elements in I which do not vanish under n. We then allow the length of these tuples
to be arbitrarily large (but finite). Define xn = x

n(i1)
i1

· · ·xn(im)
im

. Then the PBW basis for
U(g) is {xn : n has finite support}. This gives us a shorthand for the PBW basis. We
also define |n| =

∑
i∈I n(i).

We can use this notation to write the comultiplication on U(g) in a compact manner.
We first need some more notation. Define a partial order on these functions, so that
m ≤ n if m(i) ≤ n(i) for all i ∈ I. If m ≤ n, we can define a generalized binomial
coefficient

(
n
m

)
=

∏
i∈I

(
n(i)
m(i)

)
. We get the following.

Lemma 3.1. [Mon93, 5.5] For all n : I → Z≥0 with finite support,

∆(xn) =
∑
m≤n

(
n

m

)
xm ⊗ xn−m.

We can apply the same notation to the elements in A given by Proposition 2.2. If we
let ai = λ(xi), then we write an = a

n(i1)
i1

· · · an(im)
im

.
We now turn to a more general context, investigating a comodule M over a coalgebra

H. Recall the coradical filtration H = ∪∞n=0Hn, where H0 is the coradical, and the rest
of the Hn are defined inductively by Hn+1 = ∆−1(H ⊗Hn + H0 ⊗H) (see [Mon93, 5.2]).

Definition 3.2. Let H be a coalgebra with coradical filtration H = ∪∞n=0Hn. Let M be
a right H-comodule. We define Mn = ρ−1(M ⊗Hn}.

The Mn have many of the same properties as the coradical filtration, and we use
similar methods to study them. For subspaces N ⊆ M and C ⊆ H, define N ∧ C =
ρ−1(M ⊗C + N ⊗H). We use this “wedge product” in a similar way as in [Mon93, 5.2].

Lemma 3.3. Let H be a coalgebra, M a right H-comodule. For all n ≥ 0,

(i) Mn is a subcomodule of M .

(ii) Mn+1 = Mn ∧H0.

3



(iii) Mn = {m ∈ M : ρ(m) ∈
∑n

i=0 Mi ⊗Hn−i}
(iv) M =

⋃∞
n=0 Mn

(v) If M is an H-comodule algebra, and H is a bialgebra such that HiHj ⊆ Hi+j, then
MiMj ⊆ Mi+j

Note: M0 is the sum of all simple subcomodules of M , and Mn−1 is the nth level of the
socle filtration of M . Also, if H is a Hopf algebra whose coalgebra filtration is a Hopf
algebra filtration (see [Mon93, p. 62]), then (v) applies. In particular, this will occur if
H is pointed, or, more generally, when H0 is a subHopfalgebra of H [Mon93, 5.2.8].

Proof. Let m ∈ Mn, so that ρ(m) =
∑

mi ⊗ hi, with hi ∈ Hn. Since (ρ ⊗ id) ◦ ρ =
(id ⊗ ∆) ◦ ρ, we have

∑
ρ(mi) ⊗ hi =

∑
mi ⊗ ∆(hi). But Hn is a subcoalgebra, so

∆(hi) ∈ Hn ⊗Hn, which forces ρ(mi) ∈ M ⊗Hn. This gives us (i).
For (ii), let {hi} be a basis for H0, with {h′i} a complementary basis in Hn+1. If

m ∈ Hn+1, then we can write ρ(m) =
∑

mi ⊗ hi +
∑

m′
i ⊗ h′i. As before, we have∑

ρ(mi)⊗ hi +
∑

ρ(m′
i)⊗ h′i =

∑
mi ⊗∆(hi) +

∑
m′

i ⊗∆(h′i)

Thus, each ρ(m′
i)⊗h′i ∈ M⊗H0⊗H0+M⊗∆(Hn+1) ⊆ M⊗H0⊗H0+

∑n+1
i=0 M⊗Hi⊗Hn+1−i

by [Mon93, 5.2.2, 2)]. But since h′i is in a complementary basis to H0, this forces ρ(m′
i) ∈

M ⊗Hn, so m′
i ∈ Mn. Thus, m ∈ Mn ∧H0.

For the other direction, let m ∈ Mn ∧ H0, so we can write ρ(m) =
∑

mi ⊗ hi with
mi ∈ Mn or hi ∈ H0 for all i. This implies that∑

mi ⊗∆(hi) =
∑

ρ(mi)⊗ hi ∈ M ⊗H ⊗H0 + M ⊗Hn ⊗H

which means that ∆(hi) ∈ H ⊗H0 + Hn ⊗H. Thus, hi ∈ Hn+1, which gives us (ii).
Using (ii), we get (iii) from methods which are completely analogous to [Mon93, 5.2.2,

2)].
The proof of (iv) is trivial. For (v), we have, by the definition of comodule algebras,

that ρ is an algebra homomorphism. Thus, if a ∈ Mi, b ∈ Mj, then

ρ(ab) = ρ(a)ρ(b) ∈ (M ⊗Hi)(M ⊗Hj) ⊆ M ⊗Hi+j

Thus, ab ∈ Mi+j.

This makes {Mn} a comodule filtration of M . Notice that if H is connected, then
M0 = M coH .

4 Faithfully flat H-Galois extensions

In [Sch90], it is proven that if AcoH ⊆ A is a right H-Galois extension, then it is right
faithfully flat if and only if it is left faithfully flat. Thus, we can refer to faithfully flat
Galois extensions without reference to left or right.
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If A = U(g), we see that A1 = U1 is an important part of the comodule filtration. It is
a Lie subalgebra, and A0 is a Lie ideal of A1. This will always be true for U(g)-comodule
algebras, so long as A0 is commutative.

Proposition 4.1. Let A be a H-comodule algebra, where H is a connected Hopf algebra.
If A0 is commutative, then A1 is a Lie subalgebra of A, and A0 / A1.

Proof. Since H is connected, [Mon93, 5.3.2, 1] implies that H1 = K1H ⊕ P (H). Thus,
if we let a, b ∈ A1, then Lemma 3.3(iii) implies that ρ(a) = a ⊗ 1 +

∑
i ai ⊗ hi and

ρ(b) = b ⊗ 1 +
∑

i bi ⊗ hi, where {hi} is a basis for P (H), and ai, bi ∈ A0. Since ρ is an
algebra homomorphism, a quick calculation gives us

ρ([a, b]) = ρ(ab− ba) = [a, b]⊗ 1 +
∑

i

([a, bi] + [ai, b])⊗ hi +
∑
i,j

aibj ⊗ [hi, hj]

Since P (H) is a Lie subalgebra of H, ρ([a, b]) ∈ A⊗H1, and so [a, b] ∈ A1. This implies
that A1 is a Lie subalgebra of A.

Suppose that a and b are as above, except that a ∈ A0. Then ai = 0 for all i.
Since bi ∈ A0 for all i and A0 is commutative, the bi’s commute with a. We then have
ρ([a, b]) = [a, b]⊗ 1, and so [a, b] ∈ A0. Thus, A0 / A1.

Lemma 4.2. Let H be a connected Hopf algebra. The map c : A1 → A0 ⊗ P (H) given
by a 7→ ρ(a)− a⊗ 1 is an A0-module homomorphism with kernel A0. If, in addition, A0

is central, then c is a Lie algebra homomorphism.

Note: We may equivalently define c(a) = β(1⊗ a− a⊗ 1).

Proof. It is clear that ker(c) = A0. To show that c is an A0-module homomorphism, we
have, for all a ∈ A0 and b ∈ A1,

c(ab) = ρ(ab)− ab⊗ 1 = ρ(a)ρ(b)− ab⊗ 1

= (a⊗ 1)ρ(b)− (a⊗ 1)(b⊗ 1) = (a⊗ 1)(ρ(b)− b⊗ 1) = a · c(b)

Finally, if A0 is central, let a, b ∈ A1. We then have

[c(a), c(b)] = [ρ(a)− a⊗ 1, ρ(b)− b⊗ 1]

= ρ([a, b])− [a⊗ 1, ρ(b)]− [ρ(a), b⊗ 1] + [a, b]⊗ 1

= ρ([a, b])− [a⊗ 1, ρ(b)− b⊗ 1]− [a⊗ 1, b⊗ 1]−
[ρ(a)− a⊗ 1, b⊗ 1]− [a⊗ 1, b⊗ 1] + [a, b]⊗ 1

Now a⊗ 1 commutes with ρ(b)− b⊗ 1 since ρ(b)− b⊗ 1 ∈ A0 ⊗ P (H) and A0 is central.
Similarly, b⊗ 1 commutes with ρ(a)− a⊗ 1. Thus,

[c(a), c(b)] = ρ([a, b])− [a⊗ 1, b⊗ 1]− [a⊗ 1, b⊗ 1] + [a, b]⊗ 1

= ρ([a, b])− [a, b]⊗ 1 = c([a, b])
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This gives us the A0-homomorphism c̄ : A1/A0 → A0 ⊗ P (H) given by a + A0 7→
ρ(a)− a⊗ 1. If we let H = U(g), we get

Corollary 4.3. A0 ⊆ A is faithfully flat U(g)-Galois if and only if c̄ is an isomorphism.

Proof. Suppose A0 ⊆ A is faithfully flat U(g)-Galois. We already know that c̄ is injective
by Lemma 4.2, so it suffices to prove that it is surjective. Let x ∈ g. By Proposition 2.2,
there exists some ax ∈ A1 such that ρ(ax) = ax ⊗ 1 + 1⊗ x. We get c̄(ax + A0) = 1⊗ x,
and so c̄ is surjective.

Conversely, for each x ∈ g, let ax ∈ A1 such that c̄(ax + A0) = 1 ⊗ x. Then ρ(x) =
ax ⊗ 1 + 1⊗ x, and thus A0 ⊆ A is faithfully flat U(g)-Galois by Proposition 2.2

Recall that Proposition 2.1 states that a faithfully flat extension AcoH ⊆ A is cleft, and
thus A ∼= AcoH#σH (see [DT86] or [Mon93, 7.2.3]). Given a convolution invertible total
integral φ : H → A, the isomorphism Ψ is given by a 7→

∑
a0φ

−1(a1)#a2. In addition,
the crossed product structure is given by h · a =

∑
φ(h1)aφ−1(h2) and the cocycle is

σ(h, k) =
∑

φ(h1)φ(k1)φ
−1(h2k2).

Lemma 4.4. Let H = U(g), with notation as in Lemma 3.1. Let A be a right H-
comodule algebra, with A0 ⊆ A faithfully flat. Then (1#xi)(1#xn) = 1#(xix

n) + r,
where r ∈ A0 ⊗H|n|.

Proof. We have

(1#xi)(1#xn) =
∑

σ([xi]1, x
n
1 )#(xi)2x

n
2

=
∑

σ(1, xn
1 )#(xix

n
2 ) +

∑
σ(xi, x

n
1 )#xn

2

From Lemma 3.1, we have ∆(xn) =
∑

m≤n

(
n
m

)
xm ⊗ xn−m. Also, σ(1, h) = ε(h)1A by

[Mon93, 7.1.2, 2)], so

(1#xi)(1#xn) = 1#(xix
n) +

∑
σ(xi, x

n
1 )#xn

2

which completes the proof.

Lemma 4.5. Let H = U(g), and let A0 ⊆ A be a faithfully flat H-Galois extension. Let
ai = λ(xi) as in Proposition 2.2 (so ρ(ai) = ai ⊗ 1 + 1 ⊗ xi). Then Ψ(an) = 1#xn + r,
where r ∈ A0 ⊗H|n|−1

Proof. We induct on |n|. For |n| = 1, we have Ψ(ai) = ai#1−ai#1+1#xi = 1#xi, since
φ−1(ai) = −xi. For |n| > 1, we can write an = aia

m for some i and with |m| = |n| − 1.
We then have, by induction,

Ψ(an) = Ψ(ai)Ψ(am) = (1#xi)(1#xm + r1)

where r1 ∈ A0 ⊗H|n|−2. Multiplying through, and applying Lemma 4.4, we get

Ψ(an) = 1#xn + r2 + (1#xi)r1

where r2 ∈ A0 ⊗H|n|−1, and the proof is complete.
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Theorem 4.6. Let A0 ⊆ A be a faithfully flat H-Galois extension for H = U(g), {xi :
i ∈ I} an ordered basis for g, and let ai = λ(xi) as in Proposition 2.2. Then

(i) {ai + A0 : i ∈ I} is a free A0-basis for A1/A0. In particular, {1A, ai : i ∈ I} is a
free A0-basis for A1.

(ii) The set {an : n has finite support} is a free A0-basis for A.

Proof. For (i), suppose that
∑

i bi(ai + A0) = 0 for some bi ∈ A0. Then
∑

i biai ∈ A0, so∑
i

biai ⊗ 1 = ρ(
∑

i

biai) =
∑

i

biai ⊗ 1 +
∑

i

bi ⊗ xi

Thus,
∑

i bi ⊗ xi = 0, and so bi = 0 for all i.
Now suppose a + A0 ∈ A1/A0. Then ρ(a) = a⊗ 1 +

∑
i bi ⊗ xi for some bi ∈ A0. We

then have

ρ(a−
∑

i

biai) = (a⊗ 1 +
∑

i

bi ⊗ xi)− (
∑

i

(bi ⊗ 1)(ai ⊗ 1 + 1⊗ xi))

= (a−
∑

i

biai)⊗ 1

Thus, a−
∑

i biai ∈ A0, and so a + A0 =
∑

i bi(ai + A0). This gives us that {ai + A0} is
a free A0-basis for A1/A0.

For (ii), assume we have a nontrivial dependence relation∑
i

ci ai = 0, ci ∈ A0

If n is the maximum degree of a monomial with a nonzero coefficient, then we have

0 = ρ(
∑

i

ci ai) =
∑
|i|=n

ci ⊗ xi + s

where s ∈ A ⊗ Hn−1. By the PBW theorem, ci = 0 for all |i| = n. This contradicts
our assumption of the existence of a nontrivial dependence relation, and so the ai are
independent over A0.

It then suffices to show that the an span A over A0. We use the fact that A ∼= A0⊗H
as A0-modules under the isomorphism Ψ. We then need only show that if M is the span
of all the an over A0, then 1#xn ∈ Ψ(M) for all n. We induct on |n|.

The cases |n| = 0 and |n| = 1 are easy to check. For |n| > 1, we have, by Lemma 4.5,
that Ψ(an) = 1#xn + r, where r ∈ A0 ⊗H|n|−1. By induction, r ∈ Ψ(M), and therefore
1#xn ∈ Ψ(M) as well.
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5 The role of c̄ in the non-faithfully flat case

Corollary 4.3 seems to indicate that the behavior of c̄ is related to whether or not A0 ⊆ A
is U(g)-Galois. In this section, we attempt to generalize 4.3 to arbitrary U(g)-Galois
extensions. It appears that the correct map to consider in this more general context is
id⊗ c̄ : A⊗A0 (A1/A0) → A⊗A0 (A0 ⊗K g) ∼= A⊗K g .

Lemma 5.1. For H a connected Hopf algebra, let {hi} be an ordered basis for g = P (H).
Let A be an H-comodule algebra, and let β : A⊗A0 A → A⊗H be the Galois map. Let
{ai} be a generating set for A1 as an A0-module. Then ρ(ai) = ai ⊗ 1 +

∑
j aij ⊗ hj

for some aij ∈ A0 by Lemma 3.3(iii). Suppose that the matrix [aij] has a row finite left
inverse [bij] with entries in A. Then β(A ⊗ An

1 ) = A ⊗K Hn
1 . In particular, β is onto if

and only if H = U(g) or u(g).

Remark: There is an abuse of notation here. By A⊗An
1 , we actually mean the span over

A0 of the simple tensors a⊗ b ∈ A⊗A0 A, where a ∈ A and b ∈ An
1 . There is no guarantee

that this will be isomorphic to the tensor product A⊗A0 An
1 if A is not flat over A0. We

will continue with this abuse of notation with the understanding that it is not the formal
tensor product.

Proof. The n = 0 case is trivial. For n = 1, it suffices to show that 1 ⊗ hi ∈ β(A ⊗ A1)
for all i. Consider the element α =

∑
j(bij ⊗ aj − bijaj ⊗ 1). Since [bij] is row finite, this

is a finite sum, and so α ∈ A⊗ A1. We have

β(α) =
∑

j

(bij ⊗ 1)ρ(aj)−
∑

j

(bijaj ⊗ 1)ρ(1)

=
∑

j

bijaj ⊗ 1 +
∑
j,k

bijajk ⊗ hk −
∑

j

bijaj ⊗ 1 = 1⊗ hi

and so β(A⊗A1) = A⊗K H1. Now we proceed by induction. Assume that β(A⊗An
1 ) =

A⊗K Hn
1 . Then

β(A⊗ An+1
1 ) = (A⊗ 1)ρ(An+1

1 ) = (A⊗ 1)ρ(An
1 )ρ(A1)

= β(A⊗ An
1 )ρ(A1) = (A⊗K Hn

1 )ρ(A1)

= (A⊗K Hn
1 )(A⊗ 1)ρ(A1) = (A⊗K Hn

1 )β(A⊗ A1)

= (A⊗K Hn
1 )(A⊗H1) = A⊗Hn+1

1

which completes the proof.

Proposition 5.2. Let A be an H-comodule algebra for H = U(g). Then

(i) if id⊗ c̄ is onto, then so is β.

(ii) If A0 ⊆ A is H-Galois and β−1(A⊗H1) = A⊗A1, then id⊗ c̄ is an isomorphism.
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Proof. For (i), let {ai} be a generating set for A1 as an A0-module, and let {aij} be
as in Lemma 5.1. Since id ⊗ c̄ is onto, then for each i there exist bij ∈ A such that
1⊗ xi = (id⊗ c̄)(

∑
j bij ⊗ (aj + A0)). Notice that, for each i, there are only finitely many

j such that bij 6= 0, so the matrix [bij] is row finite. But this gives us

1⊗ xi =
∑
j,k

bijajk ⊗ xk

and so
∑

j bijajk = δi,k. Thus, [aij] has a row finite left inverse, and so β is onto by
Lemma 5.1.

Now we consider (ii). Since β−1(A⊗H1) = A⊗ A1 and the ai’s generate A1 over A0

by Theorem 4.6(i), then for each i, there exist bij ∈ A such that β−1(1⊗xi) =
∑

j bij⊗aj.

Since β−1 is A-linear, we have β−1(a ⊗ xi) =
∑

j abij ⊗ aj. Define γ : A ⊗K g → A ⊗A0

(A1/A0) by γ(a ⊗ xi) =
∑

j abij ⊗ (aj + A0). For each a ∈ A and b ∈ A1, we have
ρ(b) = b⊗ 1 +

∑
i bi ⊗ xi for some bi ∈ A0, and so

[γ ◦ (id⊗ c̄)](a⊗ (b + A0)) = γ(
∑

i

abi ⊗ xi) =
∑
i,j

abibij ⊗ (aj + A0)

But we also have that

a⊗ b = β−1 ◦ β(a⊗ b) = β−1(ab⊗ 1 +
∑

i

abi ⊗ xi)

= ab⊗ 1 +
∑
i,j

abibij ⊗ aj (1)

If we let π : A1 → A1/A0 be the canonical homomorphism, then, applying id⊗ π to both
sides of (1) gives us a⊗ (b + A0) =

∑
i,j abibij ⊗ (aj + A0), and so γ ◦ (id⊗ c̄) = id.

For the other direction, we have

[(id⊗ c̄) ◦ γ](a⊗ xi) = (id⊗ c̄)(
∑

j

abij ⊗ (aj + A0))

=
∑
j,k

abijajk ⊗ xk

But we have 1⊗ xi = β ◦ β−1(1⊗ xi) = β(
∑

j bij ⊗ aj) =
∑

j bijaj ⊗ 1 +
∑

j,k bijajk ⊗ xk.
This implies that

∑
j bijajk = δi,k, and thus

∑
j,k abijajk ⊗ xk = a ⊗ xi. This gives us

[(id⊗ c̄) ◦ γ](a⊗ xi) = a⊗ xi, and so γ = (id⊗ c̄)−1. Thus, id⊗ c̄ is an isomorphism.

Note that we have a filtration of the A-module A⊗A0 A given by (A⊗A0 A)n = A⊗An.
Recall that a homomorphism f between two filtered A-modules M and N is said to have
degree p if f(Mi) ⊆ Ni+p for all i. It is easy to see that β is a homomorphism of degree
0 for any U(g)-comodule algebra. However, if β is bijective, it is not clear that β−1 is
of degree zero. But if, in addition, id ⊗ c̄ is onto, then 5.2 implies that β|A⊗An is onto
A ⊗ Hn for H = U(g). In this case, β−1 is a homomorphism of degree 0 as well. So

9



(ii) implies that if A0 ⊆ A is U(g)-Galois, then β−1 is a homomorphism of degree 0 if
β−1(A⊗ U1) = A⊗A0 A1.

Proposition 5.2 leads one to consider what role id⊗ c̄ plays in determining whether or
not A0 ⊆ A is U(g)-Galois. We ask

Question 5.3. Is A0 ⊆ A a U(g)-Galois extension if and only if id⊗ c̄ is an isomorphism?

If we knew that β−1 must be a homomorphism of degree 0 for any Galois extension,
or, equivalently, that β−1(A⊗ U1) = A⊗ A1, that would give us one direction (⇒). The
other direction seems more difficult.
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