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Abstract

We investigate the general Lights Out game on subdivided caterpillars. In the
Lights Out game, the vertices of a graph G are labeled with elements of Zk. When a
vertex is toggled, the labels of that vertex and all adjacent vertices are increased by
1 modulo k. The goal is to make the labels of all vertices 0. A graph in which the
game can always be won regardless of the initial labeling is called always-winnable.
In this paper, we determine a large class of non-always-winnable subdivided cater-
pillars. For the remaining cases, we reduce the determination of the winnability of
a subdivided caterpillar to the winnability of certain subgraphs that are ordinary
caterpillars.

1 Introduction

The game Lights Out, originally a handheld game by Tiger Electronics, has been gener-
alized to graphs. It is part of a larger class of “light-switching” games in which we have
a collection of lights that can be on, off, or have multiple on-states (which can be inter-
preted as different colors or different intensities of the same color). In addition, there are
certain “switches” which, when toggled, change the state of a given subset of the lights.
Given an initial light pattern, the goal of the game is to toggle the switches in such a
way that all the lights are off. Such games include the Berlekamp Light-Switching game
(see [CS04] and [Sch11]), Merlin’s Magic Square (see [Pel87] and [Sto89]), and others (see
[Ara00] and [CMP09]).

In our version of the Lights Out game, introduced in [GP13] and studied in [EEJ+],
the lights are the vertices of a graph G, and each vertex is labeled with an element of
Zk. The switches are the vertices of G, where toggling the vertex v ∈ V (G) increases
the labels of v and the vertices adjacent to v by 1 modulo k. The k = 2 version of the
game has been studied in [AF98], [GK07], and [Sut89]. As noted in [GP13] and [GK07],
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there is a connection between the Lights Out game and Domination Theory. The parity
domination version of the Lights Out problem can be found in [AS92] [AS96], [CK03],
and [GKW02]. The connection between Lights Out and domination theory can also be
found in non-z (mod k) dominating sets introduced in [CJ03].

Let G be a graph. Our focus in this paper is to determine the circumstances under
which the Lights Out game can be won onG. Let k ∈ N with k ≥ 2, and let π : V (G)→ Zk

be a labeling of the vertices in G. We call π winnable over Zk if it is possible to toggle
the vertices of G in such a way that all vertices have label 0. We call G always-winnable
(or AW) over Zk if every labeling of V (G) is winnable over Zk.

More specifically, we study the winnability of the Lights Out game on subdivided
caterpillars. A caterpillar is a graph in which the vertex set is S ∪ L, where S induces
a path (called the spine) and L consists of leaves that are adjacent to vertices in S. A
subdivided caterpillar is similar to a caterpillar, except we replace L above with paths
of arbitrary length (called legs) where one endpoint of each leg is a vertex in the spine.
We prove three main results. The first is Theorem 3.3, which determines a large class of
subdivided caterpillars that are not AW. The second is Theorem 3.4, which reduces the
problem of determining the winnability of certain subdivided caterpillars to determining
the winnability of certain subgraphs that are ordinary caterpillars. The last result is
Theorem 3.7, which shows how the AW subdivided caterpillars of Theorem 3.4 can be
used to construct all AW subdivided caterpillars. This reduces the problem of determining
the AW subdivided caterpillars to determining the AW caterpillars.

2 Winnability in Path Graphs

Since the legs of subdivided caterpillars are paths, it will be helpful to have some results
on the winnability of paths. So let Pn be the graph with V (Pn) = {v1, v2, . . . , vn} and
E(Pn) = {vivi+1 : 1 ≤ i ≤ n− 1}.

Definition 2.1. Let Pn be defined as above, and let k ∈ N. For each z ∈ Zk, we define
the labeling πz : V (Pn)→ Zk by πz(v1) = z and πz(vi) = 0 for all 2 ≤ i ≤ n.

The following is from Lemma 4.2 in [GP13].

Theorem 2.2. For each labeling of V (Pn) by Zk, it is possible to toggle the vertices of
Pn so that the resulting labeling is πz for some z ∈ Zk.

For a given vertex, its label is increased by one every time it or one of its neighbors
is toggled. The order in which this is done does not matter. With this in mind, if V (G)
has the labeling πz, we can then win the Lights Out game (if it is possible) by toggling
the vertices beginning with v1, toggling v2 so that v1 has label 0, toggling v3 so that v2
has label 0, etc, until we come to vn. We let ti be the number of times vi is toggled, and
let di be the label for vi after vi has been toggled. It is then clear that the labeling πz is
winnable if and only if dn = 0. We also have ti = −di−1 for all i to make sure that vi−1
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has label 0 after vi has been toggled. Moreover, we have d1 = z + t1 and di = ti + ti−1 for
each i ≥ 2. An easy induction argument gives us

di =


−t1 i ≡ 0 (mod 3)

z + t1 i ≡ 1 (mod 3)

−z i ≡ 2 (mod 3)

(1)

and

ti =


z i ≡ 0 (mod 3)

t1 i ≡ 1 (mod 3)

−z − t1 i ≡ 2 (mod 3)

(2)

By setting dn = 0 and using Equation (1), we get the following.

Lemma 2.3. Let Pn have an initial labeling of πz with z 6= 0.

1. If n ≡ 0 (mod 3), then one can win the Lights Out game without toggling v1.

2. If n ≡ 1 (mod 3), then one can win the Lights Out game with t1 = −z.

3 Winnability in Subdivided Caterpillars

Theorem 2.2 and Equations (1) and (2) suggest that the lengths modulo 3 of the legs of a
subdivided caterpillar are important in the Lights Out game, so we define the following.

Definition 3.1. Let G be a subdivided caterpillar with spine S ⊆ V (G). For each
i ∈ {0, 1, 2} and v ∈ S, we define Li(v) to be the set of all legs in G with end vertex v

and whose length is congruent to i modulo 3. We also define Li(G) =
⋃
v∈S

Li(v).

The following lemma uses Theorem 2.2 and the sets Li(G) to achieve labelings of a
convenient form. Note that for a set T ⊆ V (G), we have that N(T ) is the set of all
vertices of G that are neighbors to some vertex in S.

Lemma 3.2. Let G be a subdivided caterpillar with spine S ⊆ V (G) and an initial
labeling π : V (G)→ Zk.

1. The vertices of G can be toggled to give us a labeling in which all vertices in
V (G)− S − (N(S) ∩ L2(G)) have label 0.

2. If |L2(v)| ≤ 1 for all v ∈ S, then the vertices of G can be toggled to give us a
labeling in which all vertices in V (G)− S have label 0.

Proof. For (1), we apply Theorem 2.2 to each leg in G not including the spine vertices
to get a labeling of V (G) in which all vertices that are on the legs but not adjacent to
the spine have label 0. Suppose v1 ∈ L0(v) for some v ∈ S with v adjacent to v1. Since
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v1 ∈ L0(v), the leg containing v1 is of the form vv1v2 · · · v3k for some k ∈ N. Since the path
v1v2 · · · v3k is isomorphic to P3k, Lemma 2.3(1) implies that we can toggle the vertices of
v1v2 · · · v3k in such a way that v1 is not toggled and each vi has label 0. If v1 ∈ L1(v) with
v adjacent to v1, the leg containing v1 is of the form vv1v2 · · · v3k+1. By Lemma 2.3(2),
we can toggle v1, v2, . . . , and v3k+1 until all vi have label 0.

If we apply the above to all vertices in L0(G) and L1(G), we obtain a labeling of V (G)
in which all vertices have label 0 except perhaps the vertices in S and the vertices in
L2(G) that are adjacent to vertices in S.

For (2), we first toggle the vertices so that the resulting labeling satisfies (1). For each
v ∈ S such that |L2(v)| = 1, we then toggle v so that the vertex in L2(v) that is adjacent
to v has label 0. Of course, now this has made the vertices in L0(v) and L1(v) that are
adjacent to v have a non-zero label. However, we can toggle the vertices in these legs as
we did in the proof of (1) to get a labeling in which all vertices not on the spine have
label 0.

We now use |L2(G)| to determine a class of subdivided caterpillars that are not always-
winnable.

Theorem 3.3. Let G be a subdivided caterpillar with spine S ⊆ V (G), and let v ∈ S. If
|L2(v)| ≥ 2, then for all k ≥ 2, G is not AW over Zk.

Proof. Let one of the paths in L2(v) be given by v1v2 · · · v3k+2v, and let another path in
L2(v) be given by vw1w2 · · ·w3m+2. Let π : V (G)→ Zk be the labeling given by π(v1) = 1
and π(w) = 0 for all w 6= v1. We claim that this labeling is not winnable.

First note that the only vertex in the path v1 · · · v3k+2vw1 · · ·w3m+2 that may be ad-
jacent to a vertex outside the path is v. Thus, the vertices v1, v2, . . . , v3k+2, and v must
be toggled in the same way as we would toggle the path in isolation. After w1 is toggled,
the remaining wi must also be toggled as in the case of an isolated path. So let t be
the number of times v1 is toggled. The vertex v behaves as a vi with i ≡ 0 (mod 3).
Thus, v is toggled once by Equation (2). It follows that at this point, w1 has label 1.
Now we proceed with the path w1w2 · · ·w3m+2 as if we began with w1 having label 1. By
Equation (1), we have d3m+2 = 1. Since d3m+2 6= 0, we cannot win the game. Thus, π is
not winnable, and so G is not always-winnable over Zk.

In the case L2(G) = ∅, the problem reduces to ordinary caterpillars.

Theorem 3.4. Let G be a subdivided caterpillar with spine S ⊆ V (G) such that L2(G) =
∅. Let G′ be the caterpillar that is the subgraph of G induced by S ∪ (N(S) ∩ L1(G)).
For each k ∈ N, G is always-winnable over Zk if and only if G′ is always-winnable over
Zk.

Note that the G′ above can also be described as the caterpillar with spine S such that
each v ∈ S has |L1(v)| leaves adjacent to it.

Proof. Assume that G is always-winnable over Zk, and let π be any labeling of V (G′). We
can consider π a labeling of V (G) by defining π(v) = 0 for all v ∈ V (G) − V (G′). Since
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G is always-winnable over Zk, the labeling π is winnable on G. We toggle the vertices in
G′ as we would as part of winning the game in G, and we claim that this toggling wins
the game in G′. Let πf be the labeling of V (G′) that results after we have toggled all
vertices in G′. It suffices to prove that πf (v) = 0 for all v ∈ V (G′). For contradiction,
assume that πf (v) 6= 0 for some v ∈ V (G′). Observe that G is always-winnable, and all
vertices in V (G′) have already been toggled. Thus, we must be forced to toggle some
vertex w1 ∈ V (G)− V (G′) that is adjacent to v a nonzero number of times in the course
of winning the game in G, and we must be able to win the game in G without toggling
vertices in G′. Since w1 /∈ V (G′), we must have either w1 ∈ L0(G) − S and v ∈ S or
v, w1 ∈ L1(G)− S.

In either case, we have w1 in a leg in which all or part of the leg is the path
vw1w2 · · ·w3k, where w3k is the end vertex of the leg that is not on the spine. Note that
no vertices adjacent to wi for i ≥ 2 have been toggled yet, and so the path w1w2 · · ·w3k

has labeling πz for some z ∈ Zk. To win the game in G, we must toggle the vertices in
w1w2 · · ·w3k as we would in the graph P3k. By Equation (2), we must toggle w1 0 times.
This contradicts the assumption that w1 is toggled a nonzero number of times.

For the converse, assume that G′ is always-winnable over Zk. We let π be a labeling of
V (G), and we show that π is winnable. By Lemma 3.2(2), we can assume that π(v) = 0
for all v /∈ S. The remaining vertices that have nonzero labels are in V (G′). Since G′

is always-winnable, we can toggle the vertices in V (G′) in such a way that all vertices
in V (G′) have label 0. Thus, the only vertices in V (G) that have nonzero labels are in
V (G) − V (G′) and are adjacent to a vertex in V (G′). Let w1 ∈ V (G) − V (G′) have a
nonzero label. Then either w1 ∈ L0(v) or w1 ∈ L1(v) for some v ∈ S. Thus, w1 is part
of a leg of the form vw1w2 · · ·w3k or vww1w2 · · ·w3k, where w ∈ V (G′) (and thus w has
label 0). Since w1w2 · · ·w3k is isomorphic to P3k, Lemma 2.3(1) implies that we can toggle
w2, . . . , w3k in such a way that wi all have label 0 for i ≥ 1. This does not change the
label of v or w. If we apply this to all legs of G, we end up with all vertices having label
0. Thus, G is always-winnable.

Finally, we look at the case where L2(G) 6= ∅ and |L2(v)| ≤ 1 for each v ∈ S. In
[AS96], the authors used a certain construction to “paste” together non-AW caterpillars
to form another non-AW caterpillar in the case k = 2. The same construction was used
in [GP13] for the case where k is a prime power. In this construction, caterpillars are
arranged in a given order. For each pair of adjacent caterpillers, a new spinal vertex is
introduced with arbitrarily many leaves. This new spinal vertex shares an edge with an
end vertex from the spine of each tree in the pair.

We use a similar construction to arrange AW subdivided caterpillars in order and
transform them into other AW caterpillars. The construction is almost identical to the
one described above, except instead of connecting the end vertices of adjacent caterpillars
to single vertices that have arbitrarily many leaves, we connect the end vertices of adjacent
subdivided caterpillars to subdivided caterpillars in which each vertex v in the spine
satisfies |L2(v)| = 1.

Definition 3.5. For n ≥ 2, let G1, . . . , Gm be subdivided caterpillars. A winnable attach-
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ment of (G1, . . . , Gm) is a subdivided caterpillar G created from G1, G2, . . . , Gm, along
with the caterpillars T0, T1, . . . , Tm, where T0 or Tm may be empty, such that

1. |L2(v)| = 1 for each v in a spine of one of the nonempty Ti’s.

2. V (G) consists of all vertices from the Gi’s and Tj’s (taken over all i and j).

3. E(G) consists of the following.

(a) E(Gi) ∪ E(Tj) (taken over all i and j).

(b) For each 0 ≤ i ≤ n − 1, an edge that connects one end vertex of the spine
Ti 6= ∅ to an end vertex of the spine of Gi+1.

(c) For each 1 ≤ i ≤ n, an edge the connects the other end vertex in the spine of
Gi to an end vertex in the spine of Ti 6= ∅ that does not share an edge with an
end vertex in the spine of Gi+1.

Essentially, a winnable attachment consists of placing vertices with a single leg of
length 2 modulo 3 between the given subdivided caterpillars and attaching the spines by
edges between their end vertices. Note that there are no restrictions on L0(Ti) and L1(Ti).
We get the following.

Lemma 3.6. Let G be a winnable attachment of (G1, . . . , Gm), where each Gi is an
always-winnable subdivided caterpillar. Then G is always-winnable.

Proof. Let S ⊆ V (G) be the spine of G, and let π be a labeling of V (G). By definition,
we have |L2(v)| = 1 if v is in the spine of Ti. Since each Gi is AW, Theorem 3.3 implies
that |L2(v)| ≤ 1 if v is in the spine of Gi. Thus, |L2(v)| ≤ 1 for all vertices v ∈ S, so
we can assume that π(w) = 0 for all vertices w /∈ S by Lemma 3.2(2). Since each Gi is
always-winnable, we can toggle the vertices in each Gi so that each vertex in V (Gi) has
label 0. When this has been done, the only vertices that have a nonzero label are vertices
v ∈ S∩V (Ti) for some i. For every such v, we must then have |L2(v)| = 1. Let vv1 · · · v3k+2

be the unique leg in L2(v). This path is isomorphic to P3k+3. By Lemma 2.3(1), we can
toggle the vertices vi so that v and all vi have label 0. If we do this to every vertex v
with |L2(v)| = 1, we end up with all vertices of G having label 0. Thus, G is always-
winnable.

We are now ready to classify the always-winnable subdivided caterpillars in terms of
always-winnable caterpillars with L2(G) = ∅.

Theorem 3.7. Let G be a subdivided caterpillar with spine S ⊆ V (G) with L2(G) 6= ∅
and |L2(v)| ≤ 1 for all v ∈ S. Then G is always-winnable if and only if one of the following
occur.

1. |L2(v)| = 1 for all v ∈ S.

2. There exist always-winnable subdivided caterpillars Gi, 1 ≤ i ≤ m such that
L2(Gi) = ∅ for all i and G is a winnable attachment of (G1, G2, . . . , Gm).
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Proof. If G is a winnable attachment of always-winnable subdivided caterpillars with
L2 = ∅, then G is always-winnable by Lemma 3.6. If G is a subdivided caterpillar with
|L2(v)| = 1 for all v ∈ S, we can use Lemma 2.3(1) as in the proof of Lemma 3.6 to
prove that G is always-winnable. Thus, it suffices to prove that every always-winnable
subdivided caterpillar satisfies either (1) or (2).

So assume G is always-winnable. By Theorem 3.3, we have |L2(v)| ≤ 1 for all v ∈ S.
If we have |L2(v)| = 1 for all v ∈ S, then we have (1). Otherwise, we have at least one
v ∈ S with L2(v) = ∅. Let S be given by the path v1v2 · · · vn. We construct the graphs
Ti and Gj in the winnable attachment using the following algorithm. Note that we need
only articulate what the spines of Ti and Gj are. The legs of each Ti and Gj are the legs
of G that correspond to that portion of the spine.

1. If L2(v1) = ∅, let T0 = ∅. If L2(v1) 6= ∅, let k0 be minimal such that L2(vk0) = ∅.
We then let T0 have spine v1v2 · · · vk0−1.

2. For each i ≥ 1, suppose we have constructed Ti−1 with spine v`i−1
v`i−1+1 · · · vki−1−1

such that |L2(vi)| = 1 for all `i−1 ≤ i ≤ ki−1 − 1 and L2(vki−1
) = ∅. Let `i be

minimal so that `i > ki−1 and L2(v`i) 6= ∅. Then Gi has spine vki−1
vki−1+1 · · · v`i−1.

If no `i exists as described above, let Gi be as above with `i = n + 1 and stop the
algorithm.

3. If i = 1 and T0 = ∅, let Gi be as above with ki−1 = 1.

4. For each i ≥ 1, suppose we have constructed Gi with spine vki−1
vki−1+1 · · · v`i−1 with

L2(vi) = ∅ for all ki−1 ≤ i ≤ `i− 1 and |L2(v`i)| = 1. Let ki be minimal with ki > `i
and L2(vki) = ∅. Then Ti has spine v`iv`i+1 · · · vki−1. If no ki exists as described
above, let Ti be as above with ki = n+ 1 and stop the algorithm.

Let G1, · · · , Gm be the Gi generated by the above algorithm. It suffices to prove that
G is a winnable attachment of (G1, · · · , Gm) and that each Gi is an always-winnable
subdivided caterpillar with L1(Gi) = ∅. It is easy to show that every vertex v in the spine
of each Ti satisfies L2(v) 6= ∅ (and therefore |L2(v)| = 1), and that every vertex v in the
spine of each Gi satisfies L2(v) = ∅. Also, it is clear that G is a winnable attachment of
(G1, · · · , Gm). Thus, it suffices to prove that each Gi is always-winnable.

Let π be a labeling of Gi. By Lemma 3.2(2), we can assume that π(v) = 0 for all
v not on the spine of Gi. We extend π to a labeling on G by defining π(w) = 0 for all
w ∈ V (G) − V (Gi). Since G is always-winnable, we can toggle the vertices in V (G) in
such a way that all vertices have label 0. We toggle the vertices in V (Gi) as we would as
part of winning the game on G, and we claim that this wins the game on Gi. Note that
at this point only vertices in V (G)− V (Gi) need to be toggled in order to win the game
on G. Also, the only vertices in V (Gi) that are adjacent to vertices in V (G)− V (Gi) are
v`i−1

(if Ti−1 is nonempty) and vki−1 (if Ti is nonempty). Thus, all vertices of Gi that are
neither v`i−1

nor vki−1 have label 0. Let a be the label of v`i−1
and let b be the label of

vki−1. It suffices to show that a = b = 0.
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We prove the result for v`i−1
. The proof for vki−1 is similar. If i = 1 and T0 = ∅, then

there are no vertices in V (G)− V (Gi) that are adjacent to v`i−1
. Since our toggling was

part of a winning strategy for G, it follows that a = 0. Otherwise, Ti−1 is nonempty, and
the only vertex in V (G) − V (Gi) that is adjacent to v`i−1

is v`i−1−1. Note that v`i−1−1 is
in the spine of Ti−1,and so |L2(v`i−1−1)| = 1. Let v`i−1−1w1 · · ·w3k+2 be the unique leg in
L2(v`i−1−1). Since v`i−1−1 is the only vertex adjacent to v`i−1

that has yet to be toggled,
we must toggle it −a times. This leaves w1 with label −a and wi with label 0 for all i ≥ 2.
However, we must be able to toggle the wi’s in such a way that they all have label 0. Since
the labeling of w1 · · ·w3k+2 is πz, Equation (1) implies that w3k+2 ends up with label −a.
Since w3k+2 must have label 0, we must have a = 0. This completes the proof.

4 Conclusion

Theorem 3.3 characterizes the winnability of subdivided caterpillars G with |L2(v)| ≥ 2 for
some v ∈ V (G). Furthermore, Theorems 3.4 and 3.7 reduce the problem of characterizing
the winnability of subdivided caterpillars G with |L2(v)| ≤ 1 for all v ∈ V (G) to the
problem of characterizing the winnability of ordinary caterpillars. Thus, the problem of
determining winnability for all subdivided caterpillars has been reduced to determining
winnability for ordinary caterpillars.

In [AS96], non-AW caterpillars (and thus AW caterpillars) were characterized for k =
2. Some progress was made in [GP13] in the case that k is a prime power, but the
non-AW caterpillars have not been explicitly characterized in this case. When k is not a
prime power, it is even possible that the construction used in [AS96] and [GP13] to create
non-AW caterpillars from other non-AW caterpillars may actually produce an AW graph
([GP13, Example 5.7]). This complicates the task of classifying non-AW caterpillars in
this case.
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