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back then: Here I am, a dynamicist, teaching a
course in my specialty, differential equations, but
conveying NONE of the excitement that was swirling
around dynamics in those days.

My current course is much different. In fact, I
think that the evolution in MY differential equations
course has already happened. Yes, it will evolve
somewhat over the next few years. Yes, technological
breakthroughs will influence what and how I teach.
But I doubt that the curricular changes that will occur
over the next decade will come anywhere close to the
changes that have already occurred.

Here is an abridged version of my syllabus from
1982 including the number of weeks (approximately)
I spent on each topic:

● First order equations (Separable, exact, linear,
Bernoulli, applications) --- 2 weeks

● Second order equations --- 4 weeks

● Higher order equations --- 1 week

● Laplace transforms --- 2 weeks

● Power series solutions --- 2 weeks

● Systems --- 2 weeks.

If I recall, I really wanted to spend the 2 weeks on
this last topic, but, as always happens, I had to cut a
lot of it due to lack of time.

Comparing this syllabus to the syllabus I used in
1994, the only topics that remained were:

● First order equations (Separable, linear,
applications)

● Systems

Yes, power series, Laplace transforms, second
order equations were all gone from the syllabus!
Obviously, this leaves a lot of room for change.

In 1994 my syllabus had become:

● First order equations (separable, linear,
applications, as before). Now also slope fields,
numerical methods, existence/uniqueness,
phase lines, solution graphs, bifurcations --- 3
weeks

● Systems. Right to systems; no stop for second
order equations. Predator-prey, nullclines, phase
plane, numerical methods, linear systems,
second order equations (including forcing,
resonance), applications, bifurcations of linear
systems --- 7 weeks

● Nonlinear equations. Linearization, complete
qualitative analysis, Lorenz equations --- 2 weeks

● Discrete dynamics. Iteration, web diagrams,
chaos --- 1 week.

This is only a rough outline of the syllabus, but
note how different it is from my 1982 syllabus.

Obviously, this syllabus will not work for every-
one, but there is plenty of room for modification
(Laplace transforms in place of discrete dynamics or
less on nonlinear systems). The point is that this is a
VERY different course from the one I taught 10 years
ago.

How will this syllabus evolve in the future? Tech-
nology will dictate some changes, but I suspect that
the basic outline will remain the same. I hope to add
a little more on discrete dynamics as soon as our cal-
culus course opens up some room and covers more
of the material included in first order ODEs. Then I
hope to make a chaotic nonlinear system such as the
Lorenz equations or the Chua circuit the capstone of
the course. I wonder if it is possible to introduce one
of these two systems, compute the local behavior
near equilibrium points, observe a Poincare section,
and then reduce to a one-dimensional mapping?
With enought discrete dynamics, the chaotic behav-
ior of these systems could then be effectively ana-
lyzed rather than simply viewed in gee-whiz fashion.
If possible, that would be great! With a little more in
the realm of discrete dynamics, I could then give my
students a real taste of what is currently of interest in
mathematics, and, at the same time, introduce them
to the modern theory of differential equations. ❑

An inverse problem is one in which the parame-
ters of a model are to be determined from data
obtained by experiment. This is the opposite of the
more usual forward problem which seeks to calculate
the outcome of a model given the parameters of the
model. The most familiar example of an inverse prob-
lem is least-squares linear regression, in which the
slope and -intercept of an assumed linear model
are to be determined from a number of data pairs.
More complex inverse problems are found in diverse
areas, from geophysics to medicine. Usually, there
are more data points than parameters of the model to
be determined, as in the case of least-squares
regression. The converse may also be true. When
using data from a multiple breath nitrogen washout
experiment to fit a multi-compartment lung model
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(the patient is given a mixture of oxygen and an inert
gas to breathe and the concentration of nitrogen in
each subsequent exhalation is monitored), there are
typically fewer data points than parameters to be
determined. One approach for solving this problem is
discussed in Ryan and Tavener (1985) [1].

 We developed the following inverse problem
while attending the NSF-sponsored conference
“Teaching ODEs with Computer Experiments’’ held at
RPI in July 1994. This laboratory, suitable for a soph-
more-level course, presents the student with an inter-
esting approach to the traditional mixing problem.

 Problem definition
 A tank is filled with salty water and is believed to

be leaking, potentially polluting nearby groundwater.
It is not possible to measure the volume of fluid in the
tank directly, but it is possible to take measurements
of the concentration of the salt solution in the tank at
various times. In order to determine whether or not
the tank is leaking, the tank is flushed with a solution
containing 0.05 pounds of salt per gallon, at a rate of
one gallon per minute, beginning at time . Fluid
is removed from the tank at the same rate. The salt
concentration of the outflow is measured at ,
and after 10 and 20 minutes. The salt concentration
in the tank is initially 0.2 pounds per gallon, but drops
to 0.18 and 0.16 pounds per gallon after 10 and 20
minutes respectively. Assuming complete and instan-
taneous mixing of the inflow and the fluid resident in
the tank, and assuming that the leak (if present) is
constant, determine the rate at which the tank is
leaking.

Solution
The solution of this problem, while conceptually

simple, involves both the solution of a non-trivial dif-
ferential equation and the solution of a pair of simul-
taneous, nonlinear equations. For these reasons,
MAPLE (or some other computer algebra system) is
an appropriate tool. We present an outline of a solu-
tion of this problem.

Let us first define the following vatiables:

●  = the rate at which fluid is added to the tank
(in gallons per minute)

●  = the rate at which fluid is withdrawn from
the tank (in gallons per minute)

●  = the rate at which fluid is leaking from the
tank (in gallons per minute)

●  = the salt concentration of the fluid being
added to the tank (in pounds per gallon)

●  = the salt concentration of the fluid at time
 (in pounds per gallon)

●  = the volume of liquid in the tank at time
(in gallons)

●  = the amount of salt in the tank at time  (in
pounds)

●  = the salt concentration in the tank at time
(in pounds per gallon)

The amount of salt in the system is conserved,
hence the rate of change of the amount of salt
present is the difference between the rate at which
salt is added and the rate at which salt is removed, or

. (1)

The salt concentration  may be expressed
in terms of the amount of salt present and the volume
as

. (2)

 The volume  depends upon the initial vol-
ume  and the rates of inflow, outflow and leakage,
as

. (3)

 Finally, the initial volume may be written in terms
of the amount of salt present at  and the initial
salt concentration, as

. (4)

Combining these equations gives

. (5)

Solving the differential equation (5) for , and
substituting the known values of , ,  and

, we have

. (6)

where .

The salt concentration  may now be com-
puted from equation (2) using (3),(4), and (6), and
the known values of , ,  and . We
have
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(7)

where
Expressions for the concentrations at

and  in terms of the unknown values of
and  may be developed by evaluating (7) at

 and . Using the measured salt con-
centrations at  and at  then yields two
simultaneous nonlinear equations for  and  .
The solution of this system is

 and .

We have plotted the salt concentrations as a
function of time for the computed leakage rate and for
the no leak scenario in the figure below. The solid
line shows the concentration in the leaking tank as a
function of time, with the two boxes indicating the two
given data points. The dashed line shows the decay
of the salt concentration under the same circum-
stances when the tank is free of leaks. The horizontal
dashed curve shows the concentration of salt solu-
tion used to flush the tank.

Figure 1 Salt concentration in the tank

An interesting extension to this problem is the
question of how best to incorporate more data. For
instance, if the salt concentration is also measured at

 minutes, how should this extra information be
used? An energetic student may wish to consider the
sensitivity of the solution to the given data. ❑

 Editor’s note: Another good exercise, at
the very beginning, is to ask the students to
provide some “real life” scenario that might fit
the model.

[1]  Ryan, D.M. Tavener, S.J. 1985 “Bounds on smooth solutions
of underdetermined linear models for gas exchange,” Journal
of Optimization and its Applications 47, 349--368
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Setting the Scene
Beavers, hunted in open access for their pelts,

were saved from extinction in the middle of this cen-
tury by regulations controlling trapping season,
method and numbers. Under this protection, the bea-
ver population has rebounded in many regions of the
country and has caused significant damage to valu-
able timber and agricultural land. Trapping is most
effective in controlling beavers whose primary nui-
sance is tree-cutting on privately-held timber land.

A trapping strategy that disregards the possible
migratory behavior of beavers in neighboring “uncon-
trolled” (i.e., zero trapping) land parcels in filling the
vacuum created by trapping in the “controlled” parcel,
can be as futile in practice as attempting to dig a hole
in fine-grain sand. We formulate a two-equation sys-
tem of differential equations to model this phenome-
non according to the recently formulated “social-
fence” hypothesis of small mammal dispersion. This
hypothesis can be viewed as the ecological analog of
osmosis: Beavers from an environmentally superior
habitat are posited to diffuse through a social fence
to an inferior but less-densely populated habitat until
the pressure to depart (“within-group aggression”) is
equalized with the pressure exerted against invasion
(“between-group aggression”). This is termed “for-
ward migration.” Assuming that the controlled parcel
is a superior habitat, the owner must be concerned
with the “backward migration” that occurs when the
superior parcel becomes less densely populated
through trapping.

Rate Equations
Let  and  represent the population densities

[head (hd)/square mile (sq mi)] of beavers in the con-
trolled and uncontrolled parcels, respectively; and let

 and  represent the associated annual net rates
of change [hd/sq mi/year (yr)]. The following pair of
differential equations models  and  as the differ-
ence between the rates of net growth (i.e., birth rate
minus the death rate), dispersion, and, in the case of

, trapping:

(1)
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