A MODIFIED HANNING WAVELET

V.I.R.Niculescu¹, V.Babin², Mihaela Dan³

 National Institute for Laser, Plasma and Radiation Physics, Electron Accelerators Laboratory, P.O. Box MG-36, R-76900, Romania, e-mail : vniculescu@alpha2.ifim.ro,
 Research and Development National Institute for Optoelectronics, Bucharest-Magurele, P.O. Box MG-22, R-79600, Romania, 3. Cluj-Napoca, nena@personal.ro

Keywords: Wavelet, Hanning window

Abstract

The wavelet theory is a powerful method for processing different signals. The Hanning wavelet can be obtained from the Hanning window. In this brief report we present a new wavelet transform which is a generalisation of Hanning window. This transform is a more flexible one because dependent on three parameters and can cover more combinations of discrete and continuous parameter discretisations (hybrid cases).

In processing signals, a part the well known Fourier methods, a more powerful instrument is offered by the wavelet theory[1,2]. The Hanning window[3] is a product of two Heaviside functions. Each Heaviside function is given[4] by :

$$ApproxH_{a}(t) = \frac{1}{2} + \frac{1}{\pi} \operatorname{arctg}(t/a)$$
(1)

where a is the scale. In figure 1 the Heaviside function is represented for different values of a (a = 0.2; a = 2). We construct the mother wavelet[5] which is the second derivative of expression (1):

$$h_{d,a}(t) = \frac{d^{2}}{dt^{2}} \left\{ ApproxH_{a}(t+d) * ApproxH_{a}(d-t) \right\} = -2 \frac{1}{\pi^{2}a^{2} \left(1 + \left(\frac{t+d}{a}\right)^{2} \right) \left(1 + \left(\frac{t+d}{a}\right)^{2} \right)^{2}} - \left(\frac{1}{2} + \frac{arctg\left(\frac{t+d}{a}\right)}{\pi} \right) \left(1 + \left(\frac{t+d}{a}\right)^{2} \right)^{2}}{\pi a^{3} \left(1 + \left(\frac{t+d}{a}\right)^{2} \right)^{2}} - 2 \frac{\left(\frac{1}{2} + \frac{arctg\left(\frac{t+d}{a}\right)}{\pi} \right) \left(1 + \left(\frac{t+d}{a}\right)^{2} \right)^{2}}{\pi a^{3} \left(1 + \left(\frac{t+d}{a}\right)^{2} \right)^{2}} \right)^{2}}$$

$$(2)$$

where d is the window length. For the mother wavelet we have: $\int_{-\infty}^{\infty} h_{d,a}(t) dt = 0$ (3)

Fig. 1 Approximation of the Heaviside function

In fig. 2a the mother wavelets (a = 1.8, d = 2; a = 1.8, d = 4) were shown.

In fig. 2b the mother wavelets (a = 1.0, d = 4; a = 1.5, d = 2.5) were shown.

The set of daughter wavelets are generated from the mother wavelet by shift operations :

$$h_{a,b,d}(t) = \frac{1}{\sqrt{F}} h_{d,a}(t-b) \quad (4a) \text{ where b is the shift. The normalisation factor is given by :}$$

$$F = \int_{-\infty}^{\infty} \left| h_{d,a}(t) \right|^2 dt \quad (4b). \text{ The (1-D) wavelet transform of the f(t) is defined as :}$$

$$W(a,b,d) = \int_{-\infty}^{\infty} f(t) h_{a,b,d}^*(t) dt \quad (5)$$

This is a correlation operation between the signal f(t) and the shifted and scaled mother wavelet $h_{a,b,d}(t)$. In the limit case $d \to 0$ we have the usual wavelet (Mexican hat) which depends of two parameters. In the limit case $b \to 0$ we have the Hanning wavelet. The $h_{a,b,d}(t)$ wavelet depends of three parameters (a,b,d). Also this wavelet generalize Mexican and Hanning wavelets and is more flexible then this ones.

Acknowledgements

This work was supported by Romanian Ministry of Education and Scientific Research.

References

- [1]. Sheng Y., Roberge D., Szu H.H., Opt.Eng.**31**, 1840(1992)
- [2]. Wen M., Yin S., Purwardi P., Yu F.T.S., Opt. Commun. 99, 325(1993)
- [3]. Roux F.S., Appl.Opt.**35**(23), 610(1996)
- [4]. Moisil G,Fizica pentru ingineri,vol.1,Editura Tehnica,Bucuresti,1967 (in romanian)
- [5]. Garcia J., Zalevsky Z., Mendlovic D., Appl.Opt.**35**(35),7019(1996)