
RESIDUES OF EISENSTEIN SERIES VIA MAASS-SELBERG RELATIONS
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Abstract. Using the Maaß-Selberg relations, it is shown that Eisenstein series induced from

cuspidal data on a maximal parabolic subgroup of a reductive group has poles only when the

data is self-associate and the poles in the positive Weyl chamber lie on the real line inside

the non-convergent region. In the rank-2 parabolic subgroup case for G = GLn it is shown

that only the maximal self-associate data can give rise to square-integrable residues. The

information for this case implies that the maximal parabolic subgroup Eisenstein series has

a single pole in the region in the positive Weyl chamber.

Introduction

Let G be a quasi-split reductive group defined over a number field k and A the adele

ring of k. The spectral decomposition of the right regular representation on L2(Gk\GA)

[Langlands 1976] consists of the direct sum of irreducible cuspidal representations and the

direct integrals of Eisenstein series induced from cuspidal data on parabolic subgroups of G

and their residues. The residual spectrum, the part consisting of the square-integrable residues

of Eisenstein series, for G = GL(n) is completely analyzed in [Mœglin-Waldspurger 1989]

proving Jacquet’s conjecture [Jacquet 1983]. In this paper we use the Maaß-Selberg relations

to determine when and where the maximal parabolic Eisenstein series for a general G can

have poles and to reconstruct partial results from [Mœglin-Waldspurger 1989] concerning the

Eisenstein series induced from next-to-maximal parabolic subgroups in G = GL(n).

Let P be a parabolic subgroup of G and P = MN be the Levi decomposition of P . Given

a cuspform f on Mk\MA and λ ∈ (aGP )∗C, the Eisenstein series induced from this data on P is

E(g) =
∑

γ∈Pk\Gk

ϕ(γg)

where the kernel function ϕ is defined by

ϕ(g) = ϕ(nmk) = λ(m)f(m)δ
1/2
P (m)

using the Iwasawa decomposition g = nmk of g ∈ GA. Applying the truncation operator

∧T defined in [Arthur 1980] to the Eisenstein series, a square-integrable function is obtained.

The Maaß-Selberg relations give explicit formulas for the inner products of these truncated

Eisenstein series.
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Suppose P is a maximal parabolic subgroup of G. The Maaß-Selberg relation in this case

involves only two or four terms, depending on whether the data is self-associate or not. The

poles of the Eisenstein series and those of the truncated Eisenstein series occur at the poles

of the constant terms of the Eisenstein series. Comparing the residues on both sides of the

Maaß-Selberg relation and using the fact that ∧TE approaches E as T → ∞, we show that

the Eisenstein series does not have a pole unless the parabolic and the data are self-associate.

In the self-associate case, the pole is on the real line and is of order 1.

We then consider a rank-2 parabolic subgroup P in G = GL(n), i.e. P consists of block-

upper-triangular matrices with three blocks on the diagonal. The Maaß-Selberg relations

involve four or 36 terms. From the theory of the intertwining operators, the coefficients of

the constant terms for this case are products of the coefficients in the maximal parabolic case.

Again comparing the residues on both sides of the Maaß-Selberg relation and taking the limit

T →∞, it is shown that the only square-integrable residues are the multi-residues in the case

of a maximally self-associate data, i.e. the block sizes are all equal with the cuspform being

the same on each block.

Acknowledgment: The author would like to thank Paul Garrett for his help and advice.

1. Notation and terminology

We follow partially the notation in [Arthur 1978] and [Arthur 1980]. Let G be a quasi-split

reductive group over a number field k. Fix a minimal parabolic subgroup P0 of G and a Levi

subgroup M0 of P0, both over k. From now on, all parabolic (respectively Levi) subgroups will

be standard, i.e. will contain P0 (respectively M0). Let MP and NP denote the (standard)

Levi component and the unipotent radical of P . Let AP be the split component of the center

of MP . Let X(MP ) be the group of characters of MP defined over k, and let

a∗P = X(MP )⊗Z R and aP = HomZ(X(MP ),R) .

Then a∗P and aP are naturally dual to each other and a∗P = X(AP ) ⊗Z R. Restricting a

character of G to MP gives an injection a∗G ↪→ a∗P and restricting a character on AP to AG

gives a surjection splitting the exact sequence

0 → a∗G → a∗P → a∗P /a
∗
G → 0

We thus obtain the decompositions a∗P = (aGP )∗ ⊕ a∗G and aP = aGP ⊕ aG dually.

Let ∆0 be the simple roots of (P0, A0). Then ∆0 is canonically embedded in a∗P0
= a∗0 and

the parabolic subgroups P are in bijection with the subsets ∆P
0 of ∆0 consisting of the roots

which vanish on aP . Let ∆P be the restrictions to aP of elements in ∆0 −∆P
0 . Then ∆P is
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a basis of (aGP )∗. For any root α, let α∨ denote the corresponding co-root. The co-roots are

elements of a0 and form a basis of aG0 . We can obtain a second basis of (aG0 )∗ by taking the

dual basis ∆̂0 = {βα : α ∈ ∆0} of the basis ∆∨0 = {α∨ : α ∈ ∆0}. For a general parabolic P ,

∆̂P = {βα : α ∈ ∆P } defined similarly, is a second basis of (aGP )∗.

Given a parabolic subgroup P = MN , define HM : MA → aP by

e〈HM (m),χ〉 = |χ(m)| =
∏
v

|χ(mv)|v

for all χ ∈ X(M) and m =
∏
vmv ∈ MA. Let K be a ‘nice’ maximal compact subgroup of

GA so that for any parabolic subgroup P , the Iwasawa decomposition holds: GA = PA ·K.

We then have the Langlands decomposition: any g ∈ GA can be written as g = nmk where

n ∈ NA, m ∈MA and k ∈ K. Using the Langlands decomposition HM defined above can be

extended to HP : GA → aP .

For a parabolic subgroup P , let cP be the constant term operator

cP f(g) =

∫
NP,k\NP,A

f(ng) dn

for a left NP,k-invariant, locally-L1 function f . A function f is cuspidal if cP f = 0 almost

everywhere, for all proper parabolic subgroups P .

Fix a truncation parameter 0 < T ∈ R. For a parabolic subgroup P , let τ̂P denote the

characteristic function of

{H ∈ a0 : β(H) > T for all β ∈ ∆̂P } .

The truncation ∧Tϕ of a function ϕ on Gk\GA is

∧Tϕ(g) =
∑
P

(−1)dimAP /AG
∑

γ∈Pk\Gk

τ̂P (HP0(γg)) cPϕ(γg)

where P runs over all parabolic subgroups. For each P , the truncated sum over Pk\Gk is

finite. The truncation of a continuous function is of rapid decay on Siegel sets [Arthur 1980].

Let f be an automorphic form on Mk\MA where M is the Levi component of P and

λ ∈ (aGP )∗C (as in I.2.17, [Mœglin,Waldspurger 1995]). For λ ∈ (aGP )∗C and m ∈ MA, let

λ(m) = e〈HM (m),λ〉. Define ϕ, attached to f and λ, on GA by

ϕ(g) = ϕ(nmk) = λ(m)f(m)δ
1/2
P (m)

where δP is the modulus function of P . The Eisenstein series induced from the parabolic P

with data f , λ, is

E(g) =
∑

γ∈Pk\Gk

ϕ(γg)
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whenever the series converges. The Eisenstein series converges for all λ with real part in a

positive open cone in (aGP )∗ depending on f , and the resulting E(g) is an automorphic form

on Gk\GA [Godement 1967].

Proposition . (II.1.7, [Mœglin,Waldspurger 1995]) Let P = MN be a standard parabolic

subgroup, f a spherical cuspform on MA and λ ∈ (aGP )∗C. Then the constant term of E with

respect to R = M ′N ′ is

cREλ =
∑
w

EM
′∩w−1Pw(M(w)ϕλ)

where the sum is over

W (M,M ′) = {w ∈W : w−1α > 0 for α ∈ ∆R
0 , wMw−1 is a standard Levi of M ′} .

The operator M(w) is the intertwining operator

M(w)f(g) =

∫
wPkw−1∩N ′k\N

′
A

f(w−1ng) dn

2. Maaß-Selberg relations

Maaß-Selberg relations give the inner products of two truncated Eisenstein series induced

from cuspforms.

Theorem . (Langlands) Let G be a reductive group and P = MN a parabolic subgroup.

Suppose that f, h are two cuspforms on M and λ, ψ ∈ a∗P,C. Let ϕ and ϕ′ be the data attached

to f, λ and h, ψ respectively. Let Eϕ and Eϕ′ be the Eisenstein series induced from these data

on P . Then

〈∧TEϕ,∧TEϕ′〉 =
∑

Q,w1,w2

vol(aGQ/LQ)
e(w1λ+w2ψ̄)(T )∏

α∈∆Q

(w1λ+ w2ψ̄)(α∨)
〈M(w1, λ)f,M(w2, ψ)h〉

where the sum is over the parabolic subgroups Q associate to P , w1 ∈ W (MP ,MQ), w2 ∈

W (MQ,MP ), and LQ the lattice spanned by the co-roots corresponding to roots in ∆Q.

3. The maximal parabolic subgroup case

Let P = MPNP be a maximal parabolic subgroup in G. Then ∆P consists of a single root

αP , which also is a basis of (aGP )∗. The co-root α∨P is a basis of aGP . Let βP be the dual to

this basis which is the second basis of (aGP )∗. Therefore (aGP )∗C can be identified with C by

s→ sβP .

For example, consider the case G = GLn. Let P0 be the upper triangular matrices in G

and M0 the diagonal matrices. The standard parabolic subgroups P in G consist of block

upper-triangular matrices. Each P corresponds to a partition [n1, n2, . . . , nr], ni > 0, where
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ni is the size of the i-th block. The standard Levi component of P consists of block-diagonal

matrices with corresponding sizes, and the unipotent subgroup consists of the elements with

identity matrices of corresponding sizes on the diagonal.

In particular, a maximal parabolic subgroup of GLn has two blocks on the diagonal. Let

the sizes of the blocks be n1, n2, respectively. Then αP is the following character in (aGP )∗:m1 0

0 m2

 7→ det(m1)1/n1

det(m2)1/n2
.

The character βP is βP = α
n1n2/n
P .

Let f ∈ π be a spherical cuspform on MP,A with π an irreducible representation and s ∈ C.

Denote the kernel function attached to the data f , s by ϕs and the Eisenstein series induced

from this data on P by Es, suppressing the dependence on the cuspform f .

For G = GLn, f corresponds to a pair of spherical cuspforms f1, f2 on GLn1(A) and

GLn2(A) respectively. Then f = f1 ⊗ f2 is the induced cuspform on MP,A and ϕs attached

to f, s is

ϕs(g) = ϕs(nmk) = f1(m1)f2(m2)sβP (m)δP (m)1/2 ,

where m1,m2 are the diagonal blocks of m ∈MP,A.

Theorem. The Eisenstein series Es induced from cuspidal data on a not-self-associate max-

imal parabolic subgroup in a quasi-split reductive group G has no poles.

Proof: Let P be a maximal not self-associate parabolic subgroup in G, i.e. that W (MP ,MP )

is trivial. For G = GLn, this is the case when the block sizes are different; n1 6= n2. Let Q

be the maximal parabolic associate to P and w the unique element in W (MP ,MQ). The

Maaß-Selberg relations give

〈∧TEs,∧TEs〉 = vol(aGP /LP )
T (sβP +s̄βP )(α∨P )

(sβP + s̄βP )(α∨P )
〈f, f〉

+ vol(aGQ/LQ)
T (wsβP +ws̄βP )(α∨Q)

(wsβP + ws̄βP )(α∨Q)
〈M(w)f,M(w)f〉

= vol(aGP /LP )

(
T s+s̄

s+ s̄
〈f, f〉 − T−s−s̄

s+ s̄
〈M(w)f,M(w)f〉

)
since wβP = −βQ and hence wβP (α∨Q) = −1. Using the intertwining operators and the

continuation of the Eisenstein series, M(w)f = cf (s)fw where fw is the cuspform fw(m) =

f(wmw−1) and cf (s) is a meromorphic function of s ∈ (aGP )∗C. Hence

〈∧TEs,∧TEs〉 = ‖f‖2T
2 Re s

2 Re s
− |c(s)|2‖fw‖2T

−2 Re s

2 Re s

where the volume constant and dependence of the coefficient on f is suppressed.



6 F.ALAYONT

The Eisenstein series has a pole exactly when one of the constant terms has a pole, and

the order of the pole of the Eisenstein series is the same as that of the constant term with

the highest order pole at that point. In the not-self-associate case, the constant term with

respect to P is the kernel ϕ itself and it has no poles. The constant term with respect to Q

is M(w)ϕs. Therefore the poles of Es are the poles of cf (s) with the same order.

Let s0 be a pole of Es in the positive Weyl chamber Re s0 > 0 with order m ≥ 1. Since s0

is a pole of at least one of the constant terms, it is also a pole of ∧TEs of the same order. The

real limit

lim
t→0

(it)m ∧T Es0+it

is the leading term of the Laurent expansion of ∧TEs at s = s0. Therefore the real limit

lim
t→0

t2m〈∧TEs0+it,∧TEs0+it〉

is the square of the norm of the leading term. Using the Maaß-Selberg relation this limit is (up

to a positive constant) the square of the norm of the leading term of the Laurent expansion of

c(s) at s = s0 times −‖fw‖2T−2 Re s0/(2 Re s0), which is negative. This is impossible, so there

are no poles in the positive Weyl chamber. There cannot be a pole at Re s = 0 either, for the

order of poles on both sides of the Maaß-Selberg relations do not match in that case. Using

the functional equation of the Eisenstein series, we conclude that there are no poles anywhere.

2

Theorem. The Eisenstein series Es induced from cuspidal data on a self-associate maximal

parabolic subgroup P does not have poles outside (0, 1]. The pole can occur only if the data is

self-associate, i.e. if wπ = π for the non-trivial element w ∈W (MP ,MP ).

Proof: In this case, the Maaß-Selberg relation is

〈∧TEs,∧TEs〉 = vol(aGP /LP )
( T (sβP +s̄βP )(α∨P )

(sβP + s̄βP )(α∨P )
〈f, f〉

+
T (sβP +ws̄βP )(α∨P )

(sβP + ws̄βP )(α∨P )
〈f,M(w)f〉+

e(wsβP +s̄βP )(α∨Q)

(wsβP + s̄βP )(α∨Q)
〈M(w)f, f〉

+
T (wsβP +ws̄βP )(α∨Q)

(wsβP + ws̄βP )(α∨Q)
〈M(w)f,M(w)f〉

)
Using wβP = −βP and suppressing the volume constant and f , the result simplifies to

〈∧TEs,∧TEs〉 = ‖f‖2T
2 Re s

2 Re s
+ c(s)〈f, fw〉T

2 Im s

2 Im s

−c(s)〈fw, f〉T
−2 Im s

2 Im s
− |c(s)|2‖fw‖2T

−2 Re s

2 Re s
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Let s0 be a pole of Es in the positive Weyl chamber Re s0 > 0 with order m ≥ 1. As before,

multiply both sides of the Maaß-Selberg relation evaluated at s0 + it by t2m and let t → 0.

The left hand side is the square of the norm of the leading term of the Laurent expansion of

∧TEs at s = s0. Except for the cases when m = 1, 〈f, fw〉 6= 0, and Im s0 = 0, the first three

terms on the right hand side have poles of order less than 2m, so the right hand side will

result in a negative value, giving a contradiction. The pole cannot be at s = 0, again because

of differing orders of poles on the two sides of the Maaß-Selberg relation. Moreover, we know

that the Eisenstein series converges for s > 1. These results altogether imply that the poles

of Es are simple and lie in (0, 1]. 2

4. Singularities in higher rank parabolic subgroups

For parabolic subgroups of rank r greater than 1, (aGP )∗C is identified with Cr using the basis

∆̂P . The singularities of the Eisenstein series lie along hyperplanes in Cr, and the residues

are multi-residues along these hyperplanes, as explained below.

Let P be a parabolic subgroup. Given a root α ∈ ∆P and c ∈ R, let

H(α, c) = {Λ ∈ a∗P,C : Λ(α∨) = c} .

An affine subspace H ⊂ a∗P,C is admissible if H is an intersection of hyperplanes H(α, c).

Consider meromorphic functions on a∗P,C whose singularities lie along admissible subspaces.

The residues of these functions are obtained as multi-residues.

Let H1 ⊃ H2 be two admissible subspaces of a∗P,C with H2 of codimension 1 in H1. For a

real unit vector v1 in H1 normal to H2 and a meromorphic function f defined on H1 whose

singularities lie along admissible subspaces of H1, the residue of f along H2 is

ResH2 f(Λ) =
1

2πi

∫
C
f(Λ + ζv1) dζ

where C is a sufficiently small, positively oriented simple curve around the origin. Then

ResH2 f(Λ) is a meromorphic function on H2, well-defined up to sign, with singularities along

admissible subspaces of H2. Another way to obtain ResH2 f(Λ) is as the limit

limζ→0 ζf(Λ + ζv1) and in particular

ResH2 f(Λ) = lim
t→0

itf(Λ + itv1)

with t ∈ R.

In general, let

a∗P,C = Hn ⊃ Hn−1 ⊃ . . . ⊃ H1 ⊃ H0 = {h}
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be a flag F of admissible subspaces such that, for 1 ≤ i ≤ n, Hi−1 is of codimension 1 in Hi.

For each i, let vi be a unit normal in Hi to Hi−1. Let f be a meromorphic function on a∗P,C

with singularities along hyperplanes. Define inductively meromorphic functions

fn = f, fi = ResHi fi+1, i = 0, . . . , n− 1

The residue f0 of f along F, denoted by ResF f , is well-defined up to a sign depending only

on the choice of the unit normal vectors.

5. Rank-2 parabolic subgroups in GLn

Let G = GLn and P a rank-2 parabolic subgroup of G corresponding to the partition

[n1, n2, n3] with n1 +n2 +n3 = n. There are exactly two maximal parabolic subgroups Q and

R containing P : the first corresponds to the partition [n1, n2 +n3], the second to [n1 +n2, n3].

Then ∆P consists of two roots, αQ and αR, which also form a basis of (aGP )∗. The second basis

of (aGP )∗ consists of βQ and βR, dual to the co-roots corresponding to the first basis elements.

These elements are the pull-backs of the basis elements in the maximal parabolic subgroups

Q and R. Identify (aGP )∗C with C2 by s = (s1, s2)→ s1βQ + s2βR. For simplicity, we omit the

β’s when writing an element of (aGP )∗C.

Let f = f1 ⊗ f2 ⊗ f3 ∈ π be a spherical cuspform on MP,A corresponding to the spherical

cuspforms f1, f2 and f3 on GLn1(A), GLn2(A) and GLn3(A), respectively. Without loss of

generality, assume π is irreducible. As before, for s ∈ (aGP )∗C let ϕs denote the kernel attached

to data f, s and Es denote the Eisenstein series induced from the kernel ϕs. We investigate

the singularities of Es using the Maaß-Selberg relations.

Theorem. Let P be a maximally self-associate rank-2 parabolic subgroup in GL(n), i.e. n1 =

n2 = n3. Then the residues of Eisenstein series along a singular hyperplane are not square-

integrable while the multi-residues are.

Proof: The only parabolic subgroup associate to P is itself, hence the name maximally self-

associate. The summation in the Maaß-Selberg relation is over pairs of Weyl group elements

in W (MP ,MP ). This group is generated by two elements: σ1 and σ2. The first exchanges the

first two blocks and the second exchanges the last two blocks, acting on the β’s by

βQ
σ17→ βR − βQ βQ

σ27→ βQ

βR
σ17→ βR βR

σ27→ βQ − βR

The action then extends to all of (aGP )∗C and W (MP ,MP ) as in the following table:
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w id σ1 σ2 σ1σ2 σ2σ1 σ1σ2σ1

s (s1, s2) (−s1, s1 + s2) (s1 + s2,−s2) (−s1 − s2, s1) (s2,−s1 − s2) (−s2,−s1)

The Maaß-Selberg relation is (up to the volume constant)

〈∧TEs,∧TEs〉 =
∑

w,w′∈W (MP ,MP )

T (ws+w′s̄)(α∨Q)+(ws+w′s̄)(α∨R)

(ws+ w′s̄)(α∨Q) · (ws+ w′s̄)(α∨R)
〈M(w)f,M(w′)f〉 .

From the theory of the intertwining operators, M(w)f is fw times a product of coefficients

from the maximal parabolic case. The product is over the positive roots α of MP for which

wα < 0 and the coefficient corresponding to the root α takes the input 〈ws, α∨〉. E.g. if

w = σ1, M(w)f = cf1⊗f2(s1)fw where cf1⊗f2 is the coefficient in the constant term of the

Eisenstein series induced from data f1⊗ f2, s1 on the parabolic corresponding to the partition

[n1, n2] inside GL(n1 +n2). A few representative terms in the Maaß-Selberg relation are given

in the table on the next page.

Using the results from the maximal parabolic case, we note that the singularities of the

Eisenstein series in the rank-2 case occur only for s1, s2 ∈ (0, 1].

Consider first the residue along a singular hyperplane. For a pole s0 of the coefficients

cf1⊗f2 , cf2⊗f3 and cf1⊗f3 in the maximal parabolic cases, Eisenstein series in the rank-2 case

has singularities along the root hyperplanes H1 = {s : s1 = s0}, H2 = {s : s2 = s0} and

H3 = {s : s1 + s2 = s0} respectively.

Suppose the residue is along a singular hyperplane of the form H1. For these s values, the

terms in the Maaß-Selberg relation with singularities correspond to pairs (w,w′) where w or

w′ includes σ1 in its reduced expression. As in the maximal parabolic case, as T → ∞, the

terms with larger powers dominate on the right-hand side. In this case the residues with the

largest power are

T s0+2 Re s2

2(2 Re s2 + s0)
〈fσ1 , f〉Ress1=s0 cf1⊗f2(s1)

and its conjugate. Therefore ‖Res∧TEs‖2 behaves like

T s0+2 Re s2

2 Re s2 + s0
Re(〈fσ1 , f〉Ress0 cf1⊗f2 )

But as T approaches infinity, this term approaches infinity, proving that the residue is not

square-integrable. This also shows that the real part of Ress0 cf1⊗f2 has to be positive.
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Maaß-Selberg relations terms:

(w,w′) the corresponding term

(id, id)
T 2Re s1+2Re s2

2 Re s12 Re s2
〈f, f〉

(σ1, id)
T s1+2Re s2

−2 Im s1(2 Re s2 + s1)
cf1⊗f2(s1)〈fσ1 , f〉

(σ2, id)
T 2Re s1+s2

−(2 Re s1 + s2)2 Im s2
cf2⊗f3(s2)〈fσ2 , f〉

(σ1σ2, id)
T s1−2 Im s2

(−2 Im s1 − s2)(s1 + s2)
cf2⊗f3(s2)cf1⊗f3(s1 + s2)〈fσ1σ2 , f〉

(σ2σ1, id)
T 2 Im s1+s2

(s1 + s2)(2 Im s2 − s1)
cf1⊗f2(s1)cf1⊗f3(s1 + s2)〈fσ2σ1 , f〉

(σ1σ2σ1, id)
T 2 Im s1+2 Im s2

(s1 − s2)(s2 − s1)
cf1⊗f2(s1)cf2⊗f3(s2)cf1⊗f3(s1 + s2)〈fσ1σ2σ2 , f〉

(σ1, σ1)
T 2Re s2

(−2 Re s1)(2 Re s1 + 2 Re s2)
|cf1⊗f2(s1)|2‖fσ1‖2

(σ1, σ2)
T s2+s1

(−2 Im s1 + s2)(2 Im s2 + s1)
cf1⊗f2(s1)cf2⊗f3(s2)〈fσ1 , fσ2〉

. . .

Similarly, the residue along a hyperplane of the form H2 or H3 is not square-integrable.

Proposition. The maximal parabolic Eisenstein series Es, s ∈ C, for GLn induced from

self-associate data can have at most one pole in the region (0, 1].

Proof: (Proposition) At an intersection (s0, s
′
0) of the singular hyperplanes, take a multi-

residue along the flag

{(s0, s
′
0)} ⊂ H1 ⊂ (aGP )∗C .

For s0 6= s′0, the only terms that survive taking residues twice have negative orders in T , hence

vanish as T approaches infinity. 2

Since there is at most one pole of the maximal parabolic case, the intersection of the singular

hyperplanes can only occur if both the constant term coefficients corresponding to the simple

roots have a pole. Take the flag

{(s0, s0)} ⊂ H1 ⊂ (aGP )∗C
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to find the multi-residue. The only terms which do not vanish after taking the multi-residue

are

|Ress0 cf1⊗f2 |c? ,

its conjugate, and terms with T to a negative power. As T →∞, the limit approaches a finite

value showing that the residue of the Eisenstein series along this flag is square-integrable. 2

Theorem. Let P be a not maximally self-associate rank-2 parabolic subgroup in GL(n). Then

the residues of Eisenstein series are not square-integrable.

Proof: We do the case n1 = n2 6= n3. The cases n1 6= n2 = n3 and n1 = n3 6= n2 are similar.

In this case W (MP ,MP ) is generated only by σ1 and the Maaß-Selberg relation involves only

terms with w and w′ either id or σ1. There are four such terms. These terms, as in the residue

along a singular hyperplane, blow up as the truncation parameter goes to infinity, showing

that the residues of these not-maximally self-associate cases are not square-integrable. 2
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