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Classical Rook Theory

Example

re(B) : Number of ways of placing k non-attacking rooks on B
r3(B) = 17 r2(B) =1, I’]_(B) = 67 rO(B) =1



Triangular boards

Ts

For size m triangular board T,,,
(Tm) =S(m+1,m+1—k)
where S(m, n) are the Stirling numbers of the second kind, i.e.
S(m,n)=S(m—-1,n—1)+nS(m—1,n)

with S(m,m) =1 and S(m,1) = 1.
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Follow-up: How do we want the rooks to attack in three and
higher dimensions?
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Rooks in Three and Higher Dimensions

Question: What happens if the rooks can fly?

Follow-up: How do we want the rooks to attack in three and
higher dimensions?

Our choice: A rook in n-dimensions attacks along
(n — 1)-dimensional hyperplanes. For three dimensions, [Zindle,
2007]
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Triangular Boards in Three Dimensions

Theorem (Krzywonos, A.)

For size m triangle board A, in three dimensions,
(Ap)=T(m+1,m+1— k)
where T(m, n) are the central factorial numbers, i.e.
T(m,n)=T(m—1,n—1)+n*T(m—1,n)

with T(m,m) =1 and T(m,1) = 1.
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Genocchi Boards in Three Dimensions

Theorem (Krzywonos, A.)

For a size m Genocchi board I, in three dimensions, rm(Im) is

given by the (m + 1)th (unsigned even) Genocchi number Gy(p 1)
(1,3,17,155,2073, .. .)



Genocchi Numbers

The generating function for the Genocchi numbers G, is

2t <"
et +1 :z;G"n!
n=

Godd = 0 and Gy, count

» Permutations a1a; ... as,_» such that even a; is followed by a
smaller number and odd a; is followed by a larger

» Permutations ajas ... as,—» such that ay; < 2/ and
agi—12>2i—1

> Permutations ajay ... ax,—2 such that a; > a;y; means both
a; and aj;1 are even

» Permutations ajas ... ax,—» such that a; < i means both a;
and / are even
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Rook Placements and Partitions

Stirling numbers of the second kind, S(m, k), count partitions of m
elements into k non-empty blocks.

1 2 3 4
X

A W N =

Rook placement corresponding to partition {1,3},{2,5}, {4} of
{1,2,3,4,5}



Rook Placements in 3-D and Partition Pairs

12345

4321
First partition: Project rooks onto the xz-plane

Second partition: Project onto yz-plane
Partition pairs (P, P2) such that minimum values of the partitions

are the same
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Rook Placements in 3-D and Permutation Pairs

4 12345

543

g W N =

First permutation: x coordinates of the rooks from top to bottom
Second permutation: y coordinates of the rooks from top to
bottom

(71, m2) where 71, are permutations of 5 and 71 (/) or mo(i) < i
for each /.
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Generalized Results in m Dimensions

Theorem

The generalized central factorial numbers Ty(n, k) count the
number of ordered d-tuples (P1, Py, ..., Py) of partitions of n into
k sets satisfying min P; = min P, = --- = min Py.

Theorem

Generalized (unsigned) Genocchi numbers G2(f:,) count ordered
d-tuples of permutations (71,2, ..., mg4) of m — 1 such that

min; m;(i) <iforl <i<m-—1.



Thanks!
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