Combinatorial Interpretations of Generalized Central Factorial and Genocchi Numbers

Feryal Alayont alayontf@gvsu.edu

Grand Valley State University

January 9, 2016

Classical Rook Theory

Classical Rook Theory

Example

 $r_k(B)$: Number of ways of placing k non-attacking rooks on B $r_3(B)=1, r_2(B)=7, r_1(B)=6, r_0(B)=1$

Triangular boards

For size m triangular board T_m ,

$$r_k(T_m) = S(m+1, m+1-k)$$

where S(m, n) are the Stirling numbers of the second kind, i.e.

$$S(m, n) = S(m-1, n-1) + nS(m-1, n)$$

with S(m, m) = 1 and S(m, 1) = 1.

Rooks in Three and Higher Dimensions

Question: What happens if the rooks can fly?

Follow-up: How do we want the rooks to attack in three and higher dimensions?

Rooks in Three and Higher Dimensions

Question: What happens if the rooks can fly?

Follow-up: How do we want the rooks to attack in three and higher dimensions?

Our choice: A rook in n-dimensions attacks along (n-1)-dimensional hyperplanes.

Rooks in Three and Higher Dimensions

Question: What happens if the rooks can fly?

Follow-up: How do we want the rooks to attack in three and higher dimensions?

Our choice: A rook in n-dimensions attacks along (n-1)-dimensional hyperplanes. For three dimensions, [Zindle, 2007]

Triangular Boards in Three Dimensions

Triangular Boards in Three Dimensions

Theorem (Krzywonos, A.)

For size m triangle board Δ_m in three dimensions,

$$r_k(\Delta_m) = T(m+1, m+1-k)$$

where T(m, n) are the central factorial numbers, i.e.

$$T(m, n) = T(m-1, n-1) + n^2 T(m-1, n)$$

with T(m, m) = 1 and T(m, 1) = 1.

Genocchi Boards in Three Dimensions

Genocchi Boards in Three Dimensions

Theorem (Krzywonos, A.)

For a size m Genocchi board Γ_m in three dimensions, $r_m(\Gamma_m)$ is given by the (m+1)th (unsigned even) Genocchi number $G_{2(m+1)}$ $(1,3,17,155,2073,\ldots)$

Genocchi Numbers

The generating function for the Genocchi numbers G_n is

$$\frac{2t}{e^t+1}=\sum_{n=1}^{\infty}G_n\frac{t^n}{n!}$$

 $G_{odd} = 0$ and G_{2n} count

- ▶ Permutations $a_1 a_2 ... a_{2n-2}$ such that even a_i is followed by a smaller number and odd a_i is followed by a larger
- ▶ Permutations $a_1 a_2 \dots a_{2n-2}$ such that $a_{2i} < 2i$ and $a_{2i-1} \ge 2i 1$
- ▶ Permutations $a_1 a_2 \dots a_{2n-2}$ such that $a_i > a_{i+1}$ means both a_i and a_{i+1} are even
- Permutations a₁a₂...a_{2n-2} such that a_i < i means both a_i and i are even

Rook Placements and Partitions

Rook Placements and Partitions

Stirling numbers of the second kind, S(m, k), count partitions of m elements into k non-empty blocks.

Rook placement corresponding to partition $\{1,3\},\{2,5\},\{4\}$ of $\{1,2,3,4,5\}$

Rook Placements in 3-D and Partition Pairs

First partition: Project rooks onto the xz-plane

Second partition: Project onto yz-plane

Partition pairs (P_1, P_2) such that minimum values of the partitions

are the same

Example

312

Rook Placements in 3-D and Permutation Pairs

Rook Placements in 3-D and Permutation Pairs

Rook Placements in 3-D and Permutation Pairs

First permutation: x coordinates of the rooks from top to bottom Second permutation: y coordinates of the rooks from top to bottom

 (π_1, π_2) where π_1, π_2 are permutations of 5 and $\pi_1(i)$ or $\pi_2(i) \leq i$ for each i.

Generalized Results in *m* Dimensions

Generalized Results in *m* Dimensions

Theorem

The generalized central factorial numbers $T_d(n, k)$ count the number of ordered d-tuples (P_1, P_2, \dots, P_d) of partitions of n into k sets satisfying min $P_1 = \min P_2 = \dots = \min P_d$.

Theorem

Generalized (unsigned) Genocchi numbers $G_{2m}^{(d)}$ count ordered d-tuples of permutations $(\pi_1, \pi_2, \dots, \pi_d)$ of m-1 such that $\min_j \pi_j(i) \leq i$ for $1 \leq i \leq m-1$.

Thanks!

Joint work with

Adam Atkins, Nick Krzywonos, Rachel Moger-Reischer, Ruth Swift

This work was partially supported by NSF grant DMS-1003993, which funded an REU program at GVSU, and by the GVSU S3 Program.