A New Combinatorial Interpretation of Generalized Genocchi Numbers

Feryal Alayont
alayontf@gvsu.edu

Grand Valley State University
January 16, 2014

Overview

Overview

- Classical rook theory, and in 3-D and beyond

Overview

- Classical rook theory, and in 3-D and beyond
- Families of boards corresponding to Genocchi and central factorial numbers

Overview

- Classical rook theory, and in 3-D and beyond
- Families of boards corresponding to Genocchi and central factorial numbers
- A new combinatorial interpretation of Genocchi numbers

Classical Rook Theory

Classical Rook Theory

Definition

Rook polynomial : $R_{B}(x)=\sum r_{k}(B) x^{k}$, where $r_{k}(B)$ is the number of ways to place k non-attacking rooks on B.

Classical Rook Theory

Definition

Rook polynomial : $R_{B}(x)=\sum r_{k}(B) x^{k}$, where $r_{k}(B)$ is the number of ways to place k non-attacking rooks on B.

Example

Classical Rook Theory

Definition

Rook polynomial : $R_{B}(x)=\sum r_{k}(B) x^{k}$, where $r_{k}(B)$ is the number of ways to place k non-attacking rooks on B.

Example

Classical Rook Theory

Definition

Rook polynomial : $R_{B}(x)=\sum r_{k}(B) x^{k}$, where $r_{k}(B)$ is the number of ways to place k non-attacking rooks on B.

Example

Classical Rook Theory

Definition

Rook polynomial : $R_{B}(x)=\sum r_{k}(B) x^{k}$, where $r_{k}(B)$ is the number of ways to place k non-attacking rooks on B.

Example

Classical Rook Theory

Definition

Rook polynomial : $R_{B}(x)=\sum r_{k}(B) x^{k}$, where $r_{k}(B)$ is the number of ways to place k non-attacking rooks on B.

Example

$$
R_{B}(x)=x^{3}+7 x^{2}+6 x+1
$$

Triangular boards

Triangular boards

Triangular boards

For size m triangular board T_{m},

$$
r_{k}\left(T_{m}\right)=S(m+1, m+1-k)
$$

where $S(m, n)$ are the Stirling numbers of the second kind, i.e.

$$
S(m, n)=S(m-1, n-1)+n S(m-1, n)
$$

with $S(m, m)=1$ and $S(m, 1)=1$.

Rooks in Three and Higher Dimensions

Rooks in Three and Higher Dimensions

Question: What happens if the rooks can fly?

Rooks in Three and Higher Dimensions

Question: What happens if the rooks can fly?

Follow-up: How do we want the rooks to attack in three and higher dimensions?

Rooks in Three and Higher Dimensions

Question: What happens if the rooks can fly?

Follow-up: How do we want the rooks to attack in three and higher dimensions?

Our choice: A rook in d-dimensions attacks along ($d-1$)-dimensional hyperplanes.

Rooks in Three and Higher Dimensions

Question: What happens if the rooks can fly?

Follow-up: How do we want the rooks to attack in three and higher dimensions?

Our choice: A rook in d-dimensions attacks along ($d-1$)-dimensional hyperplanes. For three dimensions, [Zindle, 2007]

Triangular Boards in Three Dimensions

Triangular Boards in Three Dimensions

Triangular Boards in Three Dimensions

Theorem (Krzywonos, A.)
For size m triangle board Δ_{m} in three dimensions,

$$
r_{k}\left(\Delta_{m}\right)=T(m+1, m+1-k)
$$

where $T(m, n)$ are the central factorial numbers, i.e.

$$
T(m, n)=T(m-1, n-1)+n^{2} T(m-1, n)
$$

with $T(m, m)=1$ and $T(m, 1)=1$.

Genocchi Boards in Three Dimensions

Genocchi Boards in Three Dimensions

Genocchi Boards in Three Dimensions

Theorem (Krzywonos, A.)
For a size m Genocchi board Γ_{m} in three dimensions, $r_{m}\left(\Gamma_{m}\right)$ is given by the $(m+1)$ th (unsigned even) Genocchi number $G_{2(m+1)}$ (1, 3, 17, 155, 2073, ...)

Genocchi Numbers

The generating function for the Genocchi numbers G_{n} is

$$
\frac{2 t}{e^{t}+1}=\sum_{n=1}^{\infty} G_{n} \frac{t^{n}}{n!}
$$

Genocchi Numbers

The generating function for the Genocchi numbers G_{n} is

$$
\frac{2 t}{e^{t}+1}=\sum_{n=1}^{\infty} G_{n} \frac{t^{n}}{n!}
$$

$G_{o d d}=0$

Genocchi Numbers

The generating function for the Genocchi numbers G_{n} is

$$
\frac{2 t}{e^{t}+1}=\sum_{n=1}^{\infty} G_{n} \frac{t^{n}}{n!}
$$

$G_{o d d}=0$ and $G_{2 n}$ count

- Permutations $a_{1} a_{2} \ldots a_{2 n-2}$ such that even a_{i} is followed by a smaller number and odd a_{i} is followed by a larger

Genocchi Numbers

The generating function for the Genocchi numbers G_{n} is

$$
\frac{2 t}{e^{t}+1}=\sum_{n=1}^{\infty} G_{n} \frac{t^{n}}{n!}
$$

$G_{o d d}=0$ and $G_{2 n}$ count

- Permutations $a_{1} a_{2} \ldots a_{2 n-2}$ such that even a_{i} is followed by a smaller number and odd a_{i} is followed by a larger
- Permutations $a_{1} a_{2} \ldots a_{2 n-2}$ such that $a_{2 i}<2 i$ and $a_{2 i-1} \geq 2 i-1$

Genocchi Numbers

The generating function for the Genocchi numbers G_{n} is

$$
\frac{2 t}{e^{t}+1}=\sum_{n=1}^{\infty} G_{n} \frac{t^{n}}{n!}
$$

$G_{\text {odd }}=0$ and $G_{2 n}$ count

- Permutations $a_{1} a_{2} \ldots a_{2 n-2}$ such that even a_{i} is followed by a smaller number and odd a_{i} is followed by a larger
- Permutations $a_{1} a_{2} \ldots a_{2 n-2}$ such that $a_{2 i}<2 i$ and $a_{2 i-1} \geq 2 i-1$
- Permutations $a_{1} a_{2} \ldots a_{2 n-2}$ such that $a_{i}>a_{i+1}$ means both a_{i} and a_{i+1} are even

Genocchi Numbers

The generating function for the Genocchi numbers G_{n} is

$$
\frac{2 t}{e^{t}+1}=\sum_{n=1}^{\infty} G_{n} \frac{t^{n}}{n!}
$$

$G_{\text {odd }}=0$ and $G_{2 n}$ count

- Permutations $a_{1} a_{2} \ldots a_{2 n-2}$ such that even a_{i} is followed by a smaller number and odd a_{i} is followed by a larger
- Permutations $a_{1} a_{2} \ldots a_{2 n-2}$ such that $a_{2 i}<2 i$ and $a_{2 i-1} \geq 2 i-1$
- Permutations $a_{1} a_{2} \ldots a_{2 n-2}$ such that $a_{i}>a_{i+1}$ means both a_{i} and a_{i+1} are even
- Permutations $a_{1} a_{2} \ldots a_{2 n-2}$ such that $a_{i}<i$ means both a_{i} and i are even

Rook Placements and Restricted Permutations

Rook Placements and Restricted Permutations

Example

312

Rook Placements in 3-D and Permutation Pairs

Rook Placements in 3-D and Permutation Pairs

Rook Placements in 3-D and Permutation Pairs

First permutation: 1st coordinates of the rooks from top to bottom Second permutation: 2nd coordinates of the rooks from top to bottom

Rook Placements in 3-D and Permutation Pairs

First permutation: 1st coordinates of the rooks from top to bottom Second permutation: 2nd coordinates of the rooks from top to bottom Pairs of permutations of $5 \pi_{1}, \pi_{2}$ such that $\pi_{1}(i)$ or $\pi_{2}(i) \leq i$ for each i.

Permutation Pairs for $m=1,2,3$

Permutation Pairs for $m=1,2,3$

1,1

Permutation Pairs for $m=1,2,3$

$$
1,1 \longleftrightarrow G_{2(m+1)}=G_{4}=1
$$

Permutation Pairs for $m=1,2,3$

$$
1,1 \longleftrightarrow G_{2(m+1)}=G_{4}=1
$$

12,12 ; 21,12 ; 12, 21

Permutation Pairs for $m=1,2,3$

$$
1,1 \longleftrightarrow G_{2(m+1)}=G_{4}=1
$$

12,$12 ; 21,12 ; 12,21 \longleftrightarrow G_{6}=3$

Permutation Pairs for $m=1,2,3$

$$
1,1 \longleftrightarrow G_{2(m+1)}=G_{4}=1
$$

12,$12 ; 21,12 ; 12,21 \longleftrightarrow G_{6}=3$

123,

Permutation Pairs for $m=1,2,3$

$$
1,1 \longleftrightarrow G_{2(m+1)}=G_{4}=1
$$

12,$12 ; 21,12 ; 12,21 \longleftrightarrow G_{6}=3$

123, (any) ;

Permutation Pairs for $m=1,2,3$

$$
1,1 \longleftrightarrow G_{2(m+1)}=G_{4}=1
$$

12,$12 ; 21,12 ; 12,21 \longleftrightarrow G_{6}=3$

123, (any) ; 132,

Permutation Pairs for $m=1,2,3$

$$
1,1 \longleftrightarrow G_{2(m+1)}=G_{4}=1
$$

12,$12 ; 21,12 ; 12,21 \longleftrightarrow G_{6}=3$

123, (any) ; 132, (123, 213, 312, 321) ;

Permutation Pairs for $m=1,2,3$

$$
1,1 \longleftrightarrow G_{2(m+1)}=G_{4}=1
$$

12,$12 ; 21,12 ; 12,21 \longleftrightarrow G_{6}=3$

123, (any) ; 132, (123, 213, 312, 321) ;

213,

Permutation Pairs for $m=1,2,3$

$$
1,1 \longleftrightarrow G_{2(m+1)}=G_{4}=1
$$

12,$12 ; 21,12 ; 12,21 \longleftrightarrow G_{6}=3$

123, (any) ; 132, (123, 213, 312, 321) ;

213, $(123,132)$;

Permutation Pairs for $m=1,2,3$

$$
1,1 \longleftrightarrow G_{2(m+1)}=G_{4}=1
$$

12,$12 ; 21,12 ; 12,21 \longleftrightarrow G_{6}=3$

123, (any) ; 132, (123, 213, 312, 321) ;
$213,(123,132)$; 231,

Permutation Pairs for $m=1,2,3$

$$
1,1 \longleftrightarrow G_{2(m+1)}=G_{4}=1
$$

12,$12 ; 21,12 ; 12,21 \longleftrightarrow G_{6}=3$

123, (any) ; 132, (123, 213, 312, 321) ;

213, $(123,132)$; 231,123 ;

Permutation Pairs for $m=1,2,3$

$$
1,1 \longleftrightarrow G_{2(m+1)}=G_{4}=1
$$

12,$12 ; 21,12 ; 12,21 \longleftrightarrow G_{6}=3$

123, (any) ; 132, (123, 213, 312, 321) ;
$213,(123,132)$; 231,123 ; $312,(123,132)$;

Permutation Pairs for $m=1,2,3$

$$
1,1 \longleftrightarrow G_{2(m+1)}=G_{4}=1
$$

$$
12,12 ; 21,12 ; 12,21 \longleftrightarrow G_{6}=3
$$

$$
123,(\text { any) ; 132, }(123,213,312,321) ;
$$

$$
213,(123,132) ; 231,123 ; 312,(123,132) \text {; }
$$

Permutation Pairs for $m=1,2,3$

$$
1,1 \longleftrightarrow G_{2(m+1)}=G_{4}=1
$$

$$
12,12 ; 21,12 ; 12,21 \longleftrightarrow G_{6}=3
$$

$$
123,(\text { any) ; 132, }(123,213,312,321) ;
$$

$$
213,(123,132) ; 231,123 ; 312,(123,132) \text {; }
$$

$$
321,(123,132) \longleftrightarrow G_{8}=17
$$

Permutation tuples

More generally: The generalized Genocchi numbers count the number of permutation tuples such that at least one $\pi(i) \leq i$.

Thanks!

```
Joint work with
Adam Atkins, Nick Krzywonos, Rachel Moger-Reischer, Ruth Swift
```

This work was partially supported by NSF grant DMS-1003993, which funds an REU program at GVSU.

