A New Combinatorial Interpretation of Generalized Genocchi Numbers

Feryal Alayont alayontf@gvsu.edu

Grand Valley State University

January 16, 2014

F. Alayont (GVSU)

Overview

(日) (四) (三) (三) (三)

• Classical rook theory, and in 3-D and beyond

э

Overview

- Classical rook theory, and in 3-D and beyond
- Families of boards corresponding to Genocchi and central factorial numbers

Overview

- Classical rook theory, and in 3-D and beyond
- Families of boards corresponding to Genocchi and central factorial numbers
- A new combinatorial interpretation of Genocchi numbers

F. Alayont (GVSU)

3

Definition

Rook polynomial : $R_B(x) = \sum r_k(B)x^k$, where $r_k(B)$ is the number of ways to place k non-attacking rooks on B.

/₽ ▶ ∢ ∋ ▶

Definition

Rook polynomial : $R_B(x) = \sum r_k(B)x^k$, where $r_k(B)$ is the number of ways to place k non-attacking rooks on B.

- A 1		0	(CLU)
	avont (T-1/	
	ayone (50,

3

□ ▶ ▲ □ ▶ ▲ □

Definition

Rook polynomial : $R_B(x) = \sum r_k(B)x^k$, where $r_k(B)$ is the number of ways to place k non-attacking rooks on B.

3

< 回 > < 三 > < 三 >

Definition

Rook polynomial : $R_B(x) = \sum r_k(B)x^k$, where $r_k(B)$ is the number of ways to place k non-attacking rooks on B.

- A 1		0	(CLU)
	avont (T-1/	
	ayone (50,

3

□ ▶ ▲ □ ▶ ▲ □

Definition

Rook polynomial : $R_B(x) = \sum r_k(B)x^k$, where $r_k(B)$ is the number of ways to place k non-attacking rooks on B.

E A I		0	(CLU)
F Ala	vont ((-1)	5
	,	. . .	

3

□ ▶ ▲ □ ▶ ▲ □

Definition

Rook polynomial : $R_B(x) = \sum r_k(B)x^k$, where $r_k(B)$ is the number of ways to place k non-attacking rooks on B.

F. Ala	vont (GV	SU)
			,

3

< 回 > < 三 > < 三 >

Triangular boards

F. Alayont (GVSU)

3

Triangular boards

3

<ロ> (日) (日) (日) (日) (日)

Triangular boards

For size m triangular board T_m ,

$$r_k(T_m) = S(m+1, m+1-k)$$

where S(m, n) are the Stirling numbers of the second kind, i.e.

$$S(m, n) = S(m - 1, n - 1) + nS(m - 1, n)$$

with S(m, m) = 1 and S(m, 1) = 1.

3

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Question: What happens if the rooks can fly?

3

Question: What happens if the rooks can fly?

Follow-up: How do we want the rooks to attack in three and higher dimensions?

Question: What happens if the rooks can fly?

Follow-up: How do we want the rooks to attack in three and higher dimensions?

Our choice: A rook in *d*-dimensions attacks along (d - 1)-dimensional hyperplanes.

Question: What happens if the rooks can fly?

Follow-up: How do we want the rooks to attack in three and higher dimensions?

Our choice: A rook in *d*-dimensions attacks along (d - 1)-dimensional hyperplanes. For three dimensions, [Zindle, 2007]

Triangular Boards in Three Dimensions

F. Alayont (GVSU)

Genocchi Numbers

January 16, 2014 6 / 13

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

э

Triangular Boards in Three Dimensions

∃ →

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Triangular Boards in Three Dimensions

Theorem (Krzywonos, A.)

For size m triangle board Δ_m in three dimensions,

$$r_k(\Delta_m) = T(m+1, m+1-k)$$

where T(m, n) are the central factorial numbers, *i.e.*

$$T(m, n) = T(m - 1, n - 1) + n^2 T(m - 1, n)$$

with T(m, m) = 1 and T(m, 1) = 1.

Genocchi Boards in Three Dimensions

F. Alayont (GVSU)

3

Genocchi Boards in Three Dimensions

(日) (同) (三) (三)

Genocchi Boards in Three Dimensions

Theorem (Krzywonos, A.)

For a size *m* Genocchi board Γ_m in three dimensions, $r_m(\Gamma_m)$ is given by the (m + 1)th (unsigned even) Genocchi number $G_{2(m+1)}$ (1, 3, 17, 155, 2073, ...)

The generating function for the Genocchi numbers G_n is

$$\frac{2t}{e^t+1} = \sum_{n=1}^{\infty} G_n \frac{t^n}{n!}$$

3

< ロ > < 同 > < 三 > < 三

The generating function for the Genocchi numbers G_n is

$$\frac{2t}{e^t+1} = \sum_{n=1}^{\infty} G_n \frac{t^n}{n!}$$

 $G_{odd} = 0$

3

The generating function for the Genocchi numbers G_n is

$$\frac{2t}{e^t+1} = \sum_{n=1}^{\infty} G_n \frac{t^n}{n!}$$

 $G_{odd} = 0$ and G_{2n} count

 Permutations a₁a₂...a_{2n-2} such that even a_i is followed by a smaller number and odd a_i is followed by a larger

A (10) A (10)

The generating function for the Genocchi numbers G_n is

$$\frac{2t}{e^t+1} = \sum_{n=1}^{\infty} G_n \frac{t^n}{n!}$$

 $G_{odd} = 0$ and G_{2n} count

- Permutations a₁a₂...a_{2n-2} such that even a_i is followed by a smaller number and odd a_i is followed by a larger
- Permutations $a_1a_2 \dots a_{2n-2}$ such that $a_{2i} < 2i$ and $a_{2i-1} \ge 2i 1$

The generating function for the Genocchi numbers G_n is

$$\frac{2t}{e^t+1} = \sum_{n=1}^{\infty} G_n \frac{t^n}{n!}$$

 $G_{odd} = 0$ and G_{2n} count

- Permutations a₁a₂...a_{2n-2} such that even a_i is followed by a smaller number and odd a_i is followed by a larger
- Permutations $a_1a_2...a_{2n-2}$ such that $a_{2i} < 2i$ and $a_{2i-1} \ge 2i-1$
- Permutations $a_1a_2...a_{2n-2}$ such that $a_i > a_{i+1}$ means both a_i and a_{i+1} are even

E Sac

The generating function for the Genocchi numbers G_n is

$$\frac{2t}{e^t+1} = \sum_{n=1}^{\infty} G_n \frac{t^n}{n!}$$

 $G_{odd} = 0$ and G_{2n} count

- Permutations a₁a₂...a_{2n-2} such that even a_i is followed by a smaller number and odd a_i is followed by a larger
- Permutations $a_1a_2...a_{2n-2}$ such that $a_{2i} < 2i$ and $a_{2i-1} \ge 2i-1$
- Permutations $a_1a_2...a_{2n-2}$ such that $a_i > a_{i+1}$ means both a_i and a_{i+1} are even
- Permutations a₁a₂...a_{2n-2} such that a_i < i means both a_i and i are even

F. Alayont (GVSU)

Genocchi Numbers

January 16, 2014 9 / 13

3

∃ → (∃ →

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

∃ → (∃ →

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

F. Alayont (GVSU)

January 16, 2014 9 / 13

∃ → (∃ →

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

F. Alayont (GVSU)

January 16, 2014 9 / 13

イロト イヨト イヨト イヨト

F. Alayont (GVSU)

Genocchi Numbers

January 16, 2014 10 / 13

3

- K 🖻

3

イロト イヨト イヨト イヨト

First permutation: 1st coordinates of the rooks from top to bottom Second permutation: 2nd coordinates of the rooks from top to bottom

First permutation: 1st coordinates of the rooks from top to bottom Second permutation: 2nd coordinates of the rooks from top to bottom Pairs of permutations of 5 π_1, π_2 such that $\pi_1(i)$ or $\pi_2(i) \le i$ for each *i*.

3

1, 1

3

$$1,1 \leftrightarrow G_{2(m+1)} = G_4 = 1$$

3

$$1,1 \leftrightarrow G_{2(m+1)} = G_4 = 1$$

 $12,12 \ ; \ 21,12 \ ; \ 12,21$

- 2

・ロン ・四 ・ ・ ヨン ・ ヨン

$$1,1 \leftrightarrow G_{2(m+1)} = G_4 = 1$$

12,12 ; 21,12 ; 12,21 \longleftrightarrow $G_6=3$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

$$1,1 \leftrightarrow G_{2(m+1)} = G_4 = 1$$

12,12 ; 21,12 ; 12,21
$$\longleftrightarrow$$
 $G_6 = 3$

123,

3

$$1,1 \leftrightarrow G_{2(m+1)} = G_4 = 1$$

$$12, 12$$
; $21, 12$; $12, 21 \leftrightarrow G_6 = 3$

123,(any);

イロト イヨト イヨト イヨト

$$1,1 \leftrightarrow G_{2(m+1)} = G_4 = 1$$

$$12, 12$$
; $21, 12$; $12, 21 \leftrightarrow G_6 = 3$

123,(any); 132,

- 2

<ロ> (日) (日) (日) (日) (日)

$$1,1 \leftrightarrow G_{2(m+1)} = G_4 = 1$$

$$12, 12$$
; $21, 12$; $12, 21 \leftrightarrow G_6 = 3$

123,(any); 132,(123,213,312,321);

F. Alayont (GVSU)

$$1,1 \leftrightarrow G_{2(m+1)} = G_4 = 1$$

$$12, 12$$
; $21, 12$; $12, 21 \leftrightarrow G_6 = 3$

123,(any); 132,(123,213,312,321);

213,

F. Alayont (GVSU)

<き><き><き><き><き><き><き><き><なべの</td>

January 16, 2014
11 / 13

$$1,1 \leftrightarrow G_{2(m+1)} = G_4 = 1$$

$$12, 12$$
; $21, 12$; $12, 21 \leftrightarrow G_6 = 3$

123,(any); 132,(123,213,312,321);

213, (123, 132);

$$1,1 \leftrightarrow G_{2(m+1)} = G_4 = 1$$

$$12, 12$$
; $21, 12$; $12, 21 \leftrightarrow G_6 = 3$

$$123,(any)$$
; $132,(123,213,312,321)$;

213, (123, 132); 231,

3

$$1,1 \leftrightarrow G_{2(m+1)} = G_4 = 1$$

$$12, 12$$
; $21, 12$; $12, 21 \leftrightarrow G_6 = 3$

$$123,(any)$$
; $132,(123,213,312,321)$;

213, (123, 132); 231, 123;

3

イロト イヨト イヨト

$$1,1 \leftrightarrow G_{2(m+1)} = G_4 = 1$$

$$12, 12$$
; $21, 12$; $12, 21 \leftrightarrow G_6 = 3$

$$123,(any)$$
; $132,(123,213,312,321)$;

213, (123, 132); 231, 123; 312, (123, 132);

$$1,1 \longleftrightarrow G_{2(m+1)} = G_4 = 1$$

12,12 ; 21,12 ; 12,21 \longleftrightarrow $G_6=3$

213, (123, 132); 231, 123; 312, (123, 132);

321, (123, 132)

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

$$1,1 \iff G_{2(m+1)} = G_4 = 1$$

12,12 ; 21,12 ; 12,21 \longleftrightarrow $G_6 = 3$

123,(any); 132,(123,213,312,321);

213, (123, 132); 231, 123; 312, (123, 132);

 $321, (123, 132) \iff G_8 = 17$

Permutation tuples

More generally: The generalized Genocchi numbers count the number of permutation tuples such that at least one $\pi(i) \leq i$.

3

12 N 4 12 N

< 4 → <

Thanks!

Joint work with

Adam Atkins, Nick Krzywonos, Rachel Moger-Reischer, Ruth Swift

This work was partially supported by NSF grant DMS-1003993, which funds an REU program at GVSU.

F. Alayont (GVSU)

・ 同 ト ・ ヨ ト ・ ヨ ト