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Abstract.  The study of linear oscillations—including simple harmonic, damped, and driven oscillations—is not only 
fundamental in classical mechanics but lies at the heart of numerous applications in the engineering sciences.  Results 
from research conducted in the context of junior-level mechanics courses suggest the presence of specific conceptual 
and reasoning difficulties, many of which seem to be based on fundamental concepts.  Evidence from pretests (ungraded 
quizzes) will be presented to illustrate critical difficulties in understanding conceptual underpinnings, relating concepts 
to graphical representations (e.g., motion graphs), and connecting the physics to the relevant differential equations of 
motion.  Preliminary results from the development of a tutorial approach to instruction, modeled after Tutorials in 
Introductory Physics by McDermott, et al., suggest that such an approach can be effective in both physics and 
engineering courses.  (Supported by NSF grants DUE-0441426 and DUE-0442388.).  
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INTRODUCTION 

As part of an ongoing investigation of student 
learning in intermediate mechanics, we are probing 
how advanced undergraduate majors in physics, math, 
and engineering think about oscillations in one and 
two dimensions.  Instructors often expect their 
students to extend what they have learned at the 
introductory level about oscillatory motion (e.g., 
simple harmonic motion) to situations that are 
physically and mathematically more sophisticated.  
However, evidence from this study corroborates 
previous studies that demonstrate how difficulties with 
basic concepts can hinder meaningful learning in 
upper level courses. [1]  Furthermore, analysis of 
student responses to numerous research tasks, 
including written qualitative questions that require 
explanations of reasoning, often suggests that students 
need guidance in organizing their knowledge.   

This report will focus specifically on the following 
research questions:  (a) How well do students 
understand the factors that affect the frequency of 
different types of linear oscillations?  (b) How well do 
students interpret and understand formal 
representations of oscillatory motion, such as x vs. t 
graphs of 1-D oscillators and x-y trajectories of 2-D 
oscillators?  (c) To what extent to students answer 
qualitative questions by bringing to bear their 

knowledge of general principles relevant to the 
physical situation at hand?  

CONTEXT OF INVESTIGATION 

The student populations discussed here come from 
junior-level intermediate mechanics courses at Grand 
Valley State University (GVSU), the University of 
Maine (UME), and Seattle Pacific University (SPU).  
Although the details of the courses vary somewhat, all 
courses cover linear oscillations (simple harmonic, 
damped, driven) and other topics that require the 
synthesis of Newton’s laws, work and energy, and 
differential equations.  In addition, the classes 
discussed here were taught either by the author or 
Michael Wittmann (UME), with whom the author is 
collaborating on Intermediate Mechanics Tutorials 
(IMT) [2], a set of research-based curricular materials 
modeled after Tutorials in Introductory Physics. [3]   

The results presented in this paper were taken 
primarily from the analysis of responses to written 
pretests (ungraded quizzes).  In all cases the pretests 
were given after lecture instruction but before the 
tutorial (from IMT) on the relevant topic.  At GVSU 
and SPU each pretest was administered during class 
for 10 min; at UME students were instructed to 
complete each pretest outside class for 10-15 min.  All 
pretest questions asked for explanations of reasoning. 



PROBING STUDENT THINKING OF 
SIMPLE HARMONIC MOTION  

IN ONE AND TWO DIMENSIONS 

In this section we describe results from pretests that 
probe the ability of students to apply (in 1-D) and 
extend (to 2-D) the idea that the frequency 
[ωo = (k/m)1/2] of a simple harmonic oscillator is 
determined solely by the spring constant and mass.  
Students in all classes discussed here covered 1-D 
simple harmonic oscillators at the introductory level.   

Simple harmonic motion 

The first pretest on oscillations includes questions 
that elicit student ideas about the factors that affect the 
frequency of simple harmonic oscillations.  For this 
report we describe the results from 4 classes (N = 35) 
at GVSU and 1 class (N = 11) at SPU.   

Students are shown a strobe picture illustrating a 
block connected to an ideal spring that is released from 
rest on a level, horizontal surface.  They are asked how 
the period would be affected by:  (i) changing the 
release point of the block from 0.5 m to 0.7 m from 
equilibrium, (ii) replacing the original spring with one 
that is stiffer, and (iii) replacing the original block with 
one having four times the mass.  The students were 
expected to recognize that the period will not change 
in case (i), decrease in case (ii), and increase (double) 
in case (iii). 

Incorrect intuitions relating period and amplitude 

Although most students gave correct responses 
(ignoring reasoning) for each case, case (i) yielded the 
lowest percentage of complete and correct 
explanations (~10%).  Many correct responses were 
supported by “compensation arguments” [4] relating 
amplitude, average speed, and period.  As one student 
explained, “It may seem that the block is moving 
faster, but it is also moving farther to compensate.”  
While such justifications make it plausible that the 
period is unaffected by changing the amplitude, they 
show no evidence of understanding that only the 
spring constant and mass affect the period.  Even more 
telling, the most common incorrect explanation (from 
~25% of the students) was based on the incorrect 
intuition that the greater initial displacement from 
equilibrium (and hence the larger amplitude) would 
cause the period to increase because, for example, “the 
block travels farther during each period.”   

The above results are interesting because they 
suggest persistent, incorrect intuitions that may lead to 
confusion in the context of 2-D oscillations.  Even 
though students completed a tutorial (not discussed 

here) on 1-D harmonic oscillators, the above pretest 
results suggested the need to explore how students 
proceed from 1-D to the 2-D case.      

Harmonic motion in two dimensions 

Students often were introduced to 2-D oscillations 
as an application of conservative forces, several weeks 
after covering 1-D oscillations.  The following pretest, 
given after relevant lectures to 4 classes (N = 31) at 
GVSU and 1 class (N = 17) at UME, was designed to 
probe student understanding of the relative frequencies 
along the x- and y-axes of a 2-D oscillator.   

Students are asked to consider an undamped 2-D 
oscillator with U(x, y) = ½k1x2 + ½k2y2.  (They are also 
reminded about the relationship ki = mωi

2 for each 
force constant.)  For each x-y trajectory shown in 
Fig. 1, students are asked whether that trajectory is 
possible for such an oscillator and, if so, whether ω1 is 
greater than, less than, or equal to ω2.  (The original 
version of the pretest asked for a comparison of the 
force constants k1 and k2 instead of the frequencies.  
The change in wording, however, did not significantly 
alter overall student performance.)   
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FIGURE 1.  Three x-y trajectories shown on the pretest for 
2-D oscillators.  Students were asked for each case how the 
frequencies along the x- and y-axes compared.  

 
Students were expected to infer from each 

trajectory how many cycles occurred along one axis 
for each cycle along the other.  Two isotropic cases 
(#1 and #2) were included, and showing different x- 
and y- amplitudes for Case #2 was intended to elicit 
incorrect intuitions about frequency and amplitude.  

Use of “compensation arguments” relating 
frequencies (or force constants) and amplitudes  

In each class very few students (between 0% and 
15%) gave correct responses for all cases, even when 



explanations were ignored.  Most students incorrectly 
compared the relative frequencies (or relative force 
constants) by using inappropriate “compensation 
arguments” involving the relative amplitudes along the 
x- and y-axes.  For example, for case #2 most 
incorrectly predicted that ω1 < ω2 (or k1 < k2) for 
reasons such as: “the spring goes farther in the x-
direction, so [the] spring must be less stiff in that 
direction,” or “since we now have an oval curve with 
the x-axis longer, ω2 must be greater to compensate.” 

The prevalence of this type of “compensation” 
reasoning is striking for two reasons.  First, it strongly 
suggests that most students fail to recognize that x-y 
trajectories like those from the pretest yield frequency 
information about the 2-D oscillator.  Second, the 
tendency for students to link amplitudes with 
frequencies (or force constants) appears to be 
analogous to the most common incorrect mode of 
reasoning used on the 1-D oscillator pretest.  This 
result suggests the recurrence of conceptual difficulty 
with fundamental ideas. 

PROBING STUDENT THINKING OF 
DAMPED HARMONIC MOTION 

Students encountering damped oscillations for the 
first time usually do so at the intermediate level, after 
simple harmonic motion but before 2-D oscillations.  
Typically the lecturer demonstrates shows how to set 
up and solve the differential equation.  For the 
underdamped form of the solution the students are 
shown that amplitude decreases exponentially with 
time and that the frequency is smaller than that for the 
undamped oscillator:  ωd = (ωo

2–γ2)½, where γ is the 
damping constant.  Given this typical treatment of 
damped oscillators it was desired to study how well 
students understood qualitatively how the presence of 
damping affects the motion of an oscillator.  

Underdamped motion 

After lecture instruction on damped oscillators, 
students in 4 GVSU classes (N = 35) and 1 SPU class 
(N = 11) were given the following two-part pretest.  
The pretest began by showing students the x vs. t graph 
of a simple harmonic oscillator (no damping) released 
from rest (see solid curve in Fig. 2).  They were then 
told to assume that a linear damping force is applied, 
causing the oscillator to become underdamped.  
(Students were reminded the meaning of the term.)  In 
part A of the pretest, students were asked to sketch a 
qualitatively correct graph of the underdamped 
oscillator having the same initial conditions as the 
original (undamped) one.  In part B, they were asked 
to consider the instant it first passes x = 0:  at that 

instant is the oscillator speeding up, slowing down, or 
moving with maximum speed?   

(Note:  Part B was not included on the pretest for 
one GVSU class.  A slightly different version of part B 
was given to two of the GVSU classes:  Does the 
[underdamped] oscillator first attain a maximum speed 
before, after, or exactly at the same instant when it 
passes through x = 0?  The change in wording did not 
seem to affect the overall performance of the students.) 
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FIGURE 2.  Motion graph from part A of the pretest on  
underdamped oscillators.  The solid curve represents the 
motion of a simple harmonic oscillator.  The dashed curve 
(not shown to students) illustrates a qualitatively correct 
graph for an underdamped oscillator.  

Inappropriate generalizations from the case of simple 
harmonic motion 

Few students (~25% or fewer) in each class 
answered part A correctly.  Any curve like the dashed 
curve shown in Fig. 2 would have been acceptable.  
However, most students (60% to 70%) drew graphs 
like the one shown in Fig. 3, showing a gradually 
decreasing amplitude (which is correct) but a 
frequency that is equal to that for the undamped case.  
Most explanations—for example, “the amplitude 
shrinks in time but the period shouldn’t change since 
they are independent of each other”—suggest an 
overgeneralization from simple harmonic motion.   

 
 

 

FIGURE 3.  Example of a typical incorrect student graph 
elicited by the pretest on underdamped oscillations.  Most 
students drew graphs like this one, showing equal 
frequencies for the undamped and underdamped cases.    



Other errors arose on part A, including the 
tendency to show both the amplitude and period as 
gradually decreasing.  These responses could be 
interpreted as recurrences of the belief that amplitude 
and frequency are connected, a belief that was detected 
on each of the two pretests described previously.  
More research is needed, though, to tell for certain.  

Part B of the pretest was equally difficult for 
students.  Students could answer part B by taking the 
differential equation of motion, ma = – cv – kx, setting 
x = 0, recognizing that acceleration and velocity must 
oppose in direction, and concluding that the oscillator 
must be slowing down at x = 0.  Students could get the 
same answer by drawing a free-body diagram and 
finding that the net force opposes the velocity.    

Only 20% to 30% of the students in each class gave 
correct responses.  The most common incorrect answer 
was to state that the oscillator experienced its 
maximum speed upon passing x = 0.  Some did not 
seem to take the damping into account, saying that 
there was no acceleration because the spring was 
neither pushing nor pulling.  Others did not at all 
invoke forces or Newton’s laws, saying simply that the 
slope of the x vs. t graph would be at a maximum at 
x = 0.  Both modes of reasoning strongly suggest a 
tendency to overgeneralize from the case of simple 
harmonic motion rather than to bring to bear one’s 
knowledge of Newton’s laws. 

IMPLICATIONS FOR INSTRUCTION 
AND FUTURE RESEARCH 

Although the pretests discussed here do not 
necessarily measure depth of student understanding, 
they show what physics majors often cannot do after 
traditional lectures.  They need guidance in 
recognizing which factors affect the frequency of 
various types of oscillations, including simple 
harmonic motion (covered at the introductory level) 
and underdamped motion (covered usually for the first 
time at the sophomore or junior level).  Students also 
have difficulty interpreting representations of 
oscillatory motion, including x-y trajectories of 2-D 
oscillators.  As with many investigations conducted at 
the introductory level and beyond, traditional lecture 
instruction has found to do little to promote conceptual 
development in students, even students who are 
physics majors. [5]  

The prevalence of incorrect or incomplete 
explanations suggests that many students entering the 
intermediate mechanics class lack a strong conceptual 
framework upon which to build.  Rather than 
recognize the relevance and utility of physics 
principles (e.g., Newton’s second law), many students 
tend to make inappropriate generalizations from 

special cases (e.g., to incorrectly infer the behavior of 
underdamped oscillators from results that are valid 
only when damping is absent).   

Although some types of incorrect responses, 
including “compensation arguments” linking 
amplitude to frequency (or period) are prevalent, it is 
possible that they may not indicate hard-and-fast 
conceptual difficulties as much as the tendency for 
students to proceed from incorrect assumptions or 
even inadvertent “triggers” from the research task.  For 
instance, modifications are being considered for the 
2-D oscillator pretest in which the students will not be 
shown a set of possible x-y trajectories.  In the event 
that presenting both circular and elliptical trajectories 
“triggered” a high percentage of amplitude-frequency 
explanations, students will instead be given the initial 
conditions of motion and a specified k2/k1 (or ω2/ω1) 
ratio.  They will then be asked to sketch a possible x-y 
trajectory for the oscillator.  It is hoped that analysis of 
student responses on the revised pretest will allow a 
measure of the robustness of amplitude-frequency 
explanations.  Such results would be used to guide 
refinements to existing IMT materials, so that they will 
become even more effective in helping students make 
the qualitative and quantitative extensions from 
introductory to intermediate level mechanics.    
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