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Abstract.  Ongoing research in physics education has demonstrated that physics majors often do not develop a working 
knowledge of basic concepts in mechanics, even after standard instruction in upper-level mechanics courses.  A central 
goal of this work has been to explore the ways in which students make—or do not make—appropriate connections 
between physics concepts and the more sophisticated mathematics (e.g., differential equations, vector calculus) that they 
are expected to use.  Many of the difficulties that students typically encounter suggest deeply-seated alternate 
conceptions, while others suggest the presence of loosely or spontaneously connected intuitions.  Analysis of results 
from pretests (ungraded quizzes), written exams, and informal classroom observations are presented to illustrate specific 
examples of naïve intuitions and related difficulties exhibited by the students.  Also presented are examples of 
instructional strategies that appear to be effective in addressing these difficulties. (Supported by NSF grants DUE-
0441426 and DUE-0442388.) 
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INTRODUCTION 

 Recent insights in physics education research 
(PER) have motivated the need to closely examine in 
new ways the nature of students’ thinking before, 
during, and after instruction.  Some conceptual and 
reasoning difficulties seem to be deeply entrenched, 
calling for instructional strategies based on cognitive 
conflict; other times, students seem to operate using 
loosely-connected or spontaneous ideas, calling 
instead for an approach to refine those intuitions [1].  
Researchers have found it useful to attempt to 
characterize student thinking in introductory physics 
courses so that interventions in instruction can be 
tailored appropriately [2].  This report describes two 
examples highlighting the utility of extending this 
approach to the teaching of intermediate mechanics.  

CONTEXT OF INVESTIGATION 

The student populations discussed here come from 
junior-level mechanics courses at Grand Valley State 
University (GVSU), the University of Maine (UME), 
Seattle Pacific University (SPU), the University of 
New Hampshire (UNH), and West Chester University 
of Pennsylvania (WCUP).  Although the details of the 
courses vary somewhat, all courses cover topics that 

require the synthesis of Newton’s laws, work and 
energy, differential equations, and vector calculus.  In 
addition, the classes highlighted here were taught by 
instructors implementing materials from Intermediate 
Mechanics Tutorials (IMT), a set of research-tested 
curricular materials modeled after published tutorials  
for introductory courses [3] and co-developed by both 
the author and Michael Wittmann (UME) [4].   

The results presented in this  paper were taken 
primarily from the analysis of responses to written 
pretests (ungraded quizzes), course exams, and 
informal observations of students during class.  Unless 
otherwise stated, pretests were given after lecture 
instruction but before the relevant tutorial.  All written 
questions asked students  for explanations of reasoning. 

EXAMPLE:  HARMONIC 
OSCILLATIONS IN TWO DIMENSIONS 

As reported in the 2006 PER Conference 
proceedings [5], research on student understanding of 
harmonic oscillations has revealed the often persistent 
intuition that the amplitude of a simple harmonic  
oscillator affects the period or frequency of oscillation.  
In the context of one-dimensional (1-D) oscillations, 
this intuition arose among a significant minority 
(~25%) of pretests given to a total of 5 intermediate 



mechanics classes (NGVSU  = 35 and NSPU = 11).  For 
example, many predicted that increasing the amplitude 
would cause an increase in period because, as one 
student explained, “the block travels farther during 
each period.”  Although most students correctly 
predicted no change to the period, they tended to use 
“compensation” reasoning [6] that amounted to 
plausibility arguments.  As one student stated, “It may 
seem that the block is moving faster, but it is also 
moving farther to comp ensate.”  The presence of these 
two prominent reasoning patterns suggested the lack of 
a robust conceptual framework upon which students 
could productively build. 

Inappropriate Compensation Arguments 
About Relative Amplitudes 

The naïve student intuition linking amplitude to 
frequency has already been documented in the context 
of two-dimensional (2-D) oscillations by means of a 
tutorial pretest, the original version of which is 
discussed in Ref. 5.  On this pretest students were 
presented several x-y trajectories including those 
shown in Fig. 1.  For each case, students were asked 
how the frequency (or the spring constant) along the y-
axis compared to that along the x-axis.  (Both 
variations of the task yielded very similar results.)     
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FIGURE 1.  Two examples of x-y trajectories shown on the 
original pretest for 2-D oscillators.  (Other examples, not 
shown here, included at least one non-isotropic oscillator.)  

 
As detailed in Ref. 5, very few students  answered 

all parts correctly.  Naïve compensation arguments 
about the relative x- and y-amplitudes arose most 
prominently for Case #2—an isotropic oscillator—for 
which more than half of the students incorrectly 
answered that the frequency (or spring constant) was 
larger along the y-axis.  A typical explanation would 
go:  “The spring goes farther in the x-direction, so 
[the] spring must be less stiff in that direction.”  

In an effort to test whether displaying the x-y 
trajectories inordinately triggered such intuitions about 
the amplitudes, an alternate version of the pretest was 
used in two classes at GVSU (N  = 21) starting in Fall 
2007.  Rather than compare frequencies or spring 
constants on the basis of a given x-y trajectory, 

students were instead asked to sketch a qualitatively 
correct x-y trajectory for several cases of (frictionless) 
isotropic and non-isotropic oscillators.   

Students performed better on the isotropic cases 
(~40% correct) than on the non-isotropic cases (<5% 
correct).  The amplitude-spring constant intuition 
accounted for many of the incorrect responses , two of 
which are shown in Fig. 2 for an oscillator having 
k y = 4k x.  In the first example (Fig. 2a) the student 
explained that an “ellipse” would result because “the 
spring forces are different.”  Similarly, the student 
who drew the sketch in Fig. 2b said “the object travels 
less in the y-direction because of the stiffer spring.”   

 
 

(a) (b) 
 

FIGURE 2.   Two x-y trajectories drawn by students on an 
alternate pretest for 2-D oscillators.  These sketches were 
drawn for a non-isotropic oscillator with ky = 4kx.   

 
The open-ended design of the alternate pretest 

elicited additional ideas not arising on the original.  
For instance, many students (~30%) drew inwardly 
spiraling paths (like the one shown in Fig. 2b) rather 
than closed curves, stating that “the springs attempt to 
return the object to equilibrium.”  Such a surprising 
result obviously warrants further research.  
Nonetheless, the alternate pretest seems to provide 
strong evidence that the amplitude-spring constant (or 
amplitude-frequency) intuition did not merely result 
from the design of the original pretest. 

Building and Refining Productive 
Intuitions about Amplitude and Frequency 

The in-class worksheet and homework for the 
tutorial “Harmonic motion in two dimensions” guide 
students to extend productively their knowledge of 
simple harmonic motion.  Students are asked questions 
requiring them to extend the relationship ω = (k /m)1/2 
for the frequency of an oscillator from 1-D to 2-D.  A 
key question directs students to an x-y trajectory 
similar to Case #2 from the original pretest (Fig. 1).  
Students  are prompted to use the diagram to find how 
many oscillations occur along the y-axis for each along 
the x-axis , a question that some students answer rather 



concretely by tracing their finger around the trajectory 
and counting.  They find that, despite the different x- 
and y-amplitudes, the two frequencies—and hence the 
spring constants —are equal.   

The remainder of the tutorial switches to a different 
issue, namely, relating the phase angle between the x- 
and y-oscillations for an isotropic oscillator to the 
initial conditions of motion.  The original homework 
included no additional questions that sought to address 
the amplitude-frequency issue.  After using this 
version of the tutorial and homework, only about half  
of the GVSU students  in Fall 2001 and Fall 2002 
(11/19 combined) correctly answered post-test tasks 
similar to that on the pretest.  Many students instead 
reverted to inappropriate compensation arguments.  
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A. Critique the following statement.  
Explain your reasoning. 

 “The oscillator goes farther in the 
x-direction than in the y-direction.  
That means the spring in the  
y-direction must be stiffer than 
the spring in the x-direction.” 

 
B. Rank points P, Q, and R according to (i) total energy, (ii) 

potential energy, and (iii) kinetic energy. 

 Explain how the difference in the x- and y-amplitudes, used 
incorrectly in the statement in part A, can help you justify a 
correct answer here in part B. 

  

FIGURE 3.  Problem on the revised tutorial homework for 
two-dimensional oscillations.  

 
This outcome was interpreted to mean that students 

continued to focus on the different x- and y-amplitudes 
without recognizing which aspects of the oscillations 
actually vary as a result .  In response, a refining-
intuitions approach was taken on a revised homework 
by including the problem shown in Fig. 3.  The 
strategy is to help students connect the amplitude 
concept to a more productive one—potential energy—
and thus disconnect it from spring constants and 
frequencies.  After this modification, success rates on 
post-tests at GVSU have ris en to ~90% (20/22 correct 
with correct reasoning).  It is hoped that these results 
will soon be replicated at IMT pilot sites. 

EXAMPLE: ANGULAR MOMENTUM 
AND KEPLERIAN ORBITS  

After standard instruction introductory students 
often have difficulty applying physical relationships 
(e.g., ideal gas law) that involve multiple variables [7].  
These difficulties seem to be particularly prevalent for 
cause-effect relationships (e.g., work-energy and 
impulse-momentum theorems) [6].  Because 

difficulties frequently resurface after instruction at the 
introductory level, these findings suggest possible 
confusion about angular momentum of object moving 
under the influence of central forces. 

Spontaneous Intuitions About Angular 
Momentum 

A pretest was administered to several classes with 
the goal of probing student thinking about the angular 
momentum of a point particle.   Two scenarios that 
elicited the most interesting results are shown in Fig. 4 
below.  For the particle moving with uniform motion 
(Fig. 4a), students were asked whether or not its 
angular momentum changed.  For the comet (Fig. 4b), 
students were asked to rank points A–D along the orbit 
according to the angular momentum of the comet.     
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FIGURE 4.  Diagrams from the tutorial pretest on Kepler’s 
second law.  (a) A point particle moving with uniform 
motion.  (b) Diagram of the orbit of a comet.  (Students were 
told explicitly not to treat the picture as a strobe diagram.)  

 
Students who took the pretest after lecture 

(NWCUP  = 22 and NUNH = 7) found them to be quite 
difficult.   Only 3/29 (~10%) gave correct answers on 
the comet question supported by correct and complete 
reasoning (i.e., torque by gravitational force is zero).  
Another ~60% (18/29) gave correct responses  but, like 
those on the 1-D oscillator pretests, many of these 
were based on compensation reasoning (e.g., “all equal 
since if v is increasing, r is decreasing, and vice 
versa”) instead of cause-effect arguments.  In addition, 
some students correctly stated that the comet’s angular 
momentum would not change “because gravity is a 
conservative force,” as if to assert that any force that 
conserves energy also conserves angular momentum. 

Of even more interest were the intuitions used by 
students giving incorrect answers to either pretest task.  
For example, most students incorrectly stated that the 
particle in Fig. 4a would have changing angular 
momentum, referring to only the distance from the 
reference point (“the distance to O changes while the 



speed stays the same”) or the angle between position 
and velocity (“the angle that the radius makes with the 
[path] is constantly changing”).  Similarly, some 
students based their angular momentum ranking for 
the comet (Fig. 4b) only on one variable, e.g., speed:  
“as the object moves closer to the sun, v increases, so 
momentum increases.”  Still others focused on the 
radius of curvature, suggesting a link to angular 
velocity:  “A, D > C > B…  A & D must have the most 
angular momentum to execute the tightest turn.” 

Guiding Students To Deduce New Physics 
Through Guided Derivations  

The frequent use of compensation arguments 
indicate a link between angular momentum and (at 
least some of) the constituent quantities in its 
definition.  Unfortunately, the relationship between 
torque and angular momentum—as with many 
dynamical cause-effect relationships—escapes many 
students .  The tutorial “Angular momentum and 
Kepler’s second law” is designed to guide students 
through the reasoning in order to arrive at this 
relationship and recognize how to apply it .   
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FIGURE 5.  Diagram and initial steps of a guided derivation 
given to students in the tutorial on Kepler’s second law.  

 
The heart of the guided derivation rests in asking 

students to explain the need for and meanings of both 
terms from the time derivative of angular momentum 
(see Fig. 5).  Students generally recognize that the first 
term is identically zero, although some need explicit 
guidance to do so.  (Some initially interpret “ dtrd

r
” 

to mean the rate of change of the magnitude of 
position.)  Students must also interpret the second term 
as the torque produced by the net force.  In this way 
students deduce that the comet experiences zero net 
torque, and hence its angular momentum is conserved.  

Post-test performance on exams suggests modest 
improvement.  As a follow-up to the comet question 
on the pretest, post-tests  were given to 2 classes at 
GVSU and 1 class at SPU.  One GVSU class (N = 15) 
was asked whether or not an attractive 1/r3 force 
(posited as a “hypothetical gravitational” force) would 
conserve momentum;  60% (9/15) correctly explained 
in the affirmative noting that force and position would 

be antiparallel, causing zero torque.  The other classes 
(NGVSU = 8, NSPU = 11) were asked the same question 
for a force expressed in Cartesian coordinates.  Only 
~40% (8/19) answered correctly.  The lower success 
rate is likely  due to the need for students to explicitly  
calculate the torque by the force.  On both post-tests 
the most common error (8/34) was based on the 
notion—a deeply-entrenched idea?—that conservative 
forces must also conserve angular momentum.    

CONCLUDING REMARKS  

This report has sought to provide examples by 
which reformed instruction in intermediate mechanics 
has enhanced student learning by attending to the 
coherence and stability (or lack thereof) in the thinking 
and reasoning patterns of the students.  The refinement 
of student intuitions and the careful use of guided 
derivations appear to be promising instructional 
strategies for upper division physics students .   
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