Anti-SET

or, how getting bored with SET leads to interesting math
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How many cards can you have without having a set?

Theorem (Pellegrino, 1971)
Every set of SET cards contains a set.




Xavier (Player 1) vs. Olivia (Player 2)
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Theorem (Pellegrino, 1971)
Every set of 21 SET cards contains a set.

Anti-SET Rules

e Start with all 81 SET cards

e 2 players alternate taking any available card,
tic-tac-toe style
e First to have a set in their hand loses









Moves: Xp, 00, Xy, O1, ...

Winning Strategy for Xavier

Pick X),. ..
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Moves: Xp, Oo, Xy, Oq, ...

Winning Strategy for Xavier

Pick X, to complete the set through Ay and O,_+.
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Two points form a...
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Two points form a...
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Two lines intersect in ...
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Or else they are...
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Plane of 32 = 9 cards
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Hyperplane of 3° = 27 cards (“3D space”)
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All 3* = 81 cards (“4D space”)
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Winning Strategy for Xavier

Pick X, to complete the line through Ay and O,_;.

Lemma: Xavier can play.

Proof:

On—1
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Lemma: Xavier can'’t lose. )

Proof:

Xy Xo
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Lemma: Xavier can'’t lose. )

Proof:

14/29



Lemma: Xavier can’t lose.

14/29



Lemma: Xavier can'’t lose. )

This is called a mitre: ﬁi
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Lemma: Xavier can'’t lose. )

This is called a mitre: 7. - .

14/29



Lemma: There are no ties.

Proof:
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Theorem: Winning Strategy for Xavier

Pick X, to complete the line through Xy and O,,_1.

But wait... our proofs only needed:

R4

SET wasn’t involved!
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SET is an affine geometry:

A set of “points” and “lines” such that:

e Every pair of points defines a unique line.
e Every line has the same number of points.

e Every line is part of a parallel class
(giving mitres!).
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My favorite affine geometries

iz

The Euclidean Plane The 4-point plane
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My favorite affine geometries
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A 9-card SET Plane All 81 SET Cards
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We can represent SET cards as points:
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We can represent SET cards as points:

- O

<Cvnaf7 >

_—

Color:  Number: Filling:
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Green 2 Solid
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We can represent SET cards as points:
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Color:  Number: Filling:

Red 3(?) Open Oval
Purple 1 Stripe  Squiggle
Green 2 Solid Diamond
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(0,0,0,0) + (0,1,2,0) + (0,2,1,0)

(IR

a D

UUU

(mod 3)



0-(0,1,2,0) 1-(0,1,2,0) 2-(0,1,2,0)
(0,0,0,0) (0,1,2,0) (0,2,1,0)

(IR

a D

UUU

(mod 3)



0-(0,1,2,0) 1-(0,1,2,0) 2-(0,1,2,0)
(0,1,2,0)x (mod 3), x =0,1,2
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We can build AG(n, 3) for any dimension n:

Points: (p1,p2, ..., Pn)
Lines: {rﬁx + b} (always sum to 0 (mod 3)).

SET is AG(4,3):

(0,0,0,1) (2,1,1,2) (1,2,2,0)
(1,2,2,1) x + (0,0,0,1)
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SET: Searching for lines in an affine geometry.

Anti-SET: Avoiding lines in an affine geometry with 3
points per line.

Xavier can win Anti-SET played on AG(n,3), n > 1.
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Cap: A set of points that contains no line.
m(n): Size of a maximal cap in n-dimensional SET.
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Theorem: Olivia can force the game to m(n) moves. |

Proof:

(0,2) (1.2) (2.2)
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Theorem: Olivia can force the game to m(n) moves. |

Proof:
@ Olivia takes every move from a o @O @
maximal cap C containing Xp. 0.2) (1,2) (2,2)
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Theorem: Olivia can force the game to m(n) moves. |

Proof:

o Olivia takes every move from a %(g (1.2) ()2(3)

maximal cap C containing Xp.
@ Thus Olivia never makes a line

within the cap. O
78 o

@ Xavier only takes points outside
C.

@ Olivia can make one last move
outside of C, guaranteed to lose.* ) (Q 60‘3 )<§

* Not obvious!
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Questions?
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More information:

[§ David Clark and George Fisk and Nurry Goren: A variation on the
game SET.
Involve 9 (2) (2016) 249-264.

[§ Benjamin Lent Davis and Diane Maclagan: The card game SET.
Mathematical Intelligencer 25 (3) (2003) 33—40.

[3 Maureen T. Carroll and Steven T. Dougherty: Tic-Tac-Toe on a
finite plane.
Mathematics Magazine 77 (4) (2004) 260—-274.
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