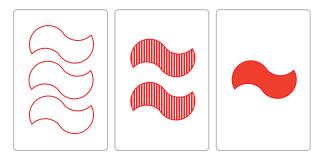
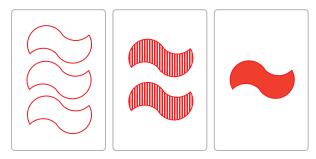
Anti-SET

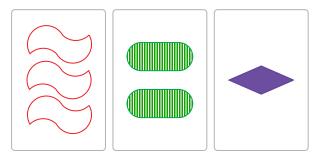
or, how getting bored with SET leads to interesting math

George Fisk & Nurry Goren (center) Spring 2014 Minnesota Pi Mu Epsilon Conference

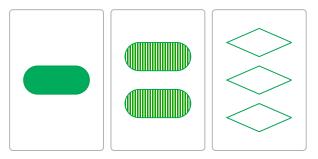




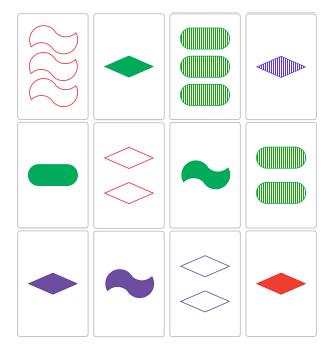
Set: 3 cards, each attribute all same or all different.



Set: 3 cards, each attribute all same or all different.



Set: 3 cards, each attribute all same or all different.

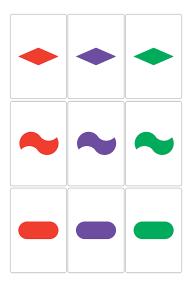


How many cards can you have without having a set?

Theorem (Pellegrino, 1971)

Every set of SET cards contains a set.

Xavier (Player 1) vs. Olivia (Player 2)

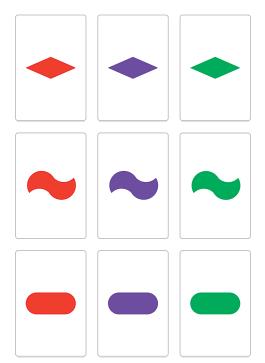


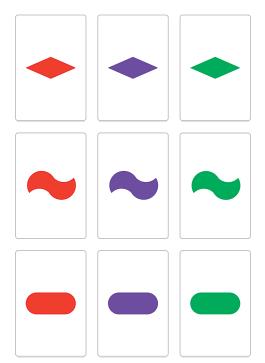
Theorem (Pellegrino, 1971)

Every set of 21 SET cards contains a set.

Anti-SET Rules

- Start with all 81 SET cards
- 2 players alternate taking any available card, tic-tac-toe style
- First to have a set in their hand *loses*





Moves: $\mathcal{X}_0, \mathcal{O}_0, \mathcal{X}_1, \mathcal{O}_1, \dots$

Winning Strategy for Xavier

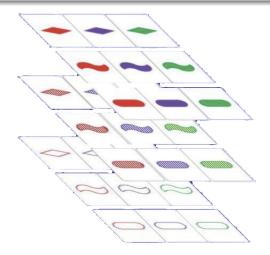
Pick \mathcal{X}_n ...



Moves: $\mathcal{X}_0, \mathcal{O}_0, \mathcal{X}_1, \mathcal{O}_1, \dots$

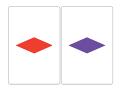
Winning Strategy for Xavier

Pick \mathcal{X}_n to complete the set through \mathcal{X}_0 and \mathcal{O}_{n-1} .



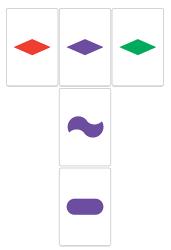
Point

Two points form a...

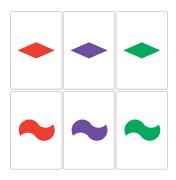


Two points form a...

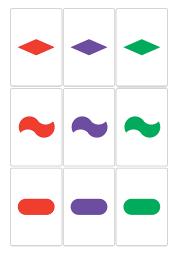
Two lines intersect in ...



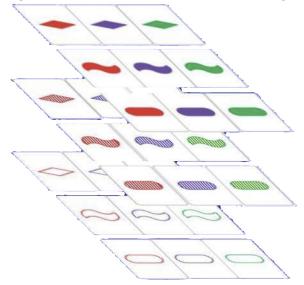
Or else they are...



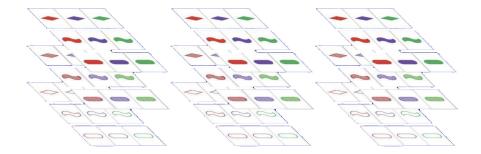
Plane of $3^2 = 9$ cards



Hyperplane of $3^3 = 27$ cards ("3D space")



All $3^4 = 81$ cards ("4D space")

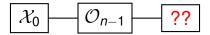


Winning Strategy for Xavier

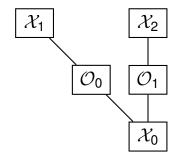
Pick \mathcal{X}_n to complete the **line** through \mathcal{X}_0 and \mathcal{O}_{n-1} .

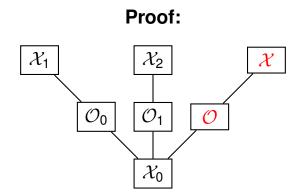
Lemma: Xavier can play.

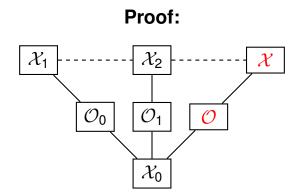
Proof:

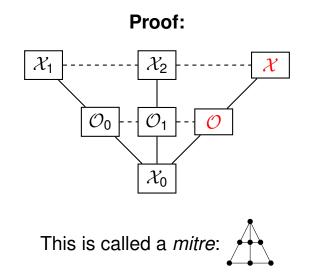


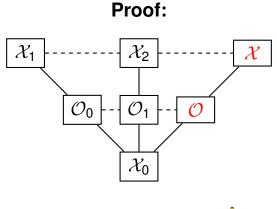
Proof:







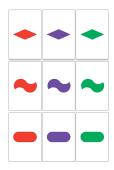


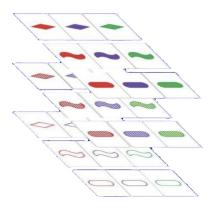


This is called a *mitre*:

Lemma: There are no ties.

Proof:





Theorem: Winning Strategy for Xavier

Pick \mathcal{X}_n to complete the line through \mathcal{X}_0 and \mathcal{O}_{n-1} .

But wait... our proofs only needed:

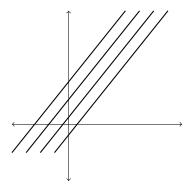
SET wasn't involved!

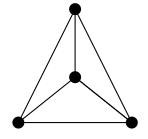
SET is an **affine geometry**:

A set of "points" and "lines" such that:

- Every pair of points defines a unique line.
- Every line has the same number of points.
- Every line is part of a *parallel class* (giving mitres!).

My favorite affine geometries

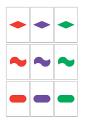




The Euclidean Plane

The 4-point plane

My favorite affine geometries



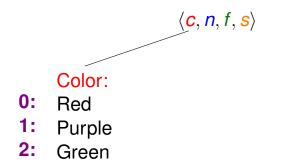
A 9-card SET Plane

All 81 SET Cards

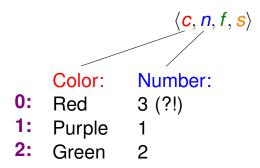
We can represent SET cards as points:

 $\langle \boldsymbol{c}, \boldsymbol{n}, \boldsymbol{f}, \boldsymbol{s} \rangle$

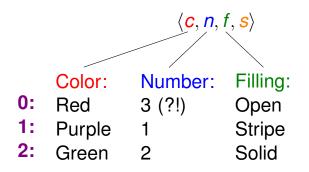
We can represent SET cards as points:



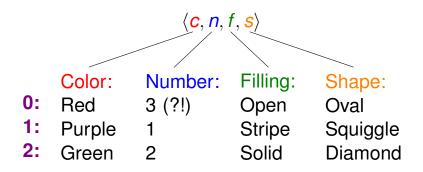
We can represent SET cards as points:



We can represent SET cards as points:



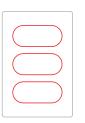
We can represent SET cards as points:

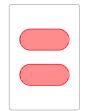


	С	n	f	S
0	Red		Open	Oval
1	Purple	1	Stripe	Squiggle Diamond
2	Green	2	Solid	Diamond

	С	n	f	S
0	Red		Open	Oval
1	Purple	1	Stripe	Squiggle Diamond
2	Green	2	Solid	Diamond

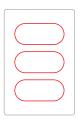
 $\langle 0,0,0,0\rangle$

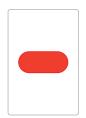


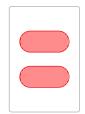


	С	n	f	S
0	Red		Open	Oval
1	Purple	1	Stripe	Squiggle Diamond
2	Green	2	Solid	Diamond

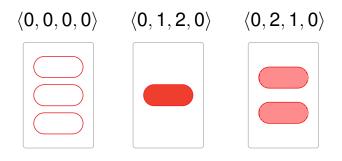
 $\langle 0,0,0,0\rangle \qquad \langle 0,1,2,0\rangle$



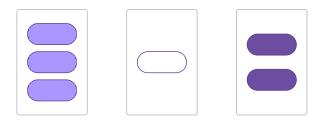




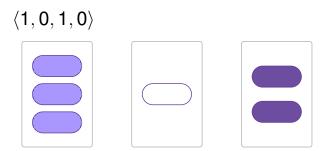
	С	n	f	S
0		3		Oval
1	Purple	1	Stripe	Squiggle
2	Green	2	Solid	Squiggle Diamond



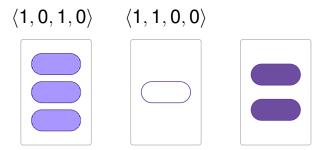
	С	n	f	S
0	Red		Open	Oval
1	Purple	1	Stripe	Squiggle
2	Green	2	Solid	Squiggle Diamond



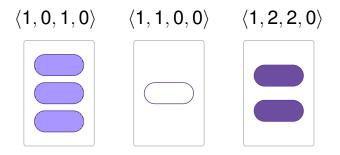
	С	n	f	S
0	Red		Open	Oval
1	Purple	1	Stripe	Squiggle Diamond
2	Green	2	Solid	Diamond

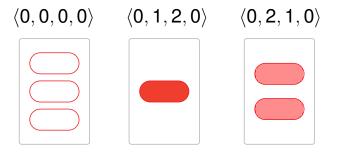


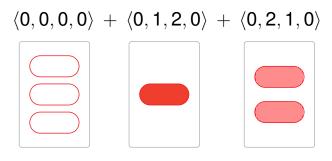
	С	n	f	S
0	Red		Open	Oval
1	Purple	1	Stripe	Squiggle Diamond
2	Green	2	Solid	Diamond



	С	n	f	S
0		3		Oval
1	Purple	1	Stripe	Squiggle
2	Green	2	Solid	Squiggle Diamond

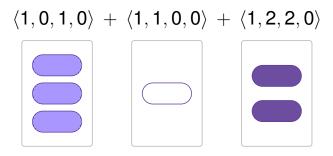


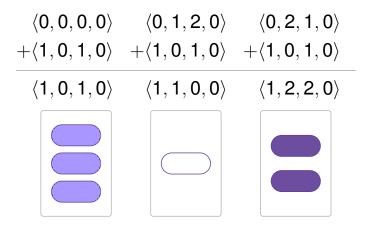


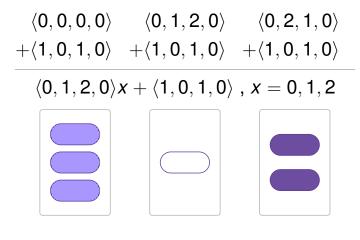


$\begin{array}{c|c} 0 \cdot \langle 0, 1, 2, 0 \rangle & 1 \cdot \langle 0, 1, 2, 0 \rangle & 2 \cdot \langle 0, 1, 2, 0 \rangle \\ \langle 0, 0, 0, 0 \rangle & \langle 0, 1, 2, 0 \rangle & \langle 0, 2, 1, 0 \rangle \end{array}$

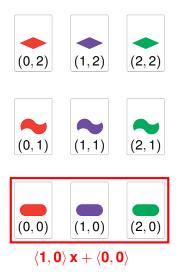
$egin{aligned} 0 \cdot \langle 0, 1, 2, 0 angle & 1 \cdot \langle 0, 1, 2, 0 angle & 2 \cdot \langle 0, 1, 2, 0 angle \ \langle 0, 1, 2, 0 angle x \ ({ m mod} \ 3), \ x = 0, 1, 2 \end{aligned}$

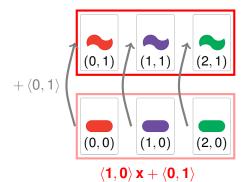


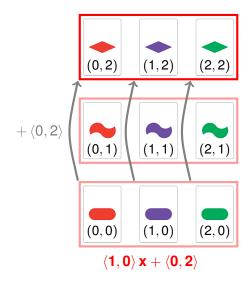




 $\langle 1, 0, 1, 0 \rangle$ $\langle 1, 1, 0, 0 \rangle$ $\langle 1, 2, 2, 0 \rangle$ $+\langle \mathbf{1},\mathbf{0},\mathbf{1},\mathbf{0}
angle$ $\langle 0,0,0,0\rangle \qquad \langle 0,1,2,0\rangle \qquad \langle 0,2,1,0\rangle$





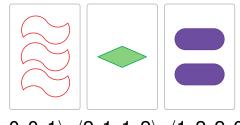


We can build AG(n, 3) for any dimension *n*:

Points:
$$\langle p_1, p_2, \dots, p_n \rangle$$

Lines: $\left\{ \vec{m}x + \vec{b} \right\}$ (always sum to $\vec{0}$ (mod 3)).

SET is *AG*(4, 3):



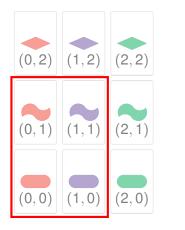
SET: Searching for lines in an affine geometry.

Anti-SET: Avoiding lines in an affine geometry with 3 points per line.

Theorem

Xavier can win Anti-SET played on AG(n, 3), n > 1.

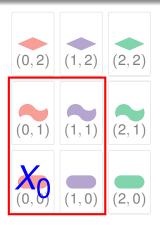
Cap: A set of points that contains no line. m(n): Size of a maximal cap in *n*-dimensional SET.



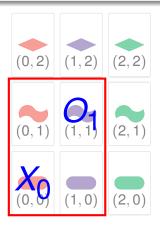
m(2) = 4

Proof:

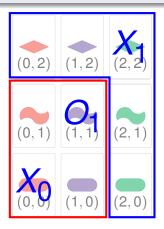
Olivia takes every move from a maximal cap *C* containing *X*₀.



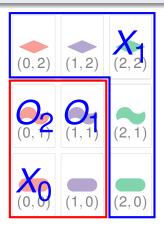
- Olivia takes every move from a maximal cap C containing X₀.
- Thus Olivia never makes a line within the cap.



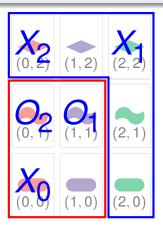
- Olivia takes every move from a maximal cap C containing X₀.
- Thus Olivia never makes a line within the cap.
- Xavier only takes points outside *C*.



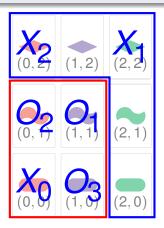
- Olivia takes every move from a maximal cap C containing X₀.
- Thus Olivia never makes a line within the cap.
- Xavier only takes points outside *C*.



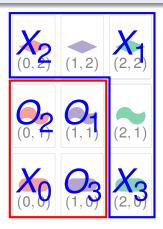
- Olivia takes every move from a maximal cap C containing X₀.
- Thus Olivia never makes a line within the cap.
- Xavier only takes points outside *C*.



- Olivia takes every move from a maximal cap C containing X₀.
- Thus Olivia never makes a line within the cap.
- Xavier only takes points outside *C*.



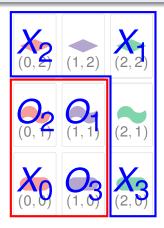
- Olivia takes every move from a maximal cap C containing X₀.
- Thus Olivia never makes a line within the cap.
- Xavier only takes points outside *C*.



Proof:

- Olivia takes every move from a maximal cap C containing X₀.
- Thus Olivia never makes a line within the cap.
- Xavier only takes points outside *C*.
- Olivia can make one last move outside of *C*, guaranteed to lose.*

* Not obvious!



Questions?

More information:

- David Clark and George Fisk and Nurry Goren: A variation on the game SET. Involve 9 (2) (2016) 249–264.
- Benjamin Lent Davis and Diane Maclagan: *The card game SET*. Mathematical Intelligencer 25 (3) (2003) 33–40.

Maureen T. Carroll and Steven T. Dougherty: *Tic-Tac-Toe on a finite plane*. Mathematics Magazine 77 (4) (2004) 260–274.