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Abstract

Set is a very popular card game with strong mathematical structure.
In this paper, we describe “Anti-Set”, a variation on Set in which we
reverse the objective of the game by trying to avoid drawing “sets”. In
Anti-Set, two players take turns selecting cards from the Set deck into
their hands. The first player to hold a set loses the game.

By examining the geometric structure behind Set, we determine a
winning strategy for the first player. We extend this winning strategy to
all non-trivial affine geometries over F3, of which Set is only one example.
Thus we find a winning strategy for an infinite class of games and prove
this winning strategy in geometric terms. We also describe a strategy for
the second player which allows her to lengthen the game. This strategy
demonstrates a connection between strategies in Anti-Set and maximal
caps in affine geometries.

1 Introduction

The card game Set is a very popular game among mathematics students. In
addition to being an enjoyable pastime, it has a large amount of mathematical
structure, including links to finite geometry, linear algebra, and combinatorics.
This paper will focus on a particular variation of the game and the mathematics
relevant to that variation. For much more information about the mathematics
of Set as well as positional games that are similar to the game in this paper,
see [3, 4] and the citations contained therein.

Set consists of a deck of cards. Each card is printed with several figures which
have four attributes: number, color, filling, and shape. For example, the card
in Figure 1 would be described as “two green striped ovals”. The complete list
of attributes is given in Table 1.

∗Corresponding author: clarkdav@gvsu.edu
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Figure 1: A Set card

Attribute Values
Number 1 2 3

Color Red Green Purple
Filling Open Striped Solid
Shape Oval Diamond Squiggle

Table 1: Attributes of a Set card

There are four attributes with three values each, and every possible combination
appears exactly once. Thus there are 34 = 81 cards in a complete Set deck.

The game requires players to find a set : Three cards such that, for each at-
tribute, all three cards are the same, or all three are different. Phrased differ-
ently, a set consists of three cards for which no attribute has two cards with
one value, and another card with a different value. An example of a set is given
in Figure 2: The number of cards is all the same (1), but the colors are all
different. The shading is all the same (solid), and the shapes are all different.
A non-example appears in Figure 3: two cards have solid shading, while the
other is open. There are several other reasons why these cards are not a set as
well. Note that, although the cards have three different colors, this alone is not
enough to make a set .

Throughout this paper, we will use the notation Set to refer to the game, set
to refer to a collection of cards as defined above, and “set” (without any special
styling) to refer to the mathematical object consisting of an unordered collection
of objects without repeated elements.

In the original game of Set, twelve cards are laid out at a time. Players compete
to identify sets first, winning by collecting more sets than their opponents.

In this paper, we study a variation on Set which turns the usual goal upside
down. Our game, Anti-Set, is a 2-player game played with a generalized Set
deck, in which each card has d different attributes (traditional Set has d = 4).
This situation corresponds to a d-dimensional affine geometry over F3, which
will be described later. The players, who we will call Xavier and Olivia, begin
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Figure 2: A set

Figure 3: Not a set

with the entire Set deck laid out in front of them. Xavier and Olivia then take
turns selecting cards from these cards and take them into their hands. The first
player to have a set in his or her hand loses the game. Thus, players are faced
both with the challenge of trying to avoid taking sets themselves but also trying
to force the other player to take a set . As each player collects more cards in
their hand, it becomes increasingly difficult to not take a set , as there are many
more combinations of cards that can be made.

This game was inspired by a result of Pellegrino [5]. Translated into the language
of Set (which did not exist at the time of Pellegrino’s writing), we have the
result1:
Proposition 1 (Pellegrino [5]). Every set of 21 Set cards contains a set.

Thus, Anti-Set will always end once one player takes their 21st card, if not
sooner. We initially created the game of Anti-Set to explore the consequences
of Pellegrino’s result in the context of a game.

In the following sections, we will analyze this game, provide a winning strategy
for the first player that applies to all nontrivial generalized Set decks (that is,
non-trivial affine geometries over F3), and examine the maximum and minimum
number of turns required to win. Along the way, we will demonstrate some
unexpected links between Pellegrino’s result and the losing player’s strategy.

1We acknowledge that the three different uses of the word “set” in this result may make
the reader’s head spin.
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2 Example of Gameplay

Before we give precise mathematical background for Set, we present an ex-
tended example of gameplay for Anti-Set. For simplicity, we use a reduced
version of Anti-Set as played with the 9 Set cards which are solid and have
only one symbol per card. Later, we will justify this simplification geometri-
cally and examine how it forms an important foundation for studying general
Anti-Set.

Let Xavier be the first player. He may choose any of the cards shown in Figure
4. We will mark Xavier’s hand of cards with an “X” and Olivia’s with an “O”.

Figure 4: The 9-card reduced Anti-Set deck.

The moves are denoted as follows:

X1: Xavier first arbitrarily chooses the red diamond.

O1: Olivia, recognizing that every pair of cards determines a unique set , arbi-
trarily chooses the purple diamond.

The players hands at this point are represented in Figure 5a.

X2: Xavier chooses the green diamond, knowing that it is part of a set (the
three cards in the top row) from which Olivia already owns one card.
Thus, he avoids at least one set .

O2: Olivia chooses the purple squiggle, again knowing that any pair of cards
contains a set and thus all of her remaining choices are equally bad.

The players hands at this point are represented in Figure 5b.

X3: Xavier again chooses a card, the green oval, which he knows is part of at
least one set which he cannot obtain.

O3: Olivia chooses the red squiggle, leaving Xavier with at least one possibility
(the green squiggle) which could complete a set .
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The players hands at this point are represented in Figure 5c.

X1 O1

(a) X1 and O1.

X1 O1 X2

O2

(b) X2 and O2.

X1 O1 X2

O2

X3

O3

(c) X3 and O3.

Figure 5: The first few steps of the Anti-Set game.

X4: Finally, Xavier chooses the red oval. This leaves Olivia with two options,
both of which complete a set . Thus, Xavier will win. (See Figure 6.)

X1 O1 X2

O2

X3

O3

X4

Figure 6: X4 and Olivia’s remaining options.

This nine-card example demonstrates the general flow of the game. In order
to make valid conclusions about the game on a larger scale, we first need to
describe the game mathematically, which we will do in the next section.

We also note that the board and style of play is similar to a backwards Tic-
Tac-Toe game, with players trying to avoid getting three in a row. Indeed,
Set as played with the 9 cards in this example can be thought of as playing
Tic-Tac-Toe on a torus, a concept which is explored in depth in [4]. Our names
“Xavier” and “Olivia”, and the idea of marking their cards with X’s and O’s,
were inspired by this interpretation.
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3 Background

In this section, we will define the notation and concepts which will be used
throughout the rest of the paper. Let Xn be the nth card Xavier picks, and let
X (n) = {X1, X2, . . . , Xn} denote the collection of Xavier’s first n cards. Simi-
larly, let On denote the nth card Olivia picks, and let O(n) = {O1, O2, . . . , On}
denote the collection of Olivia’s first n cards. Note that X (n) ⊂ X (n+ 1) and
O(n) ⊂ O(n+ 1).

Xavier is the first player. The game proceeds with all cards in a Set deck
available to both players. The players alternately take cards into their hands
in the order X1, O1, X2, O2, . . . until either X (n) or O(n) contains a set . The
corresponding player loses on his or her nth turn. We call a pair of choices
(Xn, On) a round of Anti-Set.

The mathematical structure of Set is an example of an affine geometry. For
our purposes, we will define affine geometries from a coordinatized (vector-
based) perspective, as described it [1, 2]. It is possible to do this from a purely
axiomatic viewpoint as well (see [2]). For more details about affine geometry in
the context of Set, see [4].

The affine geometry AG(d, q) is an incidence structure whose points are d-
dimensional vectors with entries in Fq. That is, the points are the elements
of Fd

q . The k-dimensional subspaces of AG(d, q), referred to as k-flats, are the

k-dimensional linear subspaces of Fd
q together with their cosets. We note that

for a given k-dimensional linear subspace L, the coset of L by the vector ~h ∈ Fd
q

is defined as L+ ~h = {~x+ ~h : ~x ∈ L}.

The cards of Set correspond to the points of AG(4, 3), and the sets are the
1-flats (usually called lines). More specifically, the points are all vectors of the
form (x1, x2, x3, x4) where xi ∈ {0, 1, 2}, with all arithmetic done modulo 3.
The 1-flats correspond to the 1-dimensional subspaces of F4

3 and their cosets.
Each such 1-flat contains 3 points, corresponding to the 3 cards in a set .

To give a more concrete interpretation of Set in this context, we note that
each card corresponds to a unique vector, with each coordinate corresponding
to a characteristic of the cards. We arbitrarily identify the coordinates with
characteristics of the Set cards as shown in Table 2. There are many equivalent
ways to map between attributes of Set cards and the entries of F3.
Example 1. Consider the set in Figure 7. Using the correspondence from
Table 2, these three cards, in order, form the vectors (0, 0, 0, 0), (2, 1, 1, 1), and
(1, 2, 2, 2).

We will make extensive use of the following result about affine geometries:
Proposition 2 (Affine Collinearity Rule). Three points ~a, ~b and ~c in AG(d, 3)

form a line if and only if ~a+~b+ ~c = ~0.

Proof. A set ` in AG(d, 3) is a line if and only if ` is a 1-dimensional subspace of
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Vector (n, c, f, s):
Entry: 0 1 2

n: Number 3 1 2
c: Color Red Green Purple
f : Filling Open Stripe Solid
s: Shape Squiggle Oval Diamond

Table 2: Correspondence between vectors in F4
3 and characteristics of Set cards.

Figure 7: A set .

Fd
3 or a coset thereof. Thus ` is a line if and only if there exist a nonzero vector

~x and a vector ~h, both in Fd
3, such that ` = {~h, ~x+~h, 2~x+~h}. (Note that ~h = ~0

is possible.) In particular, all lines in AG(d, 3) contain 3 points. Then the sum

of the elements in ` is 3~h+ 3~x = ~0, since we are working in F3.

Conversely, suppose ` = {~a,~b,~c} such that ~a+~b+~c = ~0. Then~0+(~b−~a)+(~c−~a) =
~0 − 3~a = ~0 as well. Thus ~c − ~a = 2(~b − ~a), and so m = {~0,~b − ~a, 2(~b − ~a)} is a
linear subspace of Fd

3. Thus ` = m+ ~a is a line.

In the context of Set, three cards {A,B,C} form a set if and only if their

corresponding vectors ~a, ~b and ~c (respectively) satisfy ~a + ~b + ~c = ~0. To see
this, consider three vectors whose associated cards form a set . The collection
of three values in a given coordinate is limited to the following possibilities:
{0,0,0}, {1,1,1}, {2,2,2}, or {0,1,2}. These collections of values constitute all
possibilities for “all the same” or “all different.” The sum of the numbers in
each of these collections is 0 (mod 3). Furthermore, no other collection of three
values sums to 0 (mod 3).

We will also use the following well-known proposition:
Proposition 3. In AG(d, q), every pair of points appears in exactly one line.

This can be seen as follows: A line is a 1-dimensional subspace or a coset of
such a subspace. Let x and y be distinct points in AG(d, q). If x = αy for some
α ∈ Fq, then {x, y} appear together only in the 1-dimensional linear subspace
defined by x. If x and y are not scalar multiples, then {0, y−x} appear together
only in the 1-dimensional linear subspace ` defined by y−x, and therefore {x, y}
appear together only in the coset `+ x.
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This corresponds to the well-known fact that every pair of Set cards is part
of a unique set . Algebraically, given two points ~a and ~b, there exists a unique
vector ~c ∈ Fd

q such that ~a+~b+ ~c = ~0.

Because affine lines include both linear subspaces of Fd
q and their cosets, affine

geometries naturally include parallel lines. All cosets of a given line ` are parallel
to `, and together this collection of cosets partitions the points of the geometry.
Thus, for any set {A,B,C} in the traditional 81 card Set game, there are
81/3 = 27 sets (including {A,B,C} itself) which are parallel to the original set .
These 27 sets contain all 81 cards in the Set deck.
Example 2. In Example 1, we saw a set consisting of the vectors

S = {(0, 0, 0, 0), (2, 1, 1, 1), (1, 2, 2, 2)}.

The coset S + (1, 0, 1, 2) is

S + (1, 0, 1, 2) = {(1, 0, 1, 2), (0, 1, 2, 0), (2, 2, 0, 1)},

which can be verified to be a set sharing no points with S.

In addition to points and lines, affine geometries contain other substructures
with geometric interpretation. Of particular interest to us is the affine plane
AG(2, q), which can be viewed as a 2-dimensional subspace of a larger affine
geometry. Affine planes are very well studied. In the case of Set, the set of
vectors obtained by fixing any two coordinates of the vectors in F4

3 is isomorphic
to an affine plane. With only two coordinates “free” to change, a plane contains
32 = 9 points.
Example 3. The 9 cards in Figure 4 form an affine plane. Here, the coordinate
corresponding to “number” is fixed at 1, and the coordinate corresponding to
“filling” is fixed at 2 (solid). This there are two free coordinates, giving a 2-
dimensional plane.

An affine plane is spanned by two non-parallel lines. In the affine plane AG(2, 3),
each line is part of a parallel class of three parallel lines.

Notice that there are twelve lines (that is, sets) in AG(2, 3). As represented
in Example 3, there are three horizontal lines, three vertical lines, and then
three lines in each diagonal direction. (For example, the set containing the red
squiggle, purple diamond, and green oval is one of these diagonal sets.)

The final substructure of particular interest to us is a hyperplane: a (d − 1)-
dimensional subspace within AG(d, q). Equivalently, a hyperplane is a subspace
of maximal size, or of co-dimension 1. In Set, a hyperplane corresponds to a
set of 27 cards with a single attribute fixed.

The remainder of this paper will primarily use geometric language when dis-
cussing Set. In particular, we will use “point” and “line” to refer to cards and
sets, respectively, except when interpreting our results in terms of the original
Set game.
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We note that the results of this paper apply to AG(d, 3) for all d ≥ 2. That is,
they apply not only to Set (which lives in AG(d, 3)) but also to “general” Set
as played in AG(d, 3). For example, a version of Set could be created in which
each card has five attributes: the four usual ones, plus a scratch-and-sniff scent
attribute with three different values. The game of Anti-Set could be played
with these 35 = 243 cards without change. When d = 1, the geometry AG(1, 3)
consists of a single line, in which no win nor loss of Anti-Set is possible.

4 Results

In this section we prove that Xavier has a winning strategy in Anti-Set, as
played on any affine geometry AG(d, 3), d ≥ 2. We first reformulate Anti-Set
in purely geometric terms:

Anti-Set is a 2-player game played on AG(d, 3). The players, Xavier and Olivia,
take turns (beginning with Xavier) selecting points from the geometry. The first
player to have a line contained entirely in his or her hand loses the game.
Theorem 1 (Winning Strategy). Suppose Xavier and Olivia play Anti-Set
using the points in AG(d, 3), d ≥ 2. Moves X1 and O1 may be chosen arbitrarily.
After those moves, Xavier will always win by following this strategy: For each
move n ≥ 2, Xavier chooses Xn to be the unique third point on the unique line
containing X1 and On−1.

Xavier’s strategy depends on him following Olivia’s moves. The first two moves
are arbitrary, after which Xavier begins to follow Olivia by completing lines
which are not completely contained in either player’s hands. The worked exam-
ple in Section 2 implements exactly this strategy on a 9-card affine plane.

We note that we require d ≥ 2 only because d = 1 is a degenerate case: AG(1, 3)
consists of three points on a single line. Thus, every game ends in a tie, as neither
player can fully collect the line. However, the condition that q = 3 is essential.
Our strategy is highly dependent on the fact that each line contains exactly 3
points, a fact that is lost for q 6= 3.

The following lemmas are necessary to establish the correctness of this strategy.
Lemma 1 (Xavier can play). If Xavier consistently follows the strategy in The-
orem 1, then Xavier can always choose the required point.

Proof. Consider the nth round of the game. In the previous round, Olivia
selected point On−1, and now Xavier wishes to choose as Xn the unique point
C completing the line ` containing points {X1, On−1}. Note that point C exists
and is unique by Proposition 3. If C is unavailable, it must be in either O(n−2)
(because Olivia’s move On−1 was not C) or X (n− 1).

If Olivia previously chose C, then by following the strategy Xavier would have
immediately chose the other point on `. If Xavier previously chose C, then he
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must have done so immediately after Olivia chose the other point on `.

In either case, all points on ` appear in O(n − 2) ∪ X (n − 1), and thus it was
impossible for Olivia to choose any point on ` as On−1. Therefore we obtain a
contradiction, and C must be available for Xavier to choose.

Lemma 2 (Xavier can’t lose). If Xavier consistently follows the strategy in
Theorem 1, then Xavier can’t lose.

Proof. Without loss of generality, assume that at least two rounds have oc-
curred. In round j ≥ 1, Olivia chooses Oj . In round k > j, Olivia chooses
Ok. Following the Winning Strategy, Xavier chooses Xj+1 and Xk+1, respec-
tively. Thus {X1, Oj , Xj+1} and {X1, Ok, Xk+1} are lines. This is represented
geometrically by solid lines connecting the points in Figure 8. Algebraically,
X1 +Oj +Xj+1 = ~0 and X1 +Ok +Xk+1 = ~0.

Suppose that at some future round m, while following the Winning Strategy,
Xavier chooses point X which completes a line {Xj+1, Xk+1, X} ⊆ X (m), caus-

ing him to lose. Thus Xj+1 +Xk+1 +X = ~0.

X1

Oj

Xj+1

Ok

Xk+1

O

X

Figure 8: Diagram for proof of Lemma 2.

Xavier chose X in response to some move O by Olivia. Thus X is the unique
third point on the line containing {X1, O}. ThereforeX1+O+X = ~0. Beginning
with this fact and applying algebra, we have:

0 = X1 +O +X

= X1 +O + (−Xj+1 −Xk+1) because {Xj+1, Xk+1, X} is a line

= X1 +O + (X1 +Oj) + (X1 +Ok) because {X1, Oj , Xj+1} and {X1, Ok, Xk+1} are lines

= 3X1 +O +Oj +Ok

= O +Oj +Ok Because 3X1 ≡ 0 (mod 3)

Therefore {O,Oj , Ok} is a line. Because Olivia chose O before Xavier was forced
to chose X, Olivia would have immediately lost with a line in O(m− 1).

Thus, it is impossible for Xavier to have a line in X (m), since Olivia would
immediately lose before he could choose to complete such a line. Therefore,
Xavier cannot lose when following the strategy.
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Lemma 3 (There are no ties). If Xavier consistently follows the strategy in
Theorem 1, then the game cannot end in a tie.

Proof. We first note that there are no ties in any 9-card plane AG(2, 3). That is,
it is impossible to partition the 9 points into two sets, neither of which contains
a line. In particular, any set of at least 5 points from a 9-card plane must
contain a line. This may be demonstrated by brute force, or with an elegant
counting argument such as that in [4].

After Xavier’s third turn, the set of points selected is S = {X1, O1, X2, O2, X3}.
Note that, by following the strategy, S contains two non-parallel lines: {X1, O1, X2}
and {X1, O2, X3}. These two lines span an affine plane P .

The game may proceed in two ways:

1. Olivia may choose to only select points in P . There are no ties in P and
by Lemma 2, Xavier cannot lose. Thus Olivia must eventually lose.

2. Olivia may choose to select some point outside of P . If Olivia does not
lose, she will eventually run out of points outside of P , and therefore must
choose a point from within P . As argued above, Olivia must then lose.
Note that the points in P remain available for Olivia to choose, because
Xavier will only choose a point in P if Olivia also chooses a point in P .
This is because no line of AG(d, 3) contains two points in a plane and one
point outside of a plane.

Either way, Olivia loses.

Together, these lemmas provide a proof of Theorem 1:

Proof. (Of Theorem 1)

By Lemma 1, Xavier can follow the strategy. By Lemma 2, Xavier can never
lose when following the strategy. Finally, by Lemma 3, the game cannot end in
a tie. Therefore, Xavier (the first player) wins.

5 Length of the game

Now that we know that Xavier will always win, a reasonable question is “how
many moves are required for Xavier to win?” Without assuming rational play,
a game could be as short as three rounds: Olivia could choose three cards which
form a set and lose after move O3. But assuming rational play, Olivia can
survive much longer.

In this section, we seek to answer the question: “How long can Olivia force the
game to continue?” Because there is some room for ambiguity, we provide the
following precise definition:
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Definition 1. The length of a game of Anti-Set is the lowest index n such
that O(n) contains a line.

Thus, for example, the game played in Section 2 has length 4. Note that, because
Olivia plays second, length can be interpreted as the number of complete rounds
played before the game ends.

We also require the concept of a cap:
Definition 2. A cap in AG(d, q) is a set of points which contain no line. A
maximal cap is a cap with the largest possible size for a given set of parameters
d, q, and its size is denoted m2(AG(d, q)).
Example 4. Every set of five points in AG(2, 3) contains a line. Consider the
result of the sample game from Section 2, shown in Figure 6. The four points
marked X contains no line and therefore form a maximal cap in AG(2, 3). The
three marked O forms a cap which is not maximal. Thus m2(AG(2, 3)) = 4.

A long-standing question in finite geometry is to determine the size of a maximal
cap. While a variety of bounds are known, no exact formula is known in general.
For q = 3, some currently known values for m2(AG(d, 3)) are summarized in
Table 3. For more information see [6] and references therein.

d 1 2 3 4 5 6
m2(AG(d, 3)) 2 4 9 20 45 112

Table 3: Sizes of maximal caps for some small affine geometries.

In the language of affine geometry, Proposition 1 can be stated:
Proposition 1 (Pellegrino [5]). In AG(4, 3), m2(AG(4, 3)) = 20.

In other words, every set of 21 Set cards must contain a set .
Theorem 2. The maximum possible length of a game of Anti-Set played on
AG(d, 3) is m2(AG(d, 3)).

Proof. Let m = m2(AG(d, 3)). Xavier is always the first to have k points in
hand for any k, and thus X (m + 1) (if the game lasts so long) must contain a
set . However, by Theorem 1, Xavier cannot lose. Thus, Olivia’s previous move,
Om, must have ended with O(m) containing a set . Thus the length of the game
is at most m.

As a corollary, the length of Anti-Set played on AG(4, 3) is at most 20. Com-
putational simulations for small d suggest that Olivia can always achieve this
bound, but we are unable to prove this.

Next, we determine a lower bound on the length of the game. We do this by
demonstrating a strategy for Olivia which guarantees the game to last for a
certain number of moves.
Lemma 4. Let {S1, S2, S3} be three parallel hyperplanes in AG(d, 3). Then any
line which intersects S1 and S2 also intersects S3.
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Proof. This is a direct consequence of the structure of the underlying vector
space. Note that {S1, S2, S3} partition the points of AG(d, 3), and also note
that a line ` = {x, y, z} contains exactly three points. Because ` and each Si

are cosets of a linear subspace, Si ∩ ` must be a linear subspace (or coset) as
well. In Fd

3, each such subspace contains 3k points for some k ≥ 0. Thus `
must intersect each hyperplane in 0, 1, or 3 points. If ` intersects both S1 and
S2 in at least one point, then ` cannot intersect either in all 3 points. Thus `
intersects each of S1 and S2 in exactly 1 point, and so its 3rd point must be in
the remaining point set, S3.

Theorem 3. Suppose Xavier and Olivia play Anti-Set on AG(d, 3), d ≥ 1.

Then Olivia can force the game to have length at least 2 +

d−1∑
i=1

m2(AG(i, 3)).

Proof. We proceed by induction. As a basis, consider Anti-Set played on
AG(2, 3). This is a 9-point plane. We saw in Section 2 that Olivia may ex-
tend the game to 4 rounds simply by not choosing her 3rd point to be on the
line defined by the first two. Furthermore, 2 +m2(AG(1, 3)) = 4 since a cap in
AG(1, 3) consists of any two points on the only line. (Recall that the 4th round
ends with Olivia choosing her 4th card, which must complete a line in O(4).)

Assume, for Anti-Set played in AG(d− 1, 3), that Olivia has a strategy which

makes the length of the game 2 +

d−2∑
i=1

m2(AG(i, 3)). Then she can play on

AG(d− 1, 3) for 1 +

d−2∑
i=1

m2(AG(i, 3)) rounds without losing. Let S1 be a copy

of AG(d − 1, 3) embedded as a hyperplane in AG(d, 3), and let {S1, S2, S3} be
the three hyperplanes parallel to S1 in AG(d, 3). Olivia proceeds as follows:

1. Inductively, Olivia plays for 1 +

d−2∑
i=1

m2(AG(i, 3)) moves entirely in S1

without losing. Note that Xavier’s moves also fall entirely in S1.

2. Olivia then chooses the m2(AG(d−1, 3)) points of a maximal cap entirely
in S2. Note that Olivia is free to choose these points, because Xavier’s
moves must now fall entirely in S3 by Lemma 4.

This strategy describes Olivia’s moves for n = 1 +

d−1∑
i=1

m2(AG(i, 3)) rounds.

Olivia never completes a line inO(n) by following this strategy. By our inductive
assumption, no line exists within the subset of her moves falling in S1. Because
Olivia chooses the points of a cap in S2, no line exists within her points in S2.
Finally, no line in O(n) can exist with one point in S1 and another in S2: By
Lemma 4, the third point of such a line would be in S3, but Olivia chooses no
points in S3.
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Thus, Olivia does not lose by following the above strategy, and therefore Olivia

can play for at least 2 +

n−1∑
i=1

m2(AG(i, 3)) rounds.

Intuitively, Olivia’s strategy works as follows: Olivia “fills up” a line with a cap,
jumping up to a plane which she also fills with a cap. She continues jumping
up to the next structure until she eventually runs out of room.
Example 5. Theorem 3 is demonstrated in Figures 9 and 10. In Figure 9(a),
play begins on a line (that is, AG(1, 3)). In Figure 9(b), the line expands to a
full plane (that is, AG(2, 3)). Note that Olivia’s play occurs only in the second
row, which is one coset of the original line. Her two plays form a cap on this
line. Similarly, Xavier’s plays all occur in the third row, another coset of the
original line.

X1 O1 X2

(a) Play in AG(1, 3).

X1 O1 X2

O2

X3

O3

X4

(b) Play expanded to AG(2, 3).

Figure 9: Visualization of Olivia’s strategy from Theorem 3.

In Figure 10, play expands to cover the cosets of the plane. Figure 10 shows the
original plane from Figure 9, now considered to be a subspace S1. The other
two planes in this figure are the cosets S2 and S3 of S1. Note that Olivia plays
only in coset S2, and that her plays form a cap in AG(2, 3). Xavier’s plays are
forced into coset S3.

6 Open problems

Naturally, a variation on Set such as Anti-Set leaves many open questions.
The game Set has been widely studied, and several of the open problems below
are based on generalizations and extensions already proposed for Set.

A more general category of games to which Anti-Set belongs could be named
“Anti tic-tac-toe on a design.” A t-(v, k, λ) design (or t-design) is a set of v
points P together with a collection B of k-subsets of the points, called blocks,
such that every t-subset of P appears in exactly λ blocks. The points and
lines of AG(d, 3) form an example of an affine geometry design. See [1] for
further details. To play Anti tic-tac-toe on a given t-(v, k, λ) design, two players
alternate selecting points of the design. The first player to select all points in
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Figure 10: Continued visualization of Olivia’s strategy from Theorem 3.

any block of the design loses. Thus the general question is: Is there a winning
strategy for Anti tic-tac-toe on a design?

Specific instances of this general game will likely prove to be more tractable.
For example:

• Play on non-ternary affine geometries, which are also examples of affine
geometry designs. The Winning Strategy described in this paper depends
heavily on working in AG(d, 3). Is it possible to have q > 3? The largest
difference here is that lines now have more than 3 points, opening the
possibility that Olivia plays on a point which completes a line, leaving
Xavier unable to “follow” Olivia.

• Play on a projective geometry. It is possible to play Anti-Set on a projec-
tive geometry PG(d, q)? The set of points and k-dimensional subspaces
of PG(d, q) form a projective geometry design. (For information about
“Projective Set”, see [3].)

• Play on Steiner Triple Systems. This is a name given to the category
of 2-(v, 3, 1) designs. In this category, every pair of points determines a
unique line, and every line has 3 points. This includes two key geometric
features that figures in the strategy for Anti-Set.

Other open problems involve changing the parameters of play for Anti-Set:

• Play with 3 or more players. This must considerably change the strategy.
Under the Winning Strategy described here, it would be possible for one
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player to “block” another player’s necessary move.

• Recovering from an error. If Xavier does not follow the winning strategy,
when is it possible for Olivia to win? Is it possible for Xavier to recover
from this error, and if so, under what conditions?

Finally, we believe that Theorem 3 can be improved:

• Determine a strategy for Olivia which always forces a game length of
m2(AG(d, 3)) rounds, thus improving on Theorem 3.
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