
Minimizing the Cost of Guessing Games
David Clarka, Lindsay Czap∗a

a Department of Mathematics, Grand Valley State University, Allendale, MI

Students: czapl@mail.gvsu.edu, lczap@bgsu.edu
Mentor: clarkdav@gvsu.edu

ABSTRACT
A two-player “guessing game” is a game in which the first participant, the “Responder,” picks a number from a certain range.
Then, the second participant, the “Questioner,” asks only yes-or-no questions in order to guess the number.

In this paper, we study guessing games with lies and costs. In particular, the Responder is allowed to lie in one answer, and
the Questioner is charged a cost based on the content of each question.

Guessing games with lies are closely linked to error correcting codes, which are mathematical objects that allow us to detect
an error in received information and correct these errors. We will give basic definitions in coding theory and show how
error correcting codes allow us to still guess the correct number even if one lie is involved.

We will additionally seek to minimize the total cost of our games. We will provide explicit constructions, for any cost
function, for games with the minimum possible cost and an unlimited number of questions. We also find minimum cost
games for games with a restricted number of questions and a constant cost function.

KEYWORDS
Ulam’s Game; Guessing Games With Lies; Error Correcting Codes; Pairwise Balanced Designs; Steiner Triple Systems

INTRODUCTION
The game “20 Questions” has always been a staple for children trapped in long car rides. This game involves two players:
the first player picks an object and the second player asks “yes or no” questions in order to guess which object the first
picked. The game alternates between questions and answers so questions may be constructed based off of previous answers.
This type of adaptive guessing game is called an online game. For example, you would not ask the question “Does it have
four legs?” if you have already received a “yes” to the question “Is your object a vegetable?”

“20 Questions” requires both players to be present and for each response to be given immediately after its corresponding
question. In this paper, we will focus on a different type of guessing game: In an offline guessing game, the questioner
must ask all of the questions at once and then receive all of the responses at once afterwards. This means that we must
construct all of the questions ahead of time and we cannot adapt questions based upon previous responses. These types of
non-adaptive guessing games are called offline games and are the focus of this paper.

In our offline guessing games, the two players decide on a range of m integers starting at 1. The first player, the “Responder,”
secretly chooses one of those integers x. The second player, the “Questioner,” then constructs yes-or-no questions of the
form “Is x ∈ S?” where S ⊆ [1,m]. Since these games are offline, all of the questions that the Questioner wishes to ask the
Responder will be asked at once and then all of the answers will be received at once.
Example 1. The following is an example of an offline guessing game with m = 8 possible answers.

Questioner:

Question 1: “Is your number in {5, 6, 7, 8}?”
Question 2: “Is your number in {3, 4, 7, 8}?”
Question 3: “Is your number in {2, 4, 6, 8}?”

Responder:

Response 1: “Yes”
Response 2: “Yes”
Response 3: “No”

The Questioner can then use the Responder’s responses to figure out which integer was chosen. A response of “yes” to
Question 1 eliminates the possibilities {1, 2, 3, 4}, leaving only {5, 6, 7, 8} as possibilities. A response of “yes” to Question
2 eliminates the possibilities {5, 6}, leaving only {7, 8}. A response of “no” to Question 3 eliminates the possibility {8}.
Thus, the Questioner knows that the Responder originally chose 7 as their integer.

The guessing games that we will be analyzing have a special property: The Responder is allowed to lie to the Questioner.
However, even though the Responder is allowed to lie, these games are designed so that the Questioner can still guess the
correct number that the Responder has chosen. We will also add the idea of cost to a guessing game: The Questioner
will be charged a certain cost whenever they ask a question. In the following sections, we will give precise definitions and
background for each of these additional twists.

BACKGROUND
In this section, we give background and definitions, leading up to a precise definition of guessing games with lies and cost
functions.

Guessing games with lies have been extensively studied. The idea of a “searching game” with a lie was suggested by Ulam in
his autobiography1, which in turn spawned a large and active field of research. In general, work in this area has focused on
minimizing the number of questions needed to determine the Responder’s number correctly. In particular, Spencer2 focused
on solving “Ulam’s game” with 1,000,000 numbers and 1 lie, which turns out to be the equivalent of the “20 questions” game
with 1 lie permitted. Offline guessing games with lies turn out to be equivalent to important objects in mathematics called
error-correcting codes. See3;4 for some excellent surveys of the literature on guessing games with lies.

Our particular focus in this paper will be adding the idea of a “cost function” to offline guessing games with lies. A guessing
game G with cost function c is an offline guessing game in which each of the possible answers i is assigned a “cost” c(i).
For each question, the Questioner will be “charged” the cost of all of the answers that they are asking about. For example,
the cost of the question “Is your number in {1, 3}?” will be the sum of the costs of 1 and 3. This generalizes the idea of
minimizing the number of questions required, and allows us to measure the “efficiency” of a game in a more general way.

Representations of guessing games

For our offline guessing games, we will represent the answers to each of our questions using binary vectors. A binary vector
is an ordered list of 1’s and 0’s. We will assign the digit 0 to represent an answer of “no”, and the digit 1 will represent “yes”.
For example, if we asked 5 consecutive questions and their respective answers were “yes”, “yes”,“no,” “yes”,“no”, we would
represent these responses with the binary vector (1, 1, 0, 1, 0). We will often use the shorthand notation: 11010.

We can think of an answer vector as the “fingerprint” of the Responder’s secret number. It contains all of the information
necessary to determine the secret number. In particular, in every guessing game, every secret number must have a different
answer vector or else it would be impossible to distinguish between some of the numbers.
Definition 2. For a given natural number m, a cost function c is a function c : {1, 2, . . . ,m} → R+ with c(1) ≤ c(2) ≤
... ≤ c(m). For simplicity, we often represent c as a vector: c = (c(1), c(2), ..., c(m)).

We can now define the fundamental object in this paper:
Definition 3. An (m, c, `) offline guessing game G with n questions is an ordered list of n questions of the form “Is your
number in the set Si?”, where Si ⊆ {1, 2, . . . ,m}, together with a cost function c = (c(1), c(2), . . . , c(m)). The questions
are arranged so that the Questioner can determine the Responder’s secret number, even if the Responder is allowed to lie in
at most ` answers.

We will often omit the word “offline”, since we will only be working with offline guessing games in this paper. Note that we
have not yet indicated how the questions may be arranged to let the Questioner determine the Responder’s secret number

in the face of lies. We will address this in the following sections.

Next, we give a more precise definition of the “answer vectors” described at the beginning of this section.
Definition 4. Given an (m, c, `) guessing game G with n questions, the answer vector for i, denoted vi, is the binary vector
vi ∈ Fn

2 consisting of the Responder’s truthful answers to the n questions, in order, assuming that the Responder’s secret
number is i. The answer vector set ofG, denoted VG, is the set {v1,v2, . . . ,vm} ⊆ Fn

2 of answer vectors for i = 1, 2, . . . ,m.
Example 5. Consider the set VG = {00000, 01110, 10101, 11011} ⊆ F5

2. This is a set of 4 answer vectors of length 5 for
the numbers {1, 2, 3, 4}. This could be the answer vector set for a (4, c, 1) guessing game with 5 questions. In particular, we
have v1 = 00000, v2 = 01110, v3 = 10101, and v4 = 11011.
Definition 6. Given an (m, c, `) game G with n questions, the guessing game matrix ofG is an m×n binary matrix denoted
[G] in which row j corresponds to vector vj ∈ VG. That is, the jth row of [G] is the list of the Responder’s truthful answers
to the n questions in order, assuming that the Responder’s secret number is j.

Answer vectors and guessing game matrices are the main ways in which we will study guessing games in this paper. Because
the rows of a guessing game matrix are the same as the answer vectors, we will often refer to the rows of a matrix as “vectors.”
Example 7. There are many different vector sets that could be used to construct a (4, c, 1) game. Figure 1 shows
one possible game matrix [M] for a (4, c, 1) game M with 5 questions. We created this matrix by choosing VM =

{00000, 01110, 10101, 11011}.

q1 q2 q3 q4 q5
1 0 0 0 0 0

[M] = 2 0 1 1 1 0
3 1 0 1 0 1
4 1 1 0 1 1

Figure 1. A possible game matrix, [M], for a (4, c, 1) game.

Similarly, Figure 2 shows another possible matrix [N] for a (4, c, 1) game N with 7 questions. We created this second matrix
by choosing VN = {1110101, 0101011, 1011110, 0101100}.

q1 q2 q3 q4 q5 q6 q7
1 1 1 1 0 1 0 1

[N] = 2 0 1 0 1 0 1 1
3 1 0 1 1 1 1 0
4 0 1 0 1 1 0 0

Figure 2. Another possible game matrix, [N], for a (4, c, 1) game.

Both of the guessing game matrices [M] and [N] are created by choosing valid sets of representative binary vectors and
therefore are both valid matrices representing a (4, c, 1) game.

It is possible to determine a game’s questions entirely from its guessing game matrix. In Figure 3, we have highlighted
the 4th column of matrix [M] from the previous example. We say that this highlighted column is the question vector
q4 = (0, 1, 0, 1). We know that, if responding truthfully, the Responder will answer “yes” to the 4th question if and only if
there is a 1 in the row of [M] corresponding to their secret number. Therefore, q4 would be the 4th question in the game G
and would be asked as: “Is your number in {2, 4}?” because these are the answers whose answer vector have a 1 in column
4 of [M].

For this reason, we will often treat a guessing game not as a list of questions, but rather as a list of answer vectors. These
two viewpoints are exactly equivalent.

q1 q2 q3 q4 q5

1 0 0 0 0 0
2 0 1 1 1 0
3 1 0 1 0 1
4 1 1 0 1 1

Figure 3. Column 4 of [M].

Cost functions

We will now focus on the effect of the cost function in a guessing game. The cost function will be our measure of the
“efficiency” of a game.
Definition 8. Let G be an (m, c, `) guessing game. Suppose that Q = {p1, p2, . . . , pk} ⊆ {1, 2, . . . ,m} is a question in G.
Then the cost of question Q is defined to be the sum of the costs of the elements of Q, that is,

c(Q) =

k∑
i=1

c(pi). Equation 1.

Furthermore, the total cost of G, denoted kG, is the sum of the cost of Q for all questions Q in G, that is,

kG =
∑

question Q

c(Q). Equation 2.

Because our guessing games are offline, all of the questions will always be asked. Thus the total cost of a game is a reasonable
measure of the overall “efficiency” of a game. The following lemma gives a convenient way to calculate the total cost of a
game in terms of its answer vectors.
Lemma 9. The total cost kG of an (m, c, `) guessing game G with answer vector set {v1,v2, . . . ,vm} is kG = c(1)|v1| +
c(2)|v2|+ ...+ c(m)|vm|.

Proof. An answer vector vi has a 1 in coordinate j if and only if the jth question asks about i. Thus number i is asked
about once for every 1 in each vi, at a cost of c(i) in each question.

Example 10. Figure 4 shows a game matrix [G] that defines a (4, c, 1) game G with c = (2, 4, 6, 8).

q1 q2 q3 q4 q5
1 1 0 0 1 1

[G] = 2 0 1 1 1 0
3 1 0 1 0 0
4 1 1 0 0 0

Figure 4. Game matrix [G].

Reading the columns of matrix [G], we see that the questions and their costs are:

Question Cost
q1 Is your number in {1, 3, 4}? 2 + 6 + 8 = 16

q2 Is your number in {2, 4}? 4 + 8 = 12

q3 Is your number in {2, 3}? 4 + 6 = 10

q4 Is your number in {1, 2}? 2 + 4 = 6

q5 Is your number in {1}? 2

Total: 46

Using Lemma 9, the total cost of G is calculated by:

kG = |v1|c(1) + |v2|c(2) + |v3|c(3) + |v4|c(4)
= 3c(1) + 3c(2) + 2c(3) + 2c(4)

= 3 · 2 + 3 · 4 + 2 · 6 + 2 · 8
= 46.

This demonstrates the essence of Lemma 9: It is possible to count the costs of a game by using the columns of its guessing
game matrix (questions), or by using its rows (answer vectors).

Error-correcting codes and lies

In order to discuss the ability for our (m, c, `) guessing games to detect and correct for lying, we must first introduce some
ideas from a branch of mathematics known as coding theory. Let Fn

2 be the space of all vectors of length n over the finite
field F2. We refer the interested reader to Huffman and Pless5 for further definitions and examples.
Definition 11. The weight of a vector v ∈ Fn

2 is the number of nonzero coordinates in v.
Definition 12. The Hamming Distance between two vectors x,y ∈ Fn

2 , denoted d(x,y), is the number of coordinates in
which x and y differ.
Example 13. Suppose two integers i, j have answer vectors vi = 1101 and vj = 1011. These vectors differ in 2 positions
as shown in Figure 5. Thus d(vi,vj) = 2.

i 1 1 0 1
j 1 0 1 1

Figure 5. Answer vectors vi and vj .

Definition 14. The minimum distance d(C) of a set of vectors C ⊆ Fn
2 is the smallest Hamming Distance between any two

distinct vectors in C.

With these ideas in hand, we are ready to define the fundamental idea that will allow us to detect and correct lies in guessing
games.
Definition 15. An (n,M, d) error-correcting code C (or “ECC”) is a subset of Fn

2 of size M with d(C) = d. We call these
vectors in C codewords. An (n,M, d) error-correcting code can be represented by an M ×n matrix denoted [C] whose rows
are the codewords of C.

An ECC has the capacity to detect and then correct for errors that can occur in a codeword when it is exposed to contextual
factors. These factors can include noise over a digital channel, a misprint in written text, or – in the case of our guessing
games – a player lying. The capacity for an ECC to detect and correct for errors is based on the minimum distance of that
code.

The process by which minimum distance allows a code to correct errors is called nearest-neighbor decoding. For an (n,M, d)

code C, a message vector m is any one codeword. It is transmitted through a channel, where errors occur in the form of bits
“flipped” from 1 to 0 or vice versa. The received message vector r is then a binary vector with n coordinates that may share
some entries with m. To decode this message, vector r is compared to all of the codewords in the code. The codeword c

that minimizes d(c, r) is chosen as the “nearest neighbor” to r. In particular, if there are at most ` mistakes in r, and the
minimum distance of a code is at least 2`+ 1, then there must be a unique codeword that is “closest” to r and which results
in a correct decoding.
Proposition 16 (See Huffman and Pless5). An (n,M, d) error-correcting code C with d ≥ 2`+ 1 can detect and correct for up
to ` errors.

Example 17. Figure 6 shows the vectors in an error-correcting code C, written as the rows of C’s matrix. It follows that
d(C) = 3 since the Hamming Distance between any two codewords in C is at least 3. Thus, C can detect and correct for
up to ` = 1 errors.

For example, if the vector r = (1, 1, 0, 1, 0, 0) were received, we could compare its distance to each of the four vectors in C.
The 4th vector has a distance of 1 to r, and no other vector has a distance that is 1 or lower, and so r would be corrected as
(1, 1, 0, 0, 0, 0).

1 0 0 1 1 0
0 1 1 1 0 1
1 0 1 0 0 1
1 1 0 0 0 0

Figure 6. The code C.

A valid guessing game matrix [G] for an (m, c, `) game G with n questions can be viewed as the matrix for an (n,M, 2`+1)

error-correcting code and vice versa. The binary answer vectors in [G] that are assigned to each of the m possible integers
correspond to the codewords of the code represented by [G]. The number of lies ` that are allowed in G corresponds to the
number of errors that the corresponding ECC can detect and correct. By this, it follows that in order for [G] to be a valid
guessing game matrix for an (m, c, `) game G, it must be true that d([G])≥ 2` + 1. Thus, trying to find an (m, c, `) offline
guessing game G with n questions is equivalent to finding an (n,m, 2`+ 1) error-correcting code.

In the remainder of this paper, we will find (m, c, 1) games with n questions by solving the equivalent problem of finding
(n,m, 3) error-correcting codes. However, we will have the additional requirement of minimizing the total cost of the
corresponding game, a restriction which is not normally considered when constructing an error-correcting code.

RESULTS
Guessing Games with an Unrestricted Number of Questions

In this section, we will make several assumptions. First, we restrict our investigations to guessing games allowing for only
one lie. Second, we place no restriction on the number of questions that the Questioner asks. Thus, for each guessing game
we will specify only the number of possible answers m, and will leave the number of questions n unrestricted. Instead, we
will rely on the cost function for our games to measure the efficiency of the game.

For any (m, c, 1) guessing game G, either the all-zeroes vector 0 is in the set of answer vectors VG, or it isn’t. We will show
two guessing game matrix constructions that we can use to minimize the total cost of a guessing game, depending upon the
inclusion or exclusion of 0.
Definition 18. An m× n (3, 0) matrix [G]

(3,0)
m is an m× (2m+ 1) binary matrix as shown in Figure 7.

1 1 1 1 0 0 0 0 ... 0
2 0 0 1 1 1 0 0 ... 0
...

...
...

...
...

...
...

...
...

...
m− 1 0 0 0 0 ... 0 1 1 1
m 0 0 0 0 0 0 0 0 0

Figure 7. An m× n (3, 0) matrix [G]
(3,0)
m .

That is, there are m− 1 rows of weight 3 and a single row of weight 0 at the bottom. The rows of weight 3 are arranged in a
“staircase” fashion so that each row shares a 1 in exactly one coordinate with the previous row, and in exactly one coordinate
with the subsequent row.

1 1 1 0 0 0 0 0 ... 0
2 0 0 1 1 0 0 0 ... 0
...

...
...

...
...

...
...

...
...

...
m− 1 0 0 0 0 ... 0 1 1 0
m 0 0 0 0 0 0 0 0 1

Figure 8. An m× n (2, 1) matrix [G]
(2,1)
m .

Definition 19. An m× n (2, 1) matrix [G]
(2,1)
m is an m× (2m− 1) binary matrix as shown in Figure 8.

That is, there are m− 1 rows of weight 2 and a single row of weight 1 at the bottom. The rows of weight 2 do not share any
nonzero coordinates, and the row of weight 1 shares its single 1 with no other row.

Note that, by construction, the rows of both (3, 0) and (2, 1) matrices have a minimum distance of 3.
Lemma 20. Let m and c = (c(1), c(2), ..., c(m)) be given. Among all (m, c, 1) guessing games that contain an answer vector
consisting of all 0’s, the minimum total cost is k0∈V = 3c(1) + 3c(2) + ... + 3c(m − 1). A game with guessing game matrix
[G]

(3,0)
m will attain this minimum total cost.

Proof. Let m and c = (c(1), c(2), ..., c(m)) be given. Let [G] be the guessing game matrix of the (m, c, 1) game that attains
the minimum total cost among all (m, c, 1) games that contain a zero answer vector. By assumption, [G] must contain a
vector of weight 0. Because d([G]) ≥ 3, all other rows of [G] must have weight at least 3. Using Lemma 9, the lowest
possible cost occurs if all m− 1 nonzero rows of [G] are of weight 3.

Next we claim that the row of [G] corresponding to answer m must be 0. (Recall that, by assumption, c(m) is the largest
cost.) To prove this, we let {v1,v2, ...,vm} be a fixed set of vectors of weight 3 and minimum distance at least 3. Suppose
we let ki be the total cost of a game with question vectors when vi, i 6= m, is replaced with 0 and km be the total cost when
vm is replaced with 0. It then follows that

ki = 3c(1) + 3c(2) + ...+ 3c(i− 1) + 3c(i+ 1) + ...+ 3c(m)

and
km = 3c(1) + 3c(2) + ...+ 3c(m− 2) + 3c(m− 1).

Thus,
ki − km = 3c(m)− 3c(i).

Since c(i) ≤ c(m) by assumption, it then follows that ki−km ≥ 0 and therefore ki ≥ km. Thus it must be that [G] contains
a single vector of weight zero that represents the integer m, and all other vectors have weight 3.

The (3, 0) matrix [G]m(3,0) meets these criteria exactly, and so it must represent the minimum possible cost. The cost of this
matrix is exactly k0∈V = 3c(1) + 3c(2) + · · ·+ 3c(m− 1).

Lemma 21. Let m and c = (c(1), c(2), ..., c(m)) be given. Among all (m, c, 1) guessing games that do not contain an answer
vector consisting of all 0’s, the minimum total cost is k0 6∈V = 2c(1) + 2c(2) + ... + 2c(m − 1) + c(m). A game with guessing
game matrix [G]

(2,1)
m will attain this minimum total cost.

Proof. Let m and c = (c(1), c(2), ..., c(m)) be given. Let [G] be the guessing game matrix of the (m, c, 1) game that attains
the minimum total cost among all (m, c, 1) games that do not contain a zero answer vector.

We first claim that [G] will contain a vector of weight 1. Suppose such a vector does not exist in [G]. It would follow
that every vector in [G] has a weight of at least 2. We will demonstrate that some vector may be reduced to a weight of 1.
Suppose the set of vectors {v1, ...,vi, ...,vm} in Figure 9a represent the rows of [G]. These rows satisfy d([G]) ≥ 3 and all

have weight of at least 2. Replace vi with 0 and ask an additional question about only i, as illustrated in Figure 9b. We
can denote this new answer vector by 0|1. It follows that d(0,vj) ≥ 2 for all vj ∈ VG, and because the single additional 1
occurs in a column of all 0’s, d(0|1,vj) ≥ 3. Thus the original vi can be changed to 0|1 while maintaining d([G]) ≥ 3.

v1

...
...

...
...

...
...

...
...

...
vi

...
...

...
...

...
...

...
...

...
vm

(a) The rows of [G] that satisfy d([G]) ≥ 3.

v1 0
...

...
...

...
...

...
...

...
...

0 0 0 0 0 0 0 0 0 1
...

...
...

...
...

...
...

...
...

vm 0

(b) Replacing vi with 0.

Figure 9

Next we claim that [G] contains exactly one vector of weight 1. Suppose two vectors of weight 1 exist. It would then follow
that their Hamming Distance would be at most 2 and thus d([G]) ≤ 2. Therefore [G] contains exactly one vector of weight
1.

Since [G] contains one vector of weight 1, to ensure that d([G]) ≥ 3, it follows that all other vectors must have a weight of
at least 2. Using Lemma 9, the lowest possible cost then occurs if all m− 1 rows of weight at least 2 have weight exactly 2.
Thus [G] will contain exactly one vector of weight 1 and m− 1 vectors of weight 2.

The (2, 1) matrix [G]m(2,1) meets these criteria exactly, and so it must represent the minimum possible cost. The cost of this
matrix is exactly k0 6∈V = 2c(1) + 2c(2) + ...+ 2c(m− 1) + c(m).

We are now ready to describe the minimum-cost guessing games, where the number of questions is unrestricted.
Theorem 22. Letm and c = (c(1), c(2), ..., c(m)) be given.

• If c(m) <
∑m−1

i=1 c(i) then the minimum cost of a (m, c, 1) guessing game is realized by a (2, 1)matrix [G]
(2,1)
m .

• If c(m) >
∑m−1

i=1 c(i) then the minimum cost of a (m, c, 1) guessing game is realized by a (3, 0)matrix [G]
(3,0)
m .

• If c(m) =
∑m−1

i=1 c(i) then the costs of a game realized by a (3, 0)matrix and a (2, 1)matrix are both equal to the minimum
cost.

Proof. Let m and c = (c(1), c(2), ..., c(m)) given. Let k(3,0) and k(2,1) be the total cost of an (m, c, 1) guessing game realized
by a (3, 0) matrix and a (2, 1) matrix respectively.

By Lemmas 20 and 21, either a (3, 0) or a (2, 1) matrix gives the minimum total cost of an (m, c, 1) game, depending on
whether or not a zero vector is present. Thus one of these two must represent the minimum possible cost of an (m, c, 1)

game.

Consider the case where c(m) <
∑m−1

i=1 c(i). Using our assumptions and calculating the total cost of a (2, 1) and (3, 0)

matrix, we have:

k(2,1) = 2c(1) + 2c(2) + · · ·+ c(m− 1) + c(m)

< 2c(1) + 2c(2) + · · · c(m− 1) + c(m) +

m−1∑
i=1

c(i)

= 3c(1) + 3c(2) + ...+ 3c(m− 1) + 0c(m)

= k(3,0).

[G1] =

q1 q2 q3 q4 q5 q6 q7

1 1 1 1 0 0 0 0
2 0 0 1 1 1 0 0
3 0 0 0 0 1 1 1
4 0 0 0 0 0 0 0

[G2] =

q1 q2 q3 q4 q5 q6 q7

1 1 1 0 0 0 0 0
2 0 0 1 1 0 0 0
3 0 0 0 0 1 1 0
4 0 0 0 0 0 0 1

Figure 10. Two possible matrices for a (4, c, 1) game.

Thus, c(m) <
∑m−1

i=1 c(i) implies k(2,1) < k(3,0). Therefore, a (2, 1) matrix gives the cheapest possible total cost.

Similarly, c(m) >
∑m−1

i=1 c(i) implies k(2,1) > k(3,0), is which case a (3, 0) matrix gives the cheapest possible total cost.

If c(m) =
∑m−1

i=1 c(i) then these two matrices give equal total costs.

Example 23. Let m = 4. The two candidates for the cheapest (4, c, 1) guessing game are given in Figure 10.

If c = (1, 2, 3, 4), then c(4) = 4 < 1 + 2 + 3 =
∑3

i=1 c(i). Theorem 22 predicts that a (2, 1) matrix will be cheapest. We
calculate: c([G1]) = 3(1) + 3(2) + 3(3) = 18 and c([G2]) = 2(1) + 2(2) + 2(3) + 1(4) = 16. Thus the (2, 1) matrix does
indeed realize the cheapest game.

If instead c = (1, 2, 3, 10), then c(4) = 10 > 1 + 2 + 3 =
∑3

i=1 c(i). Theorem 22 predicts that a (3, 0) matrix will be
cheapest. We calculate: ([G1]) = 3(1) + 3(2) + 3(3) = 18 and ([G2]) = 2(1) + 2(2) + 2(3) + 1(10) = 22. Thus the (3, 0)
matrix is cheaper in this case.

Guessing Games with a Restricted Number of Questions

In the previous section, we saw that the cheapest guessing games required us to create a very large number of questions. We
will now look at guessing games where the number of questions are restricted. As a simplification, we will only consider
the cost function c = (1, 1, . . . , 1). We begin, as we did in the previous section, by defining a special type of matrix that will
be used throughout our study of this topic.
Definition 24. An m× n (1, 2, 3) matrix [G] has the form shown in Figure 11.

0

A ...
0
0

B ...
0

0 0 · · · 0 0 1

Figure 11. A (1, 2, 3) matrix.

Here [A] is a matrix with rows of weight 3, and [B] is a matrix with bn−12 c rows of weight 2. Further, we require that the
minimum distance of the entire matrix [G] be at least 3.

Note that, to guarantee a minimum distance of at least 3, no row of weight 2 or 3 can have a 1 in the rightmost column.
In addition, bn−12 c is the largest number of rows of weight 2 that can be contained in a matrix with n − 1 columns and
minimum distance at least 3. No two rows with weight 2 can share a 1 in any position.

In the following work, we will prove that (1, 2, 3) matrices exist in certain cases. To do so requires some concepts from a
branch of math known as Design Theory. The interested reader is referred to Lindner6 for more information beyond that

presented below.
Definition 25. Let X = {1, 2, . . . , u} for u ≥ 3 (these elements are called varieties), together with a set B of subsets of X
of size 3 (called blocks or triples), such that every pair of varieties in X occurs in exactly one block of B. The pair (X,B) is
a Steiner Triple System of u varieties denoted STS(u).
Proposition 26. An STS(u) exists if and only if u ≡ 1 (mod 6) or u ≡ 3 (mod 6).6

Definition 27. The replication number r of an STS(u) is the number of blocks that contain a fixed variety.

It can be shown7, for an STS(u), that the replication number r satisfies r = u−1
2 , regardless of the variety chosen. Similarly,

the number of blocks is exactly b = u(u−1)
6 .

Steiner Triple Systems will provide the basis for constructing (1, 2, 3) matrices. However, they exist only for a limited
number of varieties. Thus we consider an alternative structure to cover some of the remaining cases.
Definition 28. Let X = {1, 2, . . . , u} for u ≥ 3 (these elements are called varieties). Let K be a non-empty set of natural
numbers. Let B be a set of non-empty subsets of X called blocks, such that for each b ∈ B, |b| ∈ K. In addition, each pair
of the u elements of X must appear in exactly one block of B. The pair (X,B) is a (u,K, 1) Pairwise Balanced Design, also
denoted by (u,K, 1)-PBD.

Note that the key difference between an STS(u) and a PBD(u,K, 1) is that the sizes of the blocks in a PBD(u,K, 1) may
vary, while an STS(u) always has blocks of size 3.
Definition 29. Let D = (P,B) where P = {p1, p2, p3, ..., pu} is a set of u varieties and B = {b1, b2, b3, ..., bv} is a set of
subsets of P . The incidence matrix of D is a |B| × |P | binary matrix M in which each entry Mij contains a 1 if subset bi
contains variety pj and a 0 if subset bi does not contain variety pj .
Example 30. Figure 12 shows the incidence matrix of an STS(7) with

B = {{1, 2, 4}, {2, 3, 5}, {3, 4, 6}, {4, 5, 7}, {5, 6, 1}, {6, 7, 2}, {7, 1, 3}}.

1 2 3 4 5 6 7
b1 1 1 0 1 0 0 0
b2 0 1 1 0 1 0 0
b3 0 0 1 1 0 1 0
b4 0 0 0 1 1 0 1
b5 1 0 0 0 1 1 0
b6 0 1 0 0 0 1 1
b7 1 0 1 0 0 0 1

Figure 12. The incidence matrix of an STS(7).

Note that all parameters of the STS(u) are visible in this matrix. Each row represents one block of size 3, and so each row
(that is, a block) has exactly three 1’s in it. Every pair of varieties appears in exactly one block, and so every pair of columns
(that is, varieties) share a 1 in exactly one position. Finally, every variety is in exactly 3 blocks, and so every column contains
exactly three 1’s as well.
Example 31. Figure 13 shows the incidence matrix of an (11, {3, 5}, 1)-PBD.

These incidence matrices will be the starting point from which we create (1, 2, 3) matrices that will ultimately represent our
guessing games.
Lemma 32. Let n ≡ 1 or n ≡ 3 (mod 6) and 2 ≤ m ≤ n(n−1)

6 + 1. Suppose c = (1, 1, ..., 1). Then there exists an m × n

(1, 2, 3)matrix [G] which is a valid guessing game matrix for an (m, c, 1) guessing game G with exactly n questions.

Proof. Let n ≡ 1 (mod 6) or n ≡ 3 (mod 6). By Proposition 26 , there exists a STS(n) S with varieties N = {1, 2, 3, ..., n−
1, n}, block set B such that |B| = n(n−1)

6 , and replication number r such that r = n−1
2 . We will use B to construct a new

1 2 3 4 5 6 7 8 9 10 11
b1 1 1 1 1 1 0 0 0 0 0 0
b2 1 0 0 0 0 1 1 0 0 0 0
b3 1 0 0 0 0 0 0 1 0 0 1
b4 1 0 0 0 0 0 0 0 1 1 0
b5 0 1 0 0 0 1 0 1 0 0 0
b6 0 1 0 0 0 0 1 0 1 0 0
b7 0 1 0 0 0 0 0 0 0 1 1
b8 0 0 1 0 0 1 0 0 1 0 0
b9 0 0 1 0 0 0 1 0 0 0 1
b10 0 0 1 0 0 0 0 1 0 1 0
b11 0 0 0 1 0 1 0 0 0 1 0
b12 0 0 0 1 0 0 1 1 0 0 0
b13 0 0 0 1 0 0 0 0 1 0 1
b14 0 0 0 0 1 1 0 0 0 0 1
b15 0 0 0 0 1 0 1 0 0 1 0
b16 0 0 0 0 1 0 0 1 1 0 0

Figure 13. The incidence matrix of an (11, {3, 5}, 1)-PBD.

set of blocks.

We begin by removing variety n from all blocks in B and adding a single block {n}. More precisely, let B′ = {b \ {n}|b ∈
B} ∪ {{n}}. Then B′ contains n(n−1)

6 − r (unchanged) blocks of weight 3, r = n−1
2 blocks of weight 2, and a single block

of weight 1.

Let [S′] be the incidence matrix of S′ = (N,B′). We will show that d([S′]) ≥ 3.

Our key observation comes from the fact that every pair of varieties in N appears in exactly one block in B. Thus in B,
every pair of blocks differ by at least 4 elements. In terms of [S], every pair of rows differs in at least four coordinates,
meaning that the minimum distance of [S] is at least 4. Because any two rows in [S′] of weight 3 correspond directly to
blocks of S, these two rows must have distance at least 4.

Let vi and vj be two rows of [S′] such that |vi| = 3 and |vj | = 2. Based on a similar observation, vectors vi and vj share
at most one 1 in the same coordinate. Thus, d(vi,vj) ≥ 3.

Next consider two rows vi and vj of [S′] with |vi| = 2 and |vj | = 2. By construction, the corresponding blocks bi and bj
of S both originally contained the variety n. Therefore bi and bj do not share any variety other than n. Thus, vi and vj

share 1’s in no coordinates. It follows that d(vi,vj) = 4. In particular, the rows of weight 2 in [S′] contain a single 1 in
every column other than the column corresponding to variety n, which has only 0’s.

Finally, because variety n has been removed from all blocks in B′, the distance between any row vi and the row vn

containing only variety n must be at least 3.

Thus, d([S′]) ≥ 3. In addition, [S′] contains one row with a weight of 1, n−1
2 rows with weight 2, and the remaining

n(n−1)
6 − n−1

2 rows have weight 3, for a total of n(n−1)
6 + 1 rows. Thus [S′] forms a valid guessing game matrix for a

(n(n−1)6 + 1, c, 1) guessing game.

The construction above explains how to construct a matrix with exactly m = n(n−1)
6 + 1 rows. To create a valid matrix for

a game with m < n(n−1)
6 + 1, we simply remove as many rows of [S′] as necessary, beginning with rows of weight 3. This

cannot affect the minimum distance of the matrix.

Next, we consider a case for which a Steiner Triple System does not exist.
Proposition 33 (See Lindner6). For n ≡ 5 (mod 6), there exists an (n, {3, 5}, 1)-PBD D such that D has exactly one block of
size 5 while the rest of the blocks have size 3.
Lemma 34. Let n ≡ 5 (mod 6) and 2 ≤ m ≤ n2−n−2

6 . Suppose c = (1, 1, . . . , 1). Then there exists an m × n (1,2,3) matrix
[G] which is a valid guessing game matrix for an (m, c, 1) guessing game G with exactly n questions.

Proof. Let n ≡ 5 (mod 6). By Proposition 33, there exists a (n, {3, 5}, 1)-PBD D with varieties N = {1, 2, . . . , n} and
block set B that contains exactly one block of size 5 while the rest of the blocks have size 3. By counting pairs, we can

determine that D contains (n2)−(
5
2)

(32)
= n2−n−20

6 blocks of weight 3. Without loss of generality, we assume that {n, b, c, d, e}
is the block of weight 5 in D.

We now create a new block set by “breaking apart” the block of size 5. This will be similar to the proof of Lemma 32, but
with the added complication of the block of size 5.

Let P = {b ∈ B|n ∈ b and |b| = 3} be the set of triples in D containing the variety n, and notice that |P | = n−5
2 . Define

P ′ = {b \ {n}|b ∈ P}. Let T = {b ∈ B|n 6∈ b and |b| = 3} be the set of triples in D not containing the variety n. We leave
T unchanged.

We construct a new set of blocks B′ = P ′ ∪ T ∪ {{b, c}, {d, e}, {n}}. Note that {{b, c}, {d, e}, {n}} is essentially a

“factoring” of the block of size 5. Then the set B′ contains (n2)−(
5
2)

(32)
+ 3 = n2−n−2

6 blocks: (
n
2)−(

5
2)

(32)
− n−5

2 of weight 3 from

T , n−5
2 of weight 2 from P ′, two new blocks also of weight 2, and the new block of weight 1. We note that B′ contains

n−5
2 + 2 = n−1

2 blocks of size 2, the maximum possible number of such blocks.

The resulting structure D′ = (N,B′) that has been constructed from D will have an incidence matrix [D′] in the form
shown in Figure 14.

0

A
...
0

1 1 0 0 · · · 0 0 0
0 0 1 1 · · · 0 0 0

... 0
0 0 0 0 · · · 1 1 0
0 0 0 0 · · · 0 0 1

Figure 14. The incidence matrix [D′].

Similarly to the proof of Lemma 32, by using the fact that every pair in N appears in exactly one block of D, it follows
that d([D′]) ≥ 3. Since we have shown that [D′] contains one row with a weight of 1, n−1

2 rows with weight 2 which are
mutually disjoint, while the remaining rows have weight 3 and d(D′) ≥ 3, it follows that [D′] is a valid (1, 2, 3) guessing
game matrix for a (n

2−n−2
6 , c, 1) guessing game with n questions.

The construction above explains how to construct a matrix with exactly m = n2−n−2
6 rows. To create a valid matrix for a

game with m < n2−n−2
6 , we remove as many rows as necessary, beginning with rows of weight 3. This cannot affect the

minimum distance of the matrix.

Next, we will show that (1, 2, 3) matrices (when they exist) give the lowest possible cost.

Theorem 35. Let c = (1, 1, . . . , 1) and let n ≥ 3. If a m × n (1, 2, 3) matrix [M] exists, then [M] attains the minimum total
cost for an (m, c, 1) guessing game with exactly n questions. This minimum cost is exactly 3(m− bn−12 c − 1) + 2bn−12 c+ 1 =

3m− bn−12 c − 2.

Proof. Let m and n be parameters for an (m, c, 1) guessing game with exactly n questions, and assume an m × n (1, 2, 3)

matrix [G] exists. Because the cost function is fixed at c = (1, 1, . . . , 1), the total cost of a (m, c, 1) guessing game with game
matrix [G] is exactly the number of 1’s in [G]. Thus our goal is to determine the minimum total number of 1’s among all
m× n binary matrices [G] which have a minimum distance of at least 3.

Let [G] be a m× n guessing game matrix with d([G]) ≥ 3 that attains the minimum possible number of 1’s.

We first claim that [G] does not contain a zero vector. If [G] did contain a zero vector, then to ensure d([G]) ≥ 3, all other
vectors must have weight at least 3. Note that [M] must contain at least one row of weight 2, and so this guarantees that [G]

has at least as many 1’s as [M]. Thus we may assume that [G] does not contain a zero vector.

Next, we claim that [G] must contain a single vector of weight 1. Certainly [G] cannot have two or more vectors of weight
1 while maintaining d([G]) ≥ 3, and so it can contain either 1 or 0 such vectors. Suppose it has none. Then even if [G] has
the maximum possible number of rows of weight 2, [G] must have at least one more vector of weight 3 or larger compared
to [M]. Thus [G] would not have lower weight than [M].

Thus we may assume that [G] has no zero vector and has exactly one vector of weight 1. Without loss of generality, assume
that this single 1 appears in column n. To ensure d([G]) ≥ 3, any rows of weight 2 may not have a 1 in column n. Thus
at most bn−12 c of the remaining rows may have weight 2, and the rest must have weight at least 3. A (1, 2, 3) matrix meets
these bounds exactly, and so it must represent the minimum possible cost.

Note that the cost of an m×n (1, 2, 3) matrix is 3(m−bn−12 c−1)+2bn−12 c+1, because bn−12 c of the m rows have weight
2, one has weight 1, and the rest of the m rows have weight 3.

Theorem 36. Let c = (1, 1, . . . , 1) and let n ≥ 3. Suppose that one of the following is true:

• n ≡ 1 or 3 (mod 6) and 2 ≤ m ≤ n(n−1)
6 + 1

• n ≡ 5 (mod 6) and 2 ≤ m ≤ n2−n−2
6

Then a (1, 2, 3)matrix exists and provides the cheapest possible cost for an (m, c, 1) guessing game with exactly n questions.

Proof. Under the assumptions on n, an m × n (1, 2, 3) matrix [M] exists by Lemmas 32 and 34. Note that if m is not as
large as possible, then some rows of weight 3 must be removed from the corresponding (1, 2, 3) matrix, as described in the
proof of the respective Lemma. By Theorem 35, [M] gives the cheapest possible cost for an (m, c, 1) guessing game with
exactly n questions.

We note that Theorem 36 covers the interesting case where m ≤ n−1
2 + 1, in which case a (1, 2, 3) matrix [M] contains

only rows of weight 2 and 1 (because, per the definition, all rows of weight 3 must be removed before removing any rows of
lower weight). In this case, [M] is the same as a (2, 1) matrix, although possibly with several extra columns containing all
0’s (effectively, questions that are unused). Thus Theorem 36 is consistent with the conclusion of Theorem 22 applied with
c = (1, 1, . . . , 1). In this case, the restriction on the number of questions has no effect.

We finish this section with an attempt to tie up the cases not considered by Theorem 36.
Definition 37. A punctured (1, 2, 3) matrix has the same form as a (1, 2, 3) matrix without the single row and column of
weight one.
Theorem 38. Let c = (1, 1, . . . , 1), n even with n ≥ 2, andm ≥ 2.

• If anm×n (1, 2, 3)matrix exists, then it attains the minimum possible cost among all (m, c, 1) guessing games with exactly
n questions.

• If anm× n (1, 2, 3)matrix does not exist, but anm× n punctured (1, 2, 3)matrix does exist, then the punctured (1, 2, 3)
matrix attains the minimum possible cost among all (m, c, 1) guessing games with exactly n questions.

Proof. Recall that, because c = (1, 1, . . . , 1), the cost of a game is exactly equal to the number of 1’s in that game’s matrix.

If an m× n (1, 2, 3) matrix [M] exists, then by Theorem 35 [M] attains the minimum possible cost. Note that it is possible
for an m× n (1, 2, 3) matrix to exist outside the conditions given in Lemmas 32 and 34.

If an m×n (1, 2, 3) matrix does not exist, then the minimum attainable cost is at least one greater than the cost that a m×n

(1, 2, 3) matrix would give.

Suppose anm×n (1, 2, 3)matrix does not exist, but anm×n punctured (1, 2, 3)matrix [M ′] does exist. The only difference
in row weights between [M ′] and a possible m×n (1, 2, 3) matrix is that [M ′] will have a row of weight 2 where the (1, 2, 3)
matrix would have a row of weight 1, and thus [M ′] would have a total cost of one more than the m × n (1, 2, 3) matrix.
This is necessarily the minimum possible cost.

In particular, note Theorem 36 does not cover the cases where n ≡ 0, 2, or 4 (mod 6). In these cases, n + 1 ≡ 1, 3 or
5 (mod 6). Thus if m+1 satisfies the hypotheses of Theorem 36, then a (m+1)× (n+1) (1, 2, 3) matrix exists by Lemma
32 or 34. By removing the row and column of weight 1, we obtain a punctured (1, 2, 3) matrix [M ′] which is within 1 of
the minimum possible cost by Theorem 38. However, we do not know whether or not a true (1, 2, 3) matrix exists in these
cases (and thus attains the minimum cost).
Example 39. The following is the construction of a (1, 2, 3) matrix with m = 8 as described in this section. We begin with
the incidence matrix of an STS(7) from Figure 12.

By following the construction of a (1, 2, 3) matrix as described in Lemma 32, we let the variety 1 be the variety that we
remove from the blocks and then replace in a block of weight 1. From this, we yield the following matrix.

1 2 3 4 5 6 7
b1 0 1 0 1 0 0 0
b2 0 1 1 0 1 0 0
b3 0 0 1 1 0 1 0
b4 0 0 0 1 1 0 1
b5 0 0 0 0 1 1 0
b6 0 1 0 0 0 1 1
b7 0 0 1 0 0 0 1
b8 1 0 0 0 0 0 0

Figure 15. The incidence matrix with variety 1 removed, and a new row added.

By rearranging the columns and rows of the matrix in Figure 15, we obtain the (1, 2, 3) matrix in Figure 16.

If c = (1, 1, 1, 1, 1, 1, 1), this gives a (8, c, 1) guessing game with exactly 7 questions and total cost 3 · 8− b 8−12 c − 2 = 19.
Example 40. The following is the construction of a (1, 2, 3) matrix with m = 11 as described in this section. We begin
with the incidence matrix of an (11, {3, 5}, 1)-PBD from Figure 13.

By following the construction of a (1, 2, 3) matrix as described in Lemma 34, we let the variety 1 be the variety that we
remove from the blocks and then replace in a block of weight 1. From this, we yield the matrix seen in Figure 17. The
blocks created from original block of weight 5 are highlighted.

By rearranging the columns and rows of the matrix in Figure 17, we obtain the (1, 2, 3) matrix in Figure 18.

2 4 3 7 5 6 1
b2 1 0 1 0 1 0 0
b3 0 1 1 0 0 1 0
b4 0 1 0 1 1 0 0
b6 1 0 0 1 0 1 0
b1 1 1 0 0 0 0 0
b7 0 0 1 1 0 0 0
b5 0 0 0 0 1 1 0
b8 0 0 0 0 0 0 1

Figure 16. The final (1, 2, 3) matrix.

1 2 3 4 5 6 7 8 9 10 11
b1 0 1 1 0 0 0 0 0 0 0 0
b2 0 0 0 1 1 0 0 0 0 0 0
b3 0 0 0 0 0 1 1 0 0 0 0
b4 0 0 0 0 0 0 0 1 0 0 1
b5 0 0 0 0 0 0 0 0 1 1 0
b6 0 1 0 0 0 1 0 1 0 0 0
b7 0 1 0 0 0 0 1 0 1 0 0
b8 0 1 0 0 0 0 0 0 0 1 1
b9 0 0 1 0 0 1 0 0 1 0 0
b10 0 0 1 0 0 0 1 0 0 0 1
b11 0 0 1 0 0 0 0 1 0 1 0
b12 0 0 0 1 0 1 0 0 0 1 0
b13 0 0 0 1 0 0 1 1 0 0 0
b14 0 0 0 1 0 0 0 0 1 0 1
b15 0 0 0 0 1 1 0 0 0 0 1
b16 0 0 0 0 1 0 1 0 0 1 0
b17 0 0 0 0 1 0 0 1 1 0 0
b18 1 0 0 0 0 0 0 0 0 0 0

Figure 17

ACKNOWLEDGEMENTS
Thank you to the Student Summer Scholars (S3) program and at Grand Valley State University and all of the program’s
wonderful donors for funding this research. Another thank you goes out to my research advisor, Dr. David Clark, for his
guidance, advice, and positivity throughout this project.

REFERENCES
1. Ulam, S. M. (1976) Adventures of a Mathematician, Scribner, New York.

2. Spencer, J. (1984) Guess a number – with lying, Math. Mag. 57, 105–108.

3. Deppe, C. (2007) Coding with feedback and searching with lies, in Entropy, Search, Complexity (Csiszár, I., Katona,
G., Tardos, G., Eds.), Bolyai Society Mathematical Studies vol. 16, 27–70, Springer.

4. Pelc, A. (2002) Searching games with errors: fifty years of coping with liars, Theoret. Comput. Sci. 270, 71–109.

5. Huffman, W. and Pless, V. (2003) Fundamentals of Error-Correcting Codes, Cambridge University Press.

6. Lindner, C. (2008) Design Theory 2nd ed., Chapman and Hall/CRC.

7. Brualdi, R. (2009) Introductory Combinatorics, Pearson.

ABOUT THE STUDENT AUTHOR
Lindsay Czap is a senior mathematics student at Grand Valley State University. At Grand Valley, she participated in the
Student Summer Scholars program which funded this project. She will be continuing her mathematics education as she
pursues a Master’s degree at Bowling Green State University.

PRESS SUMMARY
The game “20 questions” has always been a staple for children trapped in long car rides. We explore guessing games like “20
questions” in which one player chooses a number, and the other player asks yes-or-no questions to determine the number.
In our games, the responding player may lie once. By adding a cost to each question in these games, we are able to quantify
their efficiency. We determine the most efficient games in two cases: When the number of questions is unlimited, and when
the number of questions is limited and the costs are especially simple. In each case, we explain exactly how to play these
games in the most efficient way.

2 3 4 5 6 7 8 11 9 10 1
b6 1 0 0 0 1 0 1 0 0 0 0
b7 1 0 0 0 0 1 0 0 1 0 0
b8 1 0 0 0 0 0 0 1 0 1 0
b9 0 1 0 0 1 0 0 0 1 0 0
b10 0 1 0 0 0 1 0 1 0 0 0
b11 0 1 0 0 0 0 1 0 0 1 0
b12 0 0 1 0 1 0 0 0 0 1 0
b13 0 0 1 0 0 1 1 0 0 0 0
b14 0 0 1 0 0 0 0 1 1 0 0
b15 0 0 0 1 1 0 0 1 0 0 0
b16 0 0 0 1 0 1 0 0 0 1 0
b17 0 0 0 1 0 0 1 0 1 0 0
b1 1 1 0 0 0 0 0 0 0 0 0
b2 0 0 1 1 0 0 0 0 0 0 0
b3 0 0 0 0 1 1 0 0 0 0 0
b4 0 0 0 0 0 0 1 1 0 0 0
b5 0 0 0 0 0 0 0 0 1 1 0
b18 0 0 0 0 0 0 0 0 0 0 1

Figure 18. The final (1, 2, 3) matrix.

