
Walking into a café, you are looking for the familiar face 
of an old colleague with whom you have set an appoint-
ment. Doing so, you are engaged in a visual search for a 
target (your friend’s face) among distractors (other people’s 
faces). Are you more prone to quickly find her when the 
café is half empty than when it is crowded? Would cer-
tain properties, such as red hair, make her more likely to 
be detected? Similar themes arise when one is scanning a 
newspaper for words or topics of interest or even scruti-
nizing a face for a birthmark. The nature of visual search 
and the factors affecting the speed of processing have been 
extensively studied over the past half-century. A number of 
models have been put forth to explain how response times 
(RTs) are influenced by various stimuli and experimental 
conditions (Bundesen, 1990; Duncan & Humphreys, 1989; 
Palmer, Verghese, & Pavel, 2000; Treisman & Sato, 1990; 
Wenger & Townsend, 2006; Wolfe, 1994).

An especially intriguing question is that of processing 
architecture.1 In the café, can we simultaneously process all 
faces ( parallel processing), or is it necessary to process one 
face at a time (serial processing), until we recognize our 
friend? Is some kind of more complicated set of processes 
involved? Although this has been an issue of concern since 
the 19th century, and intensive experimental and theoretical 
researches on such issues have continued for several de-
cades, decisive resolution has been hard to come by.

The most common experimental approach since the 
1960s has been to manipulate the number of search ob-
jects (workload) and measure RTs (for memory search, see 
Sternberg, 1966; for visual search, see Atkinson, Holmgren, 
& Juola, 1969, and Egeth, 1966). For example, when par-

ticipants search for a single visual target among distractors 
that are highly similar to the target, mean RTs can increase 
in a linear fashion as a function of workload, thus suggest-
ing serial processing (e.g., Atkinson et al., 1969; Townsend 
& Roos, 1973; Treisman & Gelade, 1980; Wolfe, Cave, & 
Franzel, 1989). On the other hand, under certain condi-
tions and even with manipulation of workload, participants 
can exhibit rapid RTs or patterns of accuracy that are more 
compatible with parallel processing (e.g., Bacon & Egeth, 
1994; Bundesen, 1990; Folk & Remington, 1998; Palmer 
et al., 2000; Pashler & Harris, 2001; Thornton & Gilden, 
2007; Wenger & Townsend, 2006).

Unfortunately, there is a marked asymmetry in the use 
of workload as an independent variable to assess architec-
ture. On the positive side, when RT decreases or, in some 
cases, remains roughly constant with an increase in work-
load, models based on parallel processing are virtually the 
only viable type of alternative. The reason for the conclu-
siveness is that serial models would have to increase their 
processing speed in an outlandish way in order to make 
such predictions. Yet, in scores of experiments utilizing a 
single target embedded in a set of distractors (a few have 
been indicated just above), RT increases with workload, 
and here the inference is decidedly more ambiguous. The 
problem is that quite natural parallel models whose chan-
nels2 become less efficient as workload increases can 
make predictions identical to those of serial models (e.g., 
Townsend, 1969, 1971, 1972; Townsend & Ashby, 1983); 
this is the well-known model-mimicking dilemma.3

There is a more powerful theory-driven methodology 
that has evolved over the past several decades that is able 
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ity of the items in order to explore its effect on architecture. 
Would the experimental evidence again provide uniform 
support for parallel processing? How would our simple ex-
tensions of the popular three-stage models fare? As will be 
seen, the results deviated radically from earlier findings.

Factorial Technology Tests of Parallel  
Versus Serial Systems

SFT is a theory-driven experimental methodology that 
unveils a taxonomy of four critical characteristics of the 
cognitive system under study: architecture (serial vs. par-
allel), stopping rule (exhaustive vs. minimum time), work-
load capacity (limited, unlimited, or super), and channel 
independence. The first three are directly tested by our 
RT methodology. Independence can only be indirectly as-
sessed, although channel dependencies can affect capac-
ity (e.g., Townsend & Wenger, 2004b). To directly test for 
independence, the investigator needs the accuracy-based 
analyses afforded by general recognition theory (e.g., 
Ashby & Townsend, 1986). Architecture and stopping rule 
are the primary characteristics targeted in this study, but 
we will see that capacity and, possibly, channel dependen-
cies may be implicated in the interpretations.

It is important to observe that all of our assessment 
procedures are distribution and parameter free. Most 
experimentation pursues tests of qualitative predictions 
(e.g., Group A is faster than Group B) of verbally founded 
predictions. More rigorous modeling typically tests math-
ematical models that are based on specific probability 
functions (normal, Gaussian, gamma, etc.) by estimating 
the parameters that provide a “best” fit to the data and 
then, sometimes, determining whether the fit is statisti-
cally significant or not. If it is, the model is said to be 
supported by the data; if not, the model is said to be falsi-
fied. In the SFT approach, powerful qualitative predic-
tions are made that, if wrong, can falsify huge classes of 
models—for instance, the set of all mathematical func-
tions that obey the prime psychological assumptions. If 
confirmed (not falsified), more specific, parameter-based 
models can be explored.

As was intimated earlier, SFT analysis is based on a fac-
torial manipulation of at least two factors with two levels, 
and it utilizes two main statistics: the mean interaction con-
trast (MIC; Ashby & Townsend, 1980; Schweickert, 1978; 
Sternberg, 1969) and the survivor interaction contrast 
(SIC). The latter extension makes use of data at the dis-
tributional level, rather than means, and therefore permits 
analysis at a more powerful and detailed level (Townsend, 
1990; Townsend & Nozawa, 1988, 1995; for extension to 
complex networks, see Schweickert et al., 2000).

The MIC statistic describes the interaction between the 
mean RTs of two factors with two levels each and can be 
presented as follows:

 MIC RT RT RT RT

RT RT RT
LL LH HL HH

LL LH HL

= −( ) − −( )
= − − − RRTHH.

 (1)

There are two subscript letters; the first denotes the level 
of the first factor (H 5 high, L 5 low), and the second in-
dicates the level of the second factor. Note that MIC gives 

to avoid most, if not all, model-mimicking challenges and 
certainly those associated with the architecture–capacity 
confounding. This approach grew out of Sternberg’s ad-
ditive factors method, which allowed assessment of the 
hypothesis of serial processing. We will explain the meth-
odology further below, but suffice it to say for now that 
the prime logic is that experimental factors can be found 
that selectively slow down or speed up separate subpro-
cesses or subsystems in the overall processing network 
(the so-called postulate of selective influence; Ashby & 
Townsend, 1980; Dzhafarov, 1999; Egeth & Dagenbach, 
1991; Sternberg, 1969; Townsend, 1984; Townsend & 
Thomas, 1994). These methods were subsequently gen-
eralized to permit identification not only of parallel pro-
cessing, but also of other feedforward systems of rather 
surprising complexity (Schweickert, 1978; Schweickert, 
Giorgini, & Dzhafarov, 2000; Schweickert & Townsend, 
1989; Townsend & Ashby, 1983).

We have employed this methodology, now often referred 
to globally as systems factorial technology (SFT), to in-
vestigate visual search with a small workload in a num-
ber of important contexts: in binocularly present dots (e.g., 
Hughes & Townsend, 1998; Townsend & Nozawa, 1988, 
1995); realistic facial feature identification (e.g., Fifić, 
2006; Wenger & Townsend, 2001), emotional facial fea-
ture perception (e.g., Innes-Ker, 2003), short-term memory 
search (e.g., Townsend & Fifić, 2004), and nonface mean-
ingful and meaningless objects (e.g., Wenger & Townsend, 
2001). In all the visual search situations, the results have 
always strongly supported parallel processing. All these ex-
periments utilized some type of salience manipulation as a 
selective experimental factor. And none of them involved 
letters or words as stimuli. In contrast, in a short-term mem-
ory search experiment with word-like stimuli (Townsend & 
Fifić, 2004), it was necessary to engage a different type of 
factor: the similarity of distractors to the target. That study 
showed marked individual differences, with some observ-
ers revealing serial and others parallel processing.

As has been noted, although the factorial approach in 
general can assess complex networks, our data have so 
far corroborated simple parallel or, sometimes in memory 
search, serial processing. We shall refer to these as single-
stage models, since the main search mechanisms are con-
fined to a single stage in the overall cognitive-processing 
chain. Yet a highly popular class of models is based on 
three stages of processing: a very efficient parallel early 
stage, followed by a selection process that sends certain 
items to a third, limited-capacity, usually serial, later 
stage used to search through more difficult items (Sagi & 
Julesz, 1985; Treisman & Gelade, 1980; Treisman & Sato, 
1990; Wolfe, 1994). Although there appear to be many 
directions one could take in extracting predictions from 
such multistage models, we will begin to probe some ap-
parently natural, if simplified, possibilities.

The present study was intended first to expand the pur-
view of SFT to meaningless word-like or letter stimuli. 
Second, we employed similarity of distractors to the target 
as a selective factor, as was done in the short-term memory 
study (Townsend & Fifić, 2004), but not heretofore in vi-
sual search. Third, we wished to manipulate the complex-
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is predicted to be identical to the negative area. Because 
this study will, as in Townsend and Fifić (2004), analyze 
only target-absent trials, the focus will be on the exhaus-
tive (i.e., and) stopping rule.4 MIC and SIC predictions 
for serial exhaustive and parallel exhaustive models are 
presented in Figure 1. Although the MIC is not nearly as 
diagnostic as the SIC, it both reinforces the SIC results 
and provides a means of statistically assessing any interac-
tions associated with the SIC function.5

The topic of workload capacity plays a relatively minor 
role here, but it will be required in some of the discussion. 
Basically, we measure capacity by comparing the actual 
efficiency when, say, n channels are operating with that 
predicted by a regular, independent (unlimited capacity, 
by definition) parallel-processing model. This is accom-
plished by taking the RT distribution at n 5 1 and com-
pounding it in the way predicted by the regular parallel 
model. This computation creates a capacity function over 
time. If the actual result is identical to the regular parallel 
predictions, we call the underlying mechanism (be it se-
rial, parallel, or hybrid) unlimited capacity. If the speed 
is less than that predicted by the regular parallel model, 
we say it is limited capacity. If it somehow supersedes 
the regular parallel prediction, it is called super capacity. 
In particular, we have repeatedly found that perception 
of good, configural visual objects can, in certain circum-
stances, elicit super capacity or, contrarily, lead to limited 
capacity (e.g., Townsend & Wenger, 2004b; Wenger & 
Townsend, 2006).

Before ending this section, we need to mention two 
important nonindependent parallel channels models. One 
rather distinct type, coactive parallel processing, does 
away with the assumption that separate decisions (e.g., 
recognition of an item) are made in the distinct channels. 
Rather, it is assumed that the multiple-channels pool—for 
instance, add—their activations together in a final single 
mutual conduit. The activation level then is continuously 

the difference between differences, which is literally the 
definition of interaction. MIC 5 0 indicates that the effect 
of one factor on processing latency is exactly the same, 
whether the level of the other factor is L or H. Conversely, 
if two factors interact, manipulating the salience of one 
factor would yield different effects depending on the level 
of the other factor; hence, MIC  0. Underadditive in-
teraction, or MIC , 0, is a typical prediction of parallel 
exhaustive processing, whereas additivity, or MIC 5 0, is 
associated with serial exhaustive processing (Townsend & 
Ashby, 1983; Townsend & Nozawa, 1995).

The survivor interaction contrast function (SIC) is de-
fined as

 SIC( ( ( ( (LL LH HL HHt S t S t S t S t) ) ) ) ) ,= −  − −   (2)

where S(t) denotes the RT survivor function. In brief, to 
calculate the SIC, we divide the time scale into bins (say, 
of 10 msec each) and calculate the proportion of responses 
given within each time bin to produce an approximation to 
the density function, f(t), and the cumulative probability 
function F(t). That is, F(t) is equal to the probability that 
RT is less than or equal to t. The survivor function, S(t), is 
the complement of the cumulative probability function [1 2 
F(t)] and tells us the probability that the process under study 
finishes later than time t. To produce the SIC, one calculates 
the difference between differences of the survivor functions 
of the four corresponding factorial conditions the way it is 
derived for the means, but does so for every bin of time.

Note that this statistic produces an entire function 
across the values of observed RTs. Furthermore, there is a 
specific signature of each architecture and stopping rule, 
with respect to the shape of the SIC function (Townsend & 
Nozawa, 1988, 1995). For example, the SIC function for a 
parallel exhaustive model is negative for all time. Perhaps 
surprisingly, the serial exhaustive processing SIC function 
is not identically equal to 0 but, rather, is first negative and 
then positive (see Figure 1). Furthermore, the positive area 

Figure 1. The predicted signatures of serial exhaustive (left) and parallel exhaustive (right) processing revealed by systems factorial 
technology analysis. The expected survivor interaction contrast (SIC) as a function of time is presented for each model. The predicted 
factorial interaction on the means (MIC) is boxed inside each figure. Both SIC functions are calculated without an inclusion of a re-
sidual time (processing time that is due to nonsystematic variability—for example, a motor response).
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Materials. The stimuli were letter strings made up of Cyrillic let-
ters. In a visual search task, a target is presented before a set of test 
items, which constitute a test display. The task was to search across 
test items for a target presence. Test items that are not identical to 
a target are called distractors. We manipulated the visual complex-
ity of the stimuli and the degree of visual dissimilarity between the 
target and each of the test items. Note that we use the term dissimi-
larity, rather than similarity, in order to be consistent with previous 
work (Townsend & Fifić, 2004). Table 1 presents examples of actual 
target-absent trials for different levels of item complexity (C 5 1, 
2, 3) and different levels of target-to-test item dissimilarity (HH, HL, 
LH, and LL, where H stands for high dissimilarity and L for low dis-
similarity), in Experiment 1.

We manipulated the visual complexity of the letter-string stimuli 
by varying the number of letters that made up a single item (1, 2, 
or 3). For a given level of complexity, the number of letters in the 
target item was identical to the number of letters in each test item.

To manipulate the degree of visual dissimilarity, we employed 
two sets of letters: letters with curved features (Б, В, З) and letters 
with straight-line features (П, Ш, Н). Note that the items within 
each group were mutually confusable; that is, each of the items was 
relatively similar to other members of its own group but relatively 
dissimilar to members of the other group. We then generated differ-
ent dissimilarity levels by constructing the target and test items from 
letters drawn either from the same group or from different groups. 
In Appendix A we test and demonstrate how this technique directly 
affects the perceptual dissimilarity between items.

To generate the factorial conditions necessary for the MIC and 
SIC architecture tests, we factorially combined the position of the 

compared with a single decision criterion. This idea and 
its name stem from J. Miller’s work on better-than-regular 
parallel processing (e.g., Miller, 1982; for mathematical 
renditions of such processing, see Colonius & Townsend, 
1997; Diederich & Colonius, 1991). Townsend and No-
zawa (1995) proved that a large class of coactive models, 
based on general counting processes (whose individual 
channels do not slow down with increased workload and 
that are summed in a subsequent conduit), inevitably pre-
dict super capacity. In fact, the capacity is sufficiently 
super that Miller’s (1982) well-known inequality must be 
violated. The latter authors also showed that there is a spe-
cial case of coactive models, based on Poisson counting 
channels, that predict SIC curves that are S-shaped like 
exhaustive serial models but whose early negative parts 
are small, in contrast to the serial models.

A rather different variety of nonindependent parallel 
models simply assume that the parallel channels interact 
in a mutually facilitatory manner but still possess decision 
thresholds within each channel (Mordkoff & Yantis, 1991; 
Townsend & Wenger, 2004b). We know that this class of 
models is quite broad, including true coactive models as 
a special case (Colonius & Townsend, 1997). Hence, they 
must be able to predict S-shaped SIC functions with total 
positive area, but we do not know whether this can be ac-
complished in a psychologically interesting way. These 
mutually facilitatory channel models are also capable of 
predicting supercapacity findings (Townsend & Wenger, 
2004b). We shall indicate some recent theoretical results 
with such models in the General Discussion section.

The factorial combination of (item position) 3 (target–
distractor visual dissimilarity) provides for the tests of 
system architecture. When factorial tests are applied, the 
simple, single-stage models predict the shape of the SIC 
function to be consistent with the signature predicted by 
either a serial exhaustive or a parallel exhaustive system 
(Figure 1). The MIC value should, correspondingly, reveal 
either additivity or underadditivity.

A number of alternative varieties of process architec-
ture, including some special simple types of three-stage 
models, are assayed. It turns out that the simplest displays, 
where the stimuli consisted of a single letter (C 5 1), af-
ford what, at first glance, looks like standard serial pro-
cessing. However, when the nonsignificant interaction 
trend in C 5 1 is combined with the intriguing results 
from the more complex conditions (C 5 2, 3), we are 
forced to move to more intricate single-stage models for 
the overall corpus of data. Potentially, some multistage 
models may also account for the data. Naturally, multi-
stage models in general form a huge class of alternatives, 
and it is challenging to pinpoint detailed predictions in the 
general case. Certain natural, if quite simple, special types 
of multistage models can be decisively falsified.

ExPErIMEnT 1

Method
Participants. Four participants, 2 females and 2 males, were paid 

for their participation. All had normal or corrected-to-normal vi-
sion. They were all native speakers of Serbian and familiar with the 
Cyrillic alphabet.

Table 1 
Examples of the Actual Target-Absent Trials  

for Different Item Complexity Levels (C 5 1, 2, 3)  
for Curved and Straight-Line Letters in Experiment 1

 Factorial 
Condition

  
Target

 Test (Display) 
Items

 

C 5 1

LL Б З, В
П Н, П

HL З Ш, В
Н З, П

LH Н П, В
В З, Н

HH Ш В, Б
Б П, Ш

C 5 2

LL БВ БЗ, ВЗ
ПШ ПН, ШП

HL ЗВ ШП, ВЗ
НШ ВЗ, ПН

LH НШ ШП ВЗ 
ЗВ ВЗ, ПН

HH ПШ ВЗ, ВБ
ВБ НП, НШ

C 5 3

LL БВЗ БЗВ, ВЗБ
ПШН ПНШ, ШПН

HL ЗВБ ШПН, ВЗБ
НШП ВЗБ, ПНШ

LH НШП ШПН, ВЗБ
ЗВБ ВЗБ, ПНШ

HH ПШН ВЗБ, ВБЗ
БВЗ НПШ, НШП

Note—The factorial condition indicates the degree of dissimilarity (L for 
low, H for high) between each test item and the target item. For example, 
HL denotes a trial on which the left test item was highly dissimilar to the 
target, whereas the right test item shared low dissimilarity with the target.
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for all the participants. For 3 out of the 4 participants, both 
main effects were significant in the single-letter presenta-
tion, C 5 1 (Participant 1 exhibited a significant main ef-
fect for F2 but not for F1). Next, we will turn to an analysis 
of the results of the mean interaction contrast, MIC, and 
the survivor interaction contrast, SIC.

Mean and survivor interaction contrast functions. 
In Table 2, we present the interaction test on means (MIC) 
for each of the participants for different complexity levels. 
The results are remarkably uniform across participants. 
They all exhibited an overadditive MIC on the higher item 
complexity levels (C 5 2, 3), and all of them, excluding 
Participant 1, exhibited an additive MIC on the lowest level 
of item complexity (C 5 1; stimulus items that were made 
of one letter). Hence, additivity, which is associated with 
a serial exhaustive processing, was manifested by 3 out of 
the 4 participants in the C 5 1 condition. Nonetheless, it 
is important that we note that the tendency of all the par-
ticipants, even those in the C 5 1 condition, was toward 
overadditivity, just not significantly so. Furthermore, it is 
evident that all the participants exhibited less overadditiv-
ity (i.e., smaller MIC values) in the C 5 3 than in the C 5 2 
condition. That is, there is a nonmonotonicity with regard 
to how overadditivity acted as a function of complexity, 
first increasing, and then decreasing, with complexity.

In Figure 2 we present graphically the MIC and SIC 
figures for the individual participants. The SIC functions 
are on the left, and the corresponding MIC figures are 
on the right. As the reader may note, most SIC functions 
exhibit an S-shape, which by itself is associated with se-
rial exhaustive processing.7 However, concurring with 
the ANOVA results, for the C 5 2 and 3 conditions, the 
summed areas of several SIC functions are significantly 
greater than zero, which is, of course, inconsistent with 

test item and its visual dissimilarity to the target item. Four orthogo-
nal conditions were thereby generated; HH, HL, LH, and LL, where 
the position of the letter denotes the position of the relevant test item 
with respect to the fixation point (left or right). So, HL indicates 
that two test items were presented; the left was highly dissimilar to 
the target, whereas the right item possessed low dissimilarity to the 
target. Since we used two sets of letters, curved and straight, the HL 
display may represent a case in which the target and the right test 
item were made of, say, curved letters, whereas the left test item was 
made of straight letters. Alternatively, on HH trials, when the target 
was made of curved letters, both test items were made of straight-
line letters, and vice versa. Observe that in the HH display, the two 
test items would be relatively similar to each other, whereas in the 
HL display, they would be dissimilar to each other (Table 1).

Design and Procedure. The participants were tested individually 
in a dimly lit room. The two test items in the most complex condi-
tion (C 5 3, with the widest stimuli) spanned 5 cm horizontally. At a 
viewing distance of 1.7 m from the computer screen, this width corre-
sponds to a visual angle of 1.86º, well within the fovea. A test display 
was presented until a response was made, and then a new trial began.

Each trial started with a fixation point that appeared for 700 msec 
and a low-pitch warning tone of 1,000 msec, followed by the presen-
tation of the target item for 400 msec. Then a mask was presented 
for 130 msec, followed by two crosshairs that indicated the positions 
of the two upcoming test items. A high-pitch warning tone was then 
played for 700 msec, followed by the presentation of the test items. 
The test display remained on the screen until a response was given.6

Half of the trials were target present, and half were target absent. 
On each trial, the participant had to indicate whether or not the target 
item appeared on the test display by pressing either the left or the 
right mouse key with his/her corresponding index finger. RTs were re-
corded from the onset of the test display, up to the time of the response. 
The participants were asked to respond both quickly and accurately.

Each participant performed on 30 blocks of 128 trials each, each 
block on a different day. The order of trials was randomized within 
blocks. The complexity of the presented items (i.e., the number of 
letters: C 5 1, 2, or 3) was manipulated between blocks, whereas 
factorial combinations (HH, HL, LH, LL) varied within blocks. For 
each participant, the mean RT for each conjunction of item complex-
ity and factorial combination was calculated from approximately 
200 trials. We found this number of trials to be sufficient for testing 
models at the individual-participant level, both for the ANOVA and 
for calculating survivor functions.

results
We analyzed data within individual participants. When 

the results exhibited a uniform pattern across participants, 
we also report group statistics.

We ran a one-way ANOVA on mean RT averaged over 
participants. We used the factor of the item complexity 
level (C 5 1, 2, 3). The main effect of item complexity 
was significant [F(2,6) 5 74.28, p , .01], showing a trend 
of increasing RTs with increasing complexity of the pre-
sented items (mean RTC1 5 576 msec, SE 5 26.37 msec; 
mean RTC2 5 786 msec, SE 5 57.89 msec; mean RTC3 5 
924 msec, SE 5 54.37 msec).

We performed a separate ANOVA for individual par-
ticipants, where F1 was defined as the visual dissimilarity 
between the left test item and the target (high or low). 
F2 was similarly defined for the right test item. Together, 
F1 and F2 yielded four experimental conditions: HH, HL, 
LH, and LL. The F1 3 F2 interaction indicated the signifi-
cance of the observed MIC value.

Both main effects (F1 and F2) were significant at p , 
.01 in the higher item complexity conditions (C 5 2, 3) 

Table 2 
Mean Interaction Contrast (MIC) Analysis of Experiment 1, 

Calculated Separately for Each Level of Item Complexity  
and for Each Participant

 
Participant

  MIC 
(msec)

 
 

 
df 

 
 

 
F

 
 

 
p

 
 

 
Power

C 5 1 (One-Letter Target)

1   241** 1, 558 3.85 .05  .50
2 2 12** 1, 554 1.38 .24  .22
3 2 18** 1, 553 0.97 .32  .17
4 2 16** 1, 558 2.13 .14  .31

C 5 2 (Two-Letter Target)

1 2168** 1, 596 33.92 .00 1.00
2 2133** 1, 593 43.25 .00 1.00
3 2179** 1, 595 65.79 .00 1.00
4 2140** 1, 596 36.20 .00 1.00

C 5 3 (Three-Letter Target)

1 2 64** 1, 594 4.93 .03  .60
2 2 52** 1, 589 3.53 .06  .47
3 2 98** 1, 584 12.56 .00  .94
4 2 96** 1, 590 12.88 .00  .95

Note—The MIC factors were the degree of visual dissimilarity between 
the target item and each of the test items. Since the main effects were 
significant for almost all cases, we present only the interaction contrast 
(but see the text for detailed information). df stands for degrees of free-
dom. *p , .05. **p , .01.
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items in the HH display. In the HL (alternatively, LH) con-
dition, on the other hand, the two test items are highly 
dissimilar to each other.

By increasing the complexity of items (as we increase 
the number of their constituting letters), we generally im-
pair the visual search, but, in the HH and LL conditions, 
this effect may be countered by a relative facilitation due 
to the increased mutual similarity. In popular multistage 
models, this dynamic could be represented in an under-
lying selection process: When (two) distractor items are 
mutually similar, an efficient grouping process that can 
select them on the basis of a common property is acti-
vated. That grouping or scene segmentation process is a 
fast parallel process that is postulated in somewhat differ-
ent ways in several theories: as feature inhibition (Treis-
man & Sato, 1990), as spreading suppression (Duncan & 
Humphreys, 1989), or as a complex network of several 
subnetworks that maintain efficient parsing of the visual 
scene (Grossberg, Mingolla, & Ross, 1994). When such a 
grouping process is deployed, higher efficiency of visual 
search is achieved, and overall mean RTs are shorter. To 
have an intuitive idea of how mutual similarity between 
test items may increase the efficiency of visual search, 
consider again the example provided at the beginning of 
the article: Looking for the familiar face of a friend in 
a crowded café may become much easier if all the other 
patrons are identical siblings.

It is worth noting that we observed the mean overaddi-
tivity in the more complex conditions (C 5 2, 3) in an 
unpublished experiment that comprised several hundred 
trials per condition. The C 5 1 condition offered ambigu-
ous results and prompted the full-scale study presented 
here. In the C . 1 conditions, as in the present work, we 
consistently observed S-shaped SIC functions with a posi-
tive part larger then the negative one for different dura-
tions of display: from a limited duration of 300 msec to an 
“unlimited” duration (where the test items are displayed 
until a response is given). Although it could be expected 
that presenting a display for an unlimited duration would 
encourage serial processing (McElree & Carrasco, 1999; 
Zelinsky & Shein berg, 1997), the overadditive S-shaped 
SIC function—not predicted by serial processing—was 
consistently evident in both viewing conditions, limited 
and unlimited.

Previous visual search experiments conducted in our 
lab have yielded consistent evidence for parallelism. Per-
haps the most obvious difference, apart from use of D–D 
similarity, in the present study was the employment of 
linguistic or alphabetic-related stimuli, as opposed to the 
nonalphabetic stimuli (dots, faces, etc.) employed in pre-
vious experiments. Experiment 2 was designed to investi-
gate whether the overadditivity combined with S-shaped 
SIC curves could be associated with letter stimulus items, 
as opposed to our usual pictorial stimulus patterns—for 
instance, via reading habits. We therefore used meaning-
less visual patterns instead of letters in the next experi-
ment. We employed only the single-item complexity level 
(C 5 1), since it was the only condition so far to engage 
anything close to pure serial processing.

serial exhaustive processing. We will discuss this finding 
in the next section. As has been noted, a single exception 
is the data of Participant 1 from the C 5 1 condition, who 
showed mainly a negative SIC (and demonstrated a con-
sequent negative MIC value; see Table 2 and Figure 2), 
which is consistent with parallel exhaustive processing. 
However, this atypical result is disputable, given that one 
of the main effects (F1) did not reach significance.8

Error analysis. The mean error level for target-absent 
trials, averaged across all participants, was 1.1%. No 
speed–accuracy trade-off was observed: Both mean RTs 
and mean errors increased across item complexity.

Discussion
The participants exhibited longer RTs when moving 

from item complexity C 5 1 to more complex displays, 
C 5 2 and C 5 3. Both MIC and SIC patterns were con-
sistent across participants. The SIC functions in the C 5 2 
and C 5 3 conditions generally revealed an S-shape that 
roughly resembles the signature of serial exhaustive pro-
cessing, and the C 5 1 condition could be taken as in-
dicative of serial processing, given that the MIC is non-
significant. However, the positive portion of the curve was 
typically much larger than the negative portion for C . 1. 
Taken together with the nonsignificant trend in C 5 1, the 
results suggest that overadditivity, not additivity or under-
additivity (as in parallel exhaustive processing), was the 
modal characteristic of processing in this study.9

Furthermore, MIC increased from C 5 1 to C 5 2 and 
decreased from C 5 2 to C 5 3. However, it was still sig-
nificant for most of the C 5 3 participants. Does the shift 
from additive to overadditive MIC, as we vary the com-
plexity of the visual display, indicate a qualitative change 
in the architecture (from serial to parallel)? To acquire 
an even more accurate answer, we conducted additional 
analyses on the trends of mean RTs over different item 
complexity levels, for distinct factorial conditions (see 
Appendix B for details).

These additional analyses revealed that RTs on different 
factorial conditions (HH, HL, LH, and LL) changed dif-
ferently as a function of item complexity. RTs on LL and 
HH conditions increased in a concave down (negatively 
accelerated) fashion when item complexity was increased, 
whereas RTs on HL and LH conditions increased linearly. 
This differential change, as we increase the complexity 
of the presented items, leads to a change from additive 
to highly overadditive to low overadditive MIC that does 
not necessarily reflect a real change in the processing 
architecture.

One account of why the effect of item complexity on 
processing in the LL and HH conditions departs from its 
effect in the HL and LH conditions (in fact, on the overall 
mean RT patterns) is that, in accordance with Duncan and 
Humphreys (1989), visual search latencies are affected 
both by the target-to-distractor dissimilarity (i.e., the dis-
similarity between the target and each of the test items, 
denoted earlier as T–D) and by the mutual similarity of 
distractors (denoted D–D). The two test items in the LL 
display are highly similar to each other, as are the test 
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Figure 2. Systems factorial technology analysis of the data from Experiment 1 (only for the target-absent 
trials). The survivor interaction contrast (SIC) and the mean interaction contrast (MIC) are presented 
from left to right. Error bars around each mean represent the standard error statistic. Different partici-
pants are presented in different rows, and the figures are sorted by the item complexity level (C 5 1, 2, 3).
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Figure 2 (continued).
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Experiment 2 assessed the hypothesis that relatively 
simple and nonlinguistic stimulus patterns would elicit 
pure seriality, as would be evidenced by MIC 5 0. This 
expectation was not fulfilled. The results from Experi-
ment 2 demonstrated that the overadditivity found in Ex-
periment 1, and in unpublished experiments, likely was 
not caused by the linguistic nature of letter stimuli (for 
instance, by way of special “reading” subprocesses) or 
simply by the extra complexity associated with C 5 2 or 
C 5 3 versus C 5 1.

GEnErAL DISCuSSIon AnD InTErIM 
ThEorETICAL ConCLuSIonS

The general goal of the present study was to further ex-
plore the type of architectures that are involved in various 
kinds of visual search, using SFT. Many studies in the vi-
sual search literature have argued for a serial process that 
is engaged somewhere in the visual system. Contempo-
rary renditions on this theme often argue for a multistage 
model, containing an early parallel feature map, followed 
by a transport of complex and feature-conjoined stimuli 
(Treisman & Sato, 1990; Wolfe, 1994) to a subsequent 
third serial stage. Aware of the mimicking problem be-
tween parallel and serial architectures when RT increases 
with workload, some of those studies have postulated se-
riality simply as a convention.

We shall consider a small set of such models as candi-
dates for our data below.

Yet, a number of studies using SFT over the past 
decade or so have shown that (at least for a small dis-
play size) manipulations of magnitude factors, such as 
clarity and brightness, provide unequivocal support for 
parallelism with stimuli as simple as dots and as com-
plex as facial photographs (e.g., Hughes & Townsend, 
1998; Townsend & Nozawa, 1995; Wenger & Townsend, 
2001). Considering the complexity of the human neural 
and information-processing systems, it would be re-
markable if every kind of search turned out to be more 
or less identical. Indeed, recent experiments in short-
term memory search, which may have engaged verbal/
phonemic facets, have revealed individual differences, 
with certain conditions and individuals evincing persua-
sive evidence for seriality, others for parallelism even 
when only two items are contained in the memory set 
(Townsend & Fifić, 2004).

Apart from the obvious experimental distinction be-
tween memory and visual search, the Townsend and Fifić 
(2004) memory search task employed T–D similarity as 
the architecture-detecting factor, a rather different ma-
nipulation from the variation of intensity or clarity that 
has commonly been used in visual search studies in which 
uniform support for parallelism has been found. Hence, it 
was desirable to investigate this novel factor within a vi-
sual, rather than a memory, search paradigm. In addition, 
with the exception of the recent Wenger and Townsend 
(2006) study, quasilinguistic stimuli have not been exam-
ined within our approach, and the latter experiments fo-
cused on workload and redundant signals manipulations 
(as did Thornton & Gilden, 2007), rather than a selective 

ExPErIMEnT 2

Method
Participants. Four participants, 3 females and 1 male, were paid 

for their participation. All had normal or corrected-to- normal vision. 
The experiment was carried out at Indiana University, Bloomington.

Materials and Design. As stimuli, we used meaningless visual 
patterns taken from Microsoft’s Windows standard fonts. The design 
was identical to that in the previous experiment, except that we used 
only the simplest level of item complexity, C 5 1. Each participant 
performed in 10 blocks of 128 trials. Actual trials (i.e., target and test 
items) for each factorial condition are presented in Table 3.

results
We analyzed only the data from target-absent trials, for 

each participant, as noted, for a single-item complexity 
level (C 5 1). We used the following ANOVA design: F1 
(low or high) 3 F2 (low or high). The interaction of inter-
est (MIC) and the main effects (F1 and F2) were defined in 
the same way as in the previous experiment. All the main 
effects were significant at p , .01. Table 4 reveals uniform 
results across participants: All of them exhibited overaddi-
tivity, as is evident from the positive values of the MIC, 
although for 2 of the participants, it was not statistically 
significant, as in the C 5 1 condition in Experiment 1.

Mean and survivor interaction contrast functions. 
In Figure 3, we present graphically the MIC and SIC 
figures for the individual participants. The SIC func-
tions are presented on the left, and the corresponding 
MIC figures are on the right. All SIC functions exhibit 
the now- familiar S-shape, with the positive area being 
greater than the negative area.

Error analysis. The mean error rate for the target- absent 
trials was 2%. Participant 2 had 3.2% errors, whereas Par-
ticipant 1 exhibited the lowest error rate, with 1.2%.

Discussion
All the participants exhibited S-shaped SIC func-

tions. Two of the participants in Experiment 2 exhibited 
overadditive MIC, which is consistent with the MIC val-
ues observed in the higher complexity conditions (C 5 2 
and C 5 3) in Experiment 1. The 2 other participants 
demonstrated positive yet nonsignificant MIC values, as 
in the nonsignificant trend in the C 5 1 condition for the 
first experiment.

Table 3 
Actual Trials in Experiment 2 

for Different Factorial Conditions

 Factorial 
Condition

  
Target

 Test (Display) 
Items

 

C 5 1

LL  , 


, 
HL  , 

 , 
LH  , 


, 

HH  , 
 , 

Note—Meaningless visual patterns were presented rather than letters, 
and only the simplest level of item complexity, C 5 1, was used. As in 
Experiment 1, we were interested in the target-absent trials.
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Figure 3. Systems factorial technology analysis of the data from Experiment 2 (only for the target-absent 
trials). The survivor interaction contrast (SIC) and the mean interaction contrast (MIC) are presented 
from left to right. Errors bars around each mean represent the standard error statistic. Different partici-
pants are presented in different rows.
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tive areas, suggesting that something other than pure se-
rial or parallel processing was taking place. And the MIC 
statistics indicated significant (positive) interactions.

An additional important finding in Experiment 1 was 
the dissociation between the effect of item complexity 
on mean RTs and on the architecture signature revealed 
by the SFT test. Mean RTs exhibited a monotonic in-
crease with increments of item complexity. MIC values, 
on the other hand, increased substantially when com-
plexity changed from C 5 1 to C 5 2 but then decreased 
a bit in C 5 3. Additional analysis (Appendix B) dem-
onstrated that the decrease in MIC value, from C 5 2 to 
C 5 3, was due to the fact that the HL and LH mean RTs 
increased linearly as complexity increased, whereas the 
HH and LL mean RTs increased in a concave-down (i.e., 
negatively accelerated) fashion.

Experiment 2, designed to test whether the overadditiv-
ity in Experiment 1 was due to the use of unpronounce-
able letter strings, used only C 5 1 and nonsense patterns. 
Overadditivity reappeared decisively.

Two immediate interim conclusions can be drawn from 
these experiments. (1) Neither quasilinguistic structure nor 
a kind of complexity based on more than one feature (let-
ter) per item is required to produce overadditivity in MIC 
and SIC data. (2) The remaining aspect that distinguishes 
the present design from the designs in our previous experi-
ments is the use of T–D similarity as a selective influence 
factor. As Duncan and Humphreys (1989) demonstrated, 
within-search-set-similarity of distractors (D–D similar-
ity) can play a powerful role over and above that of  T–D 
similarity. It appears that this facet modulated the degree of 
overadditivity we found as a function of complexity.

The remaining important issue concerns the operative 
architecture that produced the unique SIC signature and 
the resultant MIC overadditivity. Although the present ex-
periments do not permit final settlement of this question, 
it is possible to test certain natural alternatives.

Falsified Models
On the basis of the results presented so far, several 

models can be rejected: (1) models based on mixtures of 
serial and parallel processing, and (2) a number of simple, 
three-stage models.

Mixtures of parallel and serial processing. A mix-
ture of serial and parallel processing seems like a natural 
class of alternative models that could be used to explain 
our data. That is, perhaps, on some trials, processing is 
serial and on others it is parallel. However, simple mix-
tures of serial and parallel processing cannot predict the 
overadditive MIC with S-shaped SIC function that was 
observed in our data.

The predicted MIC value for a serial exhaustive ar-
chitecture is zero, and a parallel exhaustive architecture 
should yield a negative MIC (Townsend & Nozawa, 
1995). Thus, the MIC for a probability mixture of serial 
and parallel processes, which is a linear combination of 
the two components, cannot exceed zero. Clearly, it can-
not account for the positive MIC observed in our data.

The only way that a mixture model could predict the 
obtained data would be to assume that the probability 

influence factorial design, as was the case here. The latter 
type of manipulation most directly measures capacity, but 
since the effects of increased workload vary with archi-
tecture, consistent findings across conditions can allow 
reasonably strong inferences concerning architecture. 
Wenger and Townsend’s (2006) study showed broad sup-
port for parallel process in both words and faces, as well as 
unorganized letter strings and scrambled facial features. 
The Thornton and Gilden (2007) investigation, employing 
a wide variety of visual stimuli, obtained considerable evi-
dence of parallel processing but also unearthed conditions 
in which serial processing was supported. In the present 
work, we wished to learn whether presenting letters versus 
nonletters would affect the processing mode in a visual 
search task under selective influence treatment. Finally, it 
was deemed important to assay how varying complexity 
might affect the identified architecture.

Within the SFT setting, we employed systems factorial 
tests at the distributional level, which are more powerful 
and detailed with regard to processing characteristics than 
the standard test of means (Townsend & Nozawa, 1988, 
1995). We analyzed only responses on target-absent tri-
als on which participants had to use an exhaustive stop-
ping rule: In order to correctly reject two test items that 
were not the target item, both items had to be searched. 
Given an exhaustive stopping rule, the two main candidate 
architectures were the serial exhaustive and the parallel 
exhaustive models, which possess unique signatures. In 
serial exhaustive processing, MIC is predicted to be zero, 
and the SIC functions are S-shaped, with the negative area 
coming first and equal in size to the subsequently appear-
ing positive area. In parallel exhaustive processing, the 
MIC is less than zero, and the SIC functions are predicted 
to be entirely less than zero (see Figure 1).

The participants in Experiment 1 were tested in sev-
eral blocked item complexity conditions (item complex-
ity refers to the number of letters in each item: one, two, 
or three). Overall, as complexity increased, responses 
were slower. Furthermore, almost all of the participants, 
in both experiments and across different conditions, ex-
hibited an S-shaped SIC function, which is qualitatively 
similar to the signature of serial exhaustive processing. 
And the negative areas appeared first in time, just as was 
expected. Indeed, the MIC values were essentially zero in 
C 5 1 conditions, as serial processing predicts. Nonethe-
less, the (C 5 1) data indicated a trend toward overadditiv-
ity, although none of the participants exhibited statistical 
significance. When C . 1, the S-shaped SIC functions 
repeatedly exhibited positive areas greater than the nega-

Table 4 
Mean Interaction Contrast (MIC) Analysis of Experiment 2, 

Calculated Separately for Each Participant

 
Participant

 MIC 
(msec)

  
df

  
F

  
p

  
Power

1 49* 1, 550 2.59 .11 .36
2 70* 1, 539 6.39 .01 .71
3 18* 1, 547 2.13 .15 .31
4 22* 1, 550 4.32 .04 .55

Note—df stands for degrees of freedom. *p , .05. **p , .01.
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in which at least some HH and LL trials proceed all the 
way to Stage 3. Now, HL and LH trials tend to increase 
the durations associated with those trial types, moving 
them dramatically toward the LL data. HH trials add a 
little but not much extra processing time. LL trials add a 
moderate amount of processing time because of Stage 2 
activities. Thus, the increase in the absolute value of the 
negative components of the MIC (namely, LH and HL) 
overshadows the increase of the positive components 
(HH and LL). This eventuates in a negative MIC, con-
trary to the data.

If processing is parallel in Stage 3, similar logic indi-
cates an increase in the negativity of the predicted MIC, 
leaving the overall qualitative form of the prediction in 
league with ordinary parallel exhaustive processing, but 
in striking disagreement with our data.

In the special case that (only) HH stimuli never make 
it to Stage 3, the tendency is toward a larger negativity of 
MIC, and the same is true if LL stimuli are excluded from 
Stage 3 processing. Thus, all these fairly simple versions 
of three-stage models predict a negativity of MIC, con-
spicuously out of sync with the data.

To be sure, we have developed models of the pres-
ent kind that can predict our basic qualitative results if 
the postulate that HH and LL durations in Stage 2 are 
shorter than HL and LH durations (following Duncan 
& Humphreys, 1989) is thrown out. This seems to be 
too heavy a theoretical price to pay, relative to the em-
pirical support in favor of the Duncan and Humphreys 
hypothesis, and we will not proceed further with such 
models here.

Premature termination in target-absent trials. Re-
cently, Cousineau and Shiffrin (2004) reported that on 
very difficult target-absent trials, participants did not 
exhaustively search a displayed set of items. Rather, on 
a small proportion of trials, they prematurely terminated 
the visual search on the first completed item and then 
guessed the second item. In the present study, we em-
ployed both simple (C 5 1) and complex (C 5 2, 3) 
items. Premature termination of an exhaustive search 
can potentially account for the transition from a roughly 
additive MIC for the C 5 1 items (indicating a serial 
exhaustive architecture) to an overadditive MIC for the 
C 5 2 or C 5 3 items, which cannot be accounted for 
by an exhaustive architecture, either serial or parallel. 
We explored the possibility of premature termination on 
complex target-absent trials by simulating both serial 
and parallel exhaustive architectures (Appendix C). The 
results of these simulations showed that prematurely ter-
minated visual search cannot produce overadditive MIC 
or positive SIC functions.

Finally, before moving on to provisionally acceptable 
single-stage models, we note that S-shaped SIC func-
tions can also be captured by more complex architectures 
compounded of several parallel and serial subsystems 
(e.g., Schweickert et al., 2000). However, they do not 
seem especially plausible here, since it would not be ob-
vious how to justify the complicated architecture in the 
present circumstances.

mixture of serial and parallel architectures changes 
across the various factorial conditions. In other words, 
we would have to posit that, when both channels process 
the high level (HH), processing is parallel; when both 
channels process the low level (LL), processing is serial; 
and when they process mixed stimuli (LH), processing 
is serial on half the trials. Our simulations showed that 
even then, this model can account for the data only when 
serial and parallel processes use different parameters 
for different factorial conditions. Thus, mixture models 
of parallel and serial processing are either falsified or 
decidedly nonparsimonious.

Three-stage models. Recall that a number of promi-
nent models in visual search are based on the idea that in 
extremely simple visual search tasks, processing begins 
with an early and highly efficient type of parallel pro-
cessing. The exact stochastic nature of this stage is not 
typically specified, but with, say (e.g., in Duncan & Hum-
phreys [1989] terms), high T–D dissimilarity and high 
D–D similarity, processing can cease and a decision and 
response be made. As processing becomes increasingly 
challenging, at some point, there is a transition to a less 
efficient serial processing, perhaps in a subsequent stage, 
and perhaps after an intervening process that selects the 
“difficult” items for further examination.

Multistage models can be quite complex, and in the 
present circumstance, some combination of assumptions 
about processing in the three stages might be able to en-
compass our results. Yet some relatively natural, if simple, 
alternatives among this collection are incapable of pre-
dicting the qualitative form of the data.

We will assume that the first highly efficient parallel 
stage is unaffected by the selective factor, T–D similarity. 
In Stage 2, if any effect is had on the task of selection for 
further processing, it is reasonable to assume that the HH 
and LL items are handled relatively speedily, due to their 
high D–D similarity, whereas HL and LH stimulus sets 
should be processed more slowly.

Now, since selection is proceeding in Stage 2, there 
must be trials on which not all of the stimuli are forwarded 
for more scrutiny. We shall assume that HH stimuli are the 
most likely to be excluded from further processing, since 
in the Duncan and Humphreys (1989) terms, they pos-
sess high D–D similarity, as well as low T–D similarity. 
Perhaps LL stimuli could also be culled out, but their high 
T–D similarity could make this event less likely. We shall 
assume that HL and LH stimuli always must be submit-
ted to actual comparison in Stage 3. It also seems realis-
tic, under the assumptions above, to conjecture that RTs 
for the factorial conditions be ordered as follows: HH , 
LL , HL  LH, for this selection stage.

What happens at Stage 3, the actual comparison 
stage? Here, it seems reasonable to simply enact one 
of the standard architectures, such as serial or parallel 
processing. Suppose processing is serial in Stage 3, so 
that the overall MIC prediction there is 0 if the other 
stages are precluded from consideration. What is the 
effect of processing time manipulation, due to the selec-
tive factor, in Stage 2? Assume first a nonextreme case 
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We have shown that both direct and indirect nonselective 
influence parallel models can predict positive MIC func-
tions and the proper S-shaped SIC functions. For instance, 
Townsend and Nozawa (1995) demonstrated that coactive 
parallel models based on Poisson processes (thus, each Pois-
son channel feeds its output into a common final channel) 
inevitably predict a small negative blip, followed by a large 
positive section of the SIC curve. Fifić (2006) investigated a 
parallel direct nonselective influence model. It was assumed 
that each channel possessed a rate that was the product of its 
“original” rate times the rate of the other channel.

Subsequently, we have been exploring other (indirect 
nonselective influence) interactive parallel models based 
on mutual channel facilitation. The full, sophisticated ver-
sion of mutual facilitation models is based on the paral-
lel Poisson counters of Townsend and Ashby (1983; see 
also Smith & Van Zandt, 2000). In fact, the independent 
version of the model is basically identical to the earlier 
specification. In order to produce positive interactions, it 
is supposed that some of the counts on one channel can 
be shared with the other channel with some probability. A 
full exposition of such models will appear elsewhere. For 
present purposes, we outline the discrete-time analogue 
of those models, which can be understood intuitively and 
which predicts the same qualitative results.

Consider first two parallel and independent channels, 
with no cross-channel interaction (hence, q 5 0). Suppose 
that a count can occur on each channel with some proba-
bility—say, p 5 .5. The system starts with zero counts, so 
the initial state of the channels is [0, 0]. Suppose that on 
the first step, a count occurs on each of the channels, so 
that the updated state after one step is [1, 1]. Then, on the 
second iteration, a count occurs on the first channel but 
not on the second, so the state is [2, 1], and so forth. When 
both values reach the criterion c, processing terminates. 
The overall processing time for this simulated trial is then 
given by the total number of iterations (times a fixed con-
stant that stands for the duration of each iteration).

To model the cross-channel interaction, we allowed 
each channel to add, on each step, its count to the other 
channel with a probability of q. So, in the facilitatory 
model, whenever a count occurs on one of the channels, it 
is also sent to the other channel with probability q. Con-

Provisional Single-Stage Candidate Models
As was noted earlier, our visual search research with 

small set sizes has repeatedly shown strong evidence for 
parallel processing with an appropriate decisional- stopping 
rule. Such models are typically based on stochastically in-
dependent parallel channels, with separate detections made 
on the distinct channels. Yet, in addition to memory search, 
where serial processing sometimes occurs (Townsend & 
Fifić, 2004), there are experimental venues in sensory and 
perceptual science where cross-channel interactions seem 
to be called for. Such interactions can readily defeat true 
factor-selective influence and radically alter the MIC and/
or SIC predictions (e.g., Dzhafarov, 1997; Townsend & 
Thomas, 1994; Townsend, 1984).

Such interactive parallel models are worthy contend-
ers in cross-modality interactions in which performance 
in, say, redundant targets designs can far exceed ordinary 
parallel processing (e.g., Miller, 1982; Mordkoff & Yantis, 
1991), thus implicating workload capacity as an important 
theoretical variable (Townsend & Ashby, 1978). Our ini-
tial formulation of processing characteristics for config-
ural and gestalt perception of holistic figures is based on 
positively facilitatory parallel channels (e.g., Fifić, 2006; 
Townsend & Nozawa, 1988, 1995; Townsend & Wenger, 
2004b; Wenger & Townsend, 2001; see Figure 4A). We 
shall focus the present discussion on this broad type of 
parallel system.

There are two major types of nonselective influences 
across channels. One is called indirect nonselective influ-
ence (e.g., Townsend, 1984; Townsend & Thomas, 1994), 
since it arises due to stochastic dependencies (e.g., posi-
tive correlations) among the channels. For instance, sup-
pose that Channel 2 feeds all or part of its output into some 
location on Channel 1 and vice versa. Then the factor that 
directly affects Channel 2, say X2, will indirectly affect 
Channel 1: If an increase in X2 speeds up activation in 
Channel 2, it will indirectly also do so in Channel 1.

An extreme version of indirect nonselective influence 
is found when both channels feed into a final channel 
where the overall pooled activation can be compared with 
a single decision criterion. Note that separate channel de-
tections can no longer occur in such a model. This is the 
kind of model we previewed earlier, known as coactive 
parallel processing (Figure 4B). The term coactive was 
first used qualitatively by Miller (1982) to capture “better-
than-ordinary-parallel” perceptual data and was later used 
as a name for mathematical instantiations of the above 
pooling-into-a-single-channel type of model. A parallel 
model with (or without) channel interactions but with de-
tections made in each channel (i.e., not coactive) can be 
called a separate decisions parallel model.

Another type of factor contamination can occur via 
so-called direct nonselective influence (e.g., Townsend & 
Thomas, 1994). The name comes from the fact that here, 
the experimental factors act directly on the separate chan-
nels. Hence, instead of, say, activation on Channel 1 being 
a function of activation on Channel 2 and, therefore, indi-
rectly a function of X2, a parameter governing the rate of 
activation on Channel 1 may itself also be a function of a 
parameter associated with Channel 2.

1Input

2Input

Response

1Input

2Input

Decision
AND

Response

A

B

Figure 4: Schematics of parallel interactive channel (A) and co-
active processing (B) architectures. note that the coactive archi-
tecture pools both sources of information into a single channel.
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were falsified on the basis of major departures from the 
data. Finally, a promising class of parallel models that as-
sume either positive channel interactions or coactive pool-
ing of activation predict the main qualitative features of 
the data. Such interactions may be plausible in the context 
of linguistic-like stimulus patterns, as has been suggested 
for other configural objects (e.g., Wenger & Townsend, 
2001). Naturally, we must finish with the standard caveat 
that considerably more work will be required to put this 
inference to the test.
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sider, then, a facilitatory model in which the probability 
of cross-channel interaction is q 5 1. Then, each count 
on a given channel is also sent to the other channel. We 
start again with [0, 0]. On the first step, a count occurs 
on each of the channels and, at the same time, is sent to 
the opposite channel, so the system’s state after one step 
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the channels are perfectly correlated and will terminate 
processing at the same time. Such a model is mathemati-
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channel counts are positively, but partially, correlated.
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mulating a count on the H condition was set to be higher 
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The leftmost panel corresponds to a zero interaction case 
(thus, it is really a parallel independent model). Clearly 
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Figure 5. Simulation results of a parallel facilitatory model. The survivor interaction contrast function, SIC(t), starts negative when 
interaction is set to zero (leftmost panel) and then gradually turns positive as we increase the degree of cross-channel interaction (mov-
ing from left to right), until the positive area exceeds the area of the negative part (rightmost panel).
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the target items too briefly may, in some cases, prevent participants from 
perceiving them correctly.

7. Henceforth, we will use the term S-shape as shorthand to indicate 
an S-shaped function that qualitatively resembles the function depicted 
in Figure 1 for the serial exhaustive SIC. It has approximately the shape 
of the letter S rotated 90º clockwise, so that the line starts at zero, turns 
negative and then turns up, crosses the abscissa, and becomes positive, 
until it finally goes down again and stops at zero.

8. Note that according to SFT assumptions, the interaction test on means 
(MIC) is valid only if the main effects of both factors are significant. In a 
nutshell, this is the required condition that indicates that the difference be-
tween, for example, high item dissimilarity and low item dissimilarity did 
not produce a significant perceptual effect and/or that something is wrong 
with the ordering of means and survivor functions for factorial conditions, 
so that following does not hold: Sll(t) . Slh(t), Shl(t) . Shh(t).

9. Even though the experiments require exhaustive processing of all 
the items on nontarget trials, it will be seen that due to the stimulus 
construction, it was often possible for the participants to terminate on 
an item, without processing all of the constituent letters. For instance, 
when C 5 3, two of the letters might match the target and even be in the 
correct position, but one could be a distractor or a feature that was shared 
with the target but in the incorrect position. In any such cases, the par-
ticipant’s search process, whether serial, parallel, or hybrid, could cease 
as soon as that distractor was completed. However, as long as the search 
process always used the same stopping rule on items within a condition, 
a natural assumption of parsimony, all the predictions made by any of 
our models are in force.

istics, such as parallel versus serial processing, are surely to be sought 
(e.g., Townsend & Wenger, 2004a).

4. The manipulation of similarity between the target item and the 
distractor item is problematic for target-present trials, since the target 
is always one of the two items in the display and its similarity to that 
identical item is fixed. Consequently, one cannot factorially manipulate 
the degree of (dis)similarity (H or L) and the position of the display item 
(left or right).

5. When SIC is integrated from zero to infinity, it is known to yield 
the MIC (e.g., Townsend & Nozawa, 1995). In fact, the exact value of 
the MIC is equal to the area of the SIC function. The importance of 
using the SIC function, rather than the MIC, becomes apparent when we 
examine predictions of certain models of interest: Several models share 
similar MIC predictions yet can be distinguished by considering the full 
distributions of the respective RTs (represented by the SIC function), 
and not just their means. For instance, both minimum-time serial (se-
rial processing that terminates on the completion of a fastest stage) and 
exhaustive serial models predict additivity (i.e., MIC 5 0) but differ in 
their predictions with respect to the shape of the SIC. Similarly, coactive 
and minimum-time parallel models share a similar MIC prediction but 
differ in their SIC signatures.

6. We did not limit the duration of the test items’ presentation because 
previous studies have shown that putting such a constraint (300 msec) 
on three-letter displays, C 5 3, yielded an unequal distribution of errors 
across different factorial conditions. For some participants, the mean 
error rate for the LL condition was up to 20%, whereas the error rates for 
the HH, LH, and HL conditions were all below 5%. Evidently, presenting 

(Continued on next page)
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APPEnDIx A

In the present study, the stimuli were Cyrillic letter strings. We manipulated the visual dissimilarity between 
target and test items (and between one test item and others) by constructing them from letters that were drawn 
either from the same set or from different sets. Target and test items that comprised letters drawn from the same 
set (say, only curved or only straight-line letters) were considered to have a low visual dissimilarity (for example: 
Б and В or П and Ш for C 5 1; БВ and ВЗ or ШП and НП for C 5 2; etc.). If, however, the target item was 
made of, say, curved letters, and the test items were made of straight-line letters (or vice versa), perceptual dis-
crimination became relatively easy, and they were considered to be highly dissimilar to each other (e.g., Б and 
П or П and З, for C 5 1; БВ and НП or ШП and ВЗ for C 5 2; etc.).

We conducted an auxiliary experiment aimed at exploring the effects of visual dissimilarity (high or low) on 
response latencies across different complexity levels and to validate our dissimilarity manipulation. The setup 
was identical to that in the visual search experiments, except that the task was to determine whether two simul-
taneously presented letter strings were identical or different from one another (same–different task). As in the 
visual search task employed in Experiments 1 and 2, we analyzed different responses only. We hypothesized that 
the response latencies for items with low dissimilarity would be longer than the response latencies for highly 
dissimilar items.

Five participants, proficient readers of the Cyrillic alphabet, were presented with two letter strings on a trial 
and were then asked to indicate (quickly and accurately), by pressing one of two predesignated keys, whether 
those items were identical to each other or not. Their averaged results, for different response only, are presented 
in the Figure A1.

The results presented in Figure A1 support our hypothesis and confirm our choice of different letter sets 
(curved-line vs. straight-line letters) as a valid manipulation of item dissimilarity. A 2 (high dissimilarity or low 
dissimilarity) 3 3 (complexity level 1, 2, or 3) repeated measures ANOVA revealed a significant main effect 
for item dissimilarity: Mean RTs in the low-dissimilarity condition (M 5 860 msec, SD 5 19 msec) were sig-
nificantly longer than mean RTs in the high-dissimilarity condition (M 5 624 msec, SD 5 33 msec) [F(1,8) 5 
66.32, p , .01]. In fact, this ordering (slower responses on low dissimilarity trials) was observed for each level 
of item complexity.

To conclude, mean latencies for different responses for stimulus items that were made up of letters from the 
same letter set (i.e., both items were made of curved letters, or both items were made of straight-line letters) 
were longer than response latencies on trials on which the stimulus items were made of letters drawn from dif-
ferent sets (i.e., one item from curved letters, the other from straight-line letters). Hence, the low-dissimilarity 
experimental condition employed stimuli that were more difficult to tell apart and, therefore, were perceptually 
less dissimilar to each other. Consequently, these results support using the manipulation of letters from the same 
set versus letters from different sets as a valid manipulation of item dissimilarity.
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Figure A1. Mean response times (rTs) for responding different to 
items that shared either low or high visual dissimilarity, as a func-
tion of item complexity. The vertical lines represent error bars.
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APPEnDIx B

In Experiment 1, mean RTs showed a monotonic increase as a function of item complexity. Increasing the 
complexity of the displayed items by constructing them from more letters resulted in slower responses. In 
contrast, MIC values did not exhibit a monotonic change, as predicted by simple simulations of  known archi-
tectures. They increased when moving from the C 5 1 to the C 5 2 item complexity level but decreased when 
moving from C 5 2 to C 5 3, for all participants.

The goal of this analysis is to investigate how mean RTs for each factorial condition (HH, HL, LH, and LL) 
change across different levels of item complexity. Under the provisional null hypothesis, mean RTs should fol-
low the same trend (say, linear or quadratic) as a function of item complexity for different factorial conditions. 
In other words, manipulating the complexity level should affect each factorial condition in the same way, given 
the assumption that the same architecture is engaged in all factorial conditions (HH, HL, LH, and LL).

To test this hypothesis, we conducted a linear regression analysis on mean RTs as a function of item complex-
ity (for the different factorial conditions) for each individual participant, and an additional test with mean RTs 
averaged over participants. In Figure B1A, we can see that, when averaged across participants, mean RTs in HH 
and LL conditions increase in a decreasing rate as a function of item complexity, whereas the increase in HL and 
LH conditions is roughly linear. When a linear regression analysis was performed separately on each individual 
participant (Figure B1B), a similar pattern was obtained.

Table B1 presents the goodness-of-fit results for the individual analysis, with the averaged r2 for different 
factorial conditions in the bottom row. The proportion of explained variability (r2) is taken as an index of good-
ness of fit of a linear trend. The two lowest r2 scores were obtained for the HH and LL conditions, suggesting, 
again, that the increase in mean RTs as a function of complexity was less linear on those trials than it was on 
HL and LH trials.

In our experiments, HH and LL displays differed from HL and LH trials in the mutual similarity between test 
items: HH displays (alternatively, LL) consisted of two items that were highly similar to each other, whereas the 
two items presented on HL (LH) trials were dissimilar to each other. Our results and analyses therefore suggest 
that the mutual similarity between the two test items may interact with the complexity of the items and that this 
interaction may, in turn, account for the nonmonotonic pattern observed in the MIC values as a function of item 
complexity. The mechanism underlying this interaction is yet unclear.

Table B1 
A Linear regression Analysis of Mean response Times As 

a Function of Item Complexity (C 5 1, 2, or 3) for Different 
Factorial Conditions (hh, Lh, hL, and LL) in Experiment 1

Factorial Condition

 Participant  LL  LH  HL  HH  

1 .94 1.00 .99 .73
2 .99 .99 .99 .56
3 .99 .97 .96 .64
4 .98 1.00 1.00 .52

 Average .98 .99 0.98 .61

Note—Goodness-of-fit (r2) values are presented for each individual 
participant and averaged across participants (bottom row). H, high dis-
similarity; L, low dissimilarity.

(Continued on next page)



602    FiFić, Townsend, and eidels

r2 = .98

r2 = .99
r2 = 1.00

r2 = .90

B Participant 1

Item Complexity

RT

400

600

800

1,000

1,200

1,400

LL
HH
LH
HL

0 1 2 3

Participant 2

Item Complexity

RT

400

600

800

1,000

1,200

1,400

LL
HH
LH
HL

0 1 2 3

Participant 3

Item Complexity

RT

400

600

800

1,000

1,200

1,400

LL
HH
LH
HL

0 1 2 3

Participant 4

Item Complexity

RT

400

600

800

1,000

1,200

1,600

1,400
LL
HH
LH
HL

0 1 2 3

A

Item Complexity

RT

400

600

800

1,000

1,200

1,400

LL
HH
LH
HL

0 1 2 3

Figure B1. A linear regression on mean response times (rTs, in milliseconds) as a function of the item complexity (C 5 
1, 2, or 3) for different factorial conditions (LL, Lh, hL, and hh), in Experiment 1. Panel A presents averaged data 
(across all 4 participants), and panel B presents the individual data. Goodness-of-fit results (r2) for the averaged data are 
presented on the right side of panel A; the individual results are presented separately in Table B1. Error bars indicate 
standard mean errors.
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APPEnDIx C

Cousineau and Shiffrin (2004) reported that on very difficult target-absent trials, participants did not exhaus-
tively search a displayed set of items. We explored this proposal by simulating both serial and parallel exhaus-
tive architectures, in which the processing of the second item can prematurely stop and, consequently, lead to 
pure guessing of whether that item is identical to a target item or not. In both architectures, the components are 
represented in terms of random walk processes that give rise to errors. The simulation results are reported in 
Table C1. As can be observed, the MIC sign did not show any change to overadditivity for both architectures, 
although the probability of an error due to the premature completion of the second item increased to 15% for all 
the factorial conditions. In fact, MIC remained additive for the serial exhaustive model and underadditive for the 
parallel exhaustive model, thus indicating no change of the sign of the predicted MIC value for both models. We 
conclude that the overadditivity observed in the L 5 2, 3 conditions cannot be accounted for by the premature 
termination of exhaustive processing.

Table C1 
Simulated Mean Interaction Contrast (MIC) Values for Serial 
and Parallel Exhaustive Models (50,000 Trials per Condition) 

for Cases in Which the Error rate Increases Due to a Premature 
Termination of Exhaustive Processing of the Second Item

Stimulus Type

HH HL LH LL

RT  p(E)  RT  p(E)  RT  p(E)  RT  p(E)  MIC

Serial Exhaustive

663 .00 906 .00 906 .00 1,149 .00 1
653 .05 884 .05 895 .05 1,127 .05 1
643 .10 858 .10 886 .10 1,101 .10 1
630 .15 829 .15 874 .15 1,073 .15 0

Parallel Exhaustive

647 .00 925 .00 923 .00 1,016 .00 2185
646 .05 909 .05 922 .05 1,011 .05 2174
645 .10 891 .10 923 .10 1,007 .10 2163
644 .15 872 .15 924 .15 1,000 .15 2152

Note—RT, mean response time (in milliseconds); p(E), proportion of 
errors due to premature termination of exhaustive processing; H, high 
dissimilarity; L, low dissimilarity.

(Manuscript received September 9, 2005; 
revision accepted for publication November 12, 2007.)


