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We formalize and provide tests of a set of logical-rule models for predicting perceptual classification
response times (RTs) and choice probabilities. The models are developed by synthesizing mental-
architecture, random-walk, and decision-bound approaches. According to the models, people make
independent decisions about the locations of stimuli along a set of component dimensions. Those
independent decisions are then combined via logical rules to determine the overall categorization
response. The time course of the independent decisions is modeled via random-walk processes operating
along individual dimensions. Alternative mental architectures are used as mechanisms for combining the
independent decisions to implement the logical rules. We derive fundamental qualitative contrasts for
distinguishing among the predictions of the rule models and major alternative models of classification
RT. We also use the models to predict detailed RT-distribution data associated with individual stimuli in
tasks of speeded perceptual classification.
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A fundamental issue in cognitive science concerns the manner
in which people represent categories in memory and the decision
processes that they use to determine category membership. In early
research in the field, it was assumed that people represent catego-
ries in terms of sets of logical rules. Research focused on issues
such as the difficulty of learning different rules and on the
hypothesis-testing strategies that might underlie rule learning (e.g.,
Bourne, 1970; Levine, 1975; Neisser & Weene, 1962; Trabasso &
Bower, 1968). Owing to the influence of researchers such as
Posner and Keele (1968) and Rosch (1973), who suggested that
many natural categories have “ill-defined” structures that do not
conform to simple rules or definitions, alternative theoretical ap-
proaches were developed. Modern theories of perceptual classifi-
cation, for example, include exemplar models and decision-bound
models. According to exemplar models, people represent catego-
ries in terms of stored exemplars of categories and classify objects
on the basis of their similarity to these stored exemplars (Hintz-

man, 1986; Medin & Schaffer, 1978; Nosofsky, 1986). Alterna-
tively, according to decision-bound models, people may use (po-
tentially complex) decision bounds to divide up a perceptual space
into different category regions. Classification is determined by the
category region into which a stimulus is perceived to fall (Ashby
& Townsend, 1986; Maddox & Ashby, 1993).

Although the original types of logical-rule-based models no
longer dominate the field, the general idea that people may use
rules as a basis for classification has certainly not disappeared.
Indeed, prominent models that posit rule-based forms of category
representation, at least as an important component of a fuller
system, continue to be proposed and tested (e.g., Ashby, Alfonso-
Reese, Turken, & Waldron, 1998; Erickson & Kruschke, 1998;
Feldman, 2000; Goodman, Tenenbaum, Feldman, & Griffiths,
2008; Nosofsky, Palmeri, & McKinley, 1994). Furthermore, such
models are highly competitive with exemplar and decision-bound
models, at least in certain paradigms.

A major limitation of modern rule-based models of classifica-
tion, however, is that, to date, they have not been used to predict
or explain the time course of classification decision making.1 By
contrast, one of the major achievements of modern exemplar and
decision-bound models is that they provide detailed quantitative
accounts of classification response times (RTs; e.g., Ashby, 2000;
Ashby & Maddox, 1994; Cohen & Nosofsky, 2003; Lamberts,
1998, 2000; Nosofsky & Palmeri, 1997b).

The major purpose of the present research is to begin to fill this
gap and to formalize logical-rule models designed to account for
the time course of perceptual classification. Of course, we do not
claim that the newly developed rule models provide a reflection of
human performance that holds universally across all testing con-
ditions and subjects. Instead, according to modern views (e.g.,

1 An exception is very recent work from Lafond et al. (2009), which we
consider in our General Discussion.
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Ashby & Maddox, 2005), there are multiple systems and modes of
classification, and alternative testing conditions may induce reli-
ance on different classification strategies. Furthermore, even
within the same testing conditions, there may be substantial indi-
vidual differences in which classification strategies are used. Nev-
ertheless, it is often difficult to tell apart the predictions from
models that are intended to represent these alternative classifica-
tion strategies (e.g., Nosofsky & Johansen, 2000). By studying the
time course of classification and requiring the models to predict
classification RTs, more power is gained in telling the models
apart. Thus, the present effort is important because it provides a
valuable tool and a new arena in which rule-based models can be
contrasted with alternative models of perceptual category repre-
sentation and processing.

En route to developing these rule-based models, we combine
two major general approaches to the modeling of RT data. One
approach has focused on alternative mental architectures of infor-
mation processing (e.g., Kantowitz, 1974; Schweickert, 1992;
Sternberg, 1969; Townsend, 1984). This approach asks questions
such as whether information from multiple dimensions is pro-
cessed in serial or parallel fashion and whether the processing is
self-terminating or exhaustive. The second major approach uses
diffusion or random-walk models of RT, in which perceptual
information is sampled until a criterial amount of evidence has
been obtained to make a decision (e.g., Busemeyer, 1985; Link,
1992; Luce, 1986; Ratcliff, 1978; Ratcliff & Rouder, 1998;
Townsend & Ashby, 1983). The present proposed logical-rule
models of classification RT combine the mental-architecture and
random-walk approaches within an integrated framework (for ex-
amples of such approaches in other domains, see Palmer &
McLean, 1995; Ratcliff, 1978; Thornton & Gilden, 2007). Fific,
Nosofsky, and Townsend (2008, Appendix A) applied some spe-
cial cases of the newly proposed models in preliminary fashion to
assess some very specific qualitative predictions related to formal
theorems of information processing. The present work has the far
more ambitious goals of (a) using these architectures as a means of
formalizing logical-rule models of classification RT, (b) deriving
an extended set of fundamental qualitative contrasts for distin-
guishing among the models, (c) comparing the logical-rule models
to major alternative models of classification RT, and (d) testing the
ability of the logical-rule models to provide quantitative accounts
of detailed RT-distribution data and error rates associated with
individual stimuli in tasks of speeded classification.

Conceptual Overview of the Rule-Based Models

It is convenient to introduce the proposed rule-based models of
classification RT by means of the concrete example illustrated in
Figure 1 (left panel). This example turns out to be highly diagnos-
tic for distinguishing among numerous prominent models of clas-
sification RT and will guide all of our ensuing empirical tests. In
the example, the stimuli vary along two continuous dimensions, x
and y. In the present case, there are three values per dimension and
the values are combined orthogonally to produce the nine total
stimuli in the set. The four stimuli in the upper right quadrant of
the space belong to the target category (A), whereas the remaining
stimuli belong to the contrast category (B).

Following previous work, by a rule we mean that an observer
makes independent decisions regarding a stimulus’s value along

multiple dimensions and then combines these separate decisions
by using logical connectives such as “AND,” “OR,” and “NOT” to
reach a final classification response (Ashby & Gott, 1988; Feld-
man, 2000; Nosofsky, Clark, & Shin, 1989). The category struc-
ture in Figure 1 provides an example in which the target category
can be defined in terms of a conjunctive rule. Specifically, a
stimulus is a member of the target category if it has a value greater
than or equal to x1 on dimension x AND greater than or equal to
y1 on dimension y. Conversely, the contrast category can be
described in terms of a disjunctive rule: A stimulus is a member of
the contrast category if it has value less than x1 on dimension x OR
has value less than y1 on dimension y. A reasonable idea is that a
human classifier may make his or her classification decisions by
implementing these logical rules.

Indeed, this type of logical-rule-based strategy has been formal-
ized, for example, within the decision-boundary framework (e.g.,
Ashby & Gott, 1988; Ashby & Townsend, 1986). Within that
formalization, one posits that the observer establishes two decision
boundaries in the perceptual space, as is illustrated by the dotted
lines in Figure 1. The boundaries are orthogonal to the coordinate
axes of the space, thereby implementing the logical rules described
above. That is, the vertical boundary establishes a fixed criterion
along dimension x and the horizontal boundary establishes a fixed
criterion along dimension y. A stimulus is classified into the target
category if it is perceived as exceeding the criterion on dimension
x AND is perceived as exceeding the criterion on dimension y;
otherwise, it is classified into the contrast category. In the language
of decision-bound theory, the observer is making independent
decisions along each of the dimensions and then combining these
separate decisions to determine the final classification response.

Decision-bound theory provides an elegant language for ex-
pressing the structure of logical rules (as well as other strategies of
classification decision making). In our view, however, to date,
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Figure 1. Left panel: Schematic illustration of the structure of the stim-
ulus set used for introducing and testing the logical-rule models of classi-
fication. The stimuli are composed of two dimensions, x and y, with three
values per dimension, combined orthogonally to produce the nine members
of the stimulus set. The stimuli in the upper right quadrant of the space
(x1y1, x1y2, x2y1, and x2y2) are the members of the target category (Category
A), whereas the remaining stimuli are the members of the contrast category
(Category B). Membership in the target category is described in terms of
a conjunctive rule, and membership in the contrast category is described in
terms of a disjunctive rule. The dotted boundaries illustrate the decision
boundaries for implementing these rules. Right panel: Shorthand nomen-
clature for identifying the main stimulus types in the category structure. H
and L refer to high- and low-salience dimension values, respectively. R �
redundant stimulus; I � interior stimulus; E � exterior stimulus.
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researchers have not offered an information-processing account of
how such logical rules may be implemented. Therefore, rigorous
processing theories of rule-based classification RT remain to be
developed. The main past hypothesis stemming from decision-
bound theory is known as the RT-distance hypothesis (Ashby,
Boynton, & Lee, 1994; Ashby & Maddox, 1994). According to
this hypothesis, classification RT is a decreasing function of the
distance of a stimulus from the nearest decision bound in the space.
In our view, this hypothesis seems most applicable in situations in
which a single decision bound has been implemented to divide the
psychological space into category regions. The situation depicted
in Figure 1, however, is supposed to represent a case in which
separate, independent decisions are made along each dimension,
with these separate decisions then being combined to determine a
classification response. Accordingly, a fuller processing model
would formalize the mechanisms by which such independent de-
cisions are made and combined. As seen later, our newly proposed
logical-rule models make predictions that differ substantially from
past distance-from-boundary accounts.

To begin this effort of developing these rule-based processing
models, we combine two extremely successful general approaches
to the modeling of RT data, namely random-walk and mental-
architecture approaches. In the present models, the independent
decisions along dimensions x and y are each presumed to be
governed by a separate, independent random-walk process. The
nature of the process along dimension x is illustrated schematically
in Figure 2. In accord with decision-bound theory, on each indi-
vidual dimension, there is a (normal) distribution of perceptual
effects associated with each stimulus value (see top panel of Figure
2). Furthermore, as illustrated in the figure, the observer estab-
lishes a decision boundary to divide the dimension into decision
regions. On each step of the process, a perceptual effect is ran-

domly and independently sampled from the distribution associated
with the presented stimulus. The sampled perceptual effects drive
a random-walk process (see bottom panel of Figure 2). In the
random walk, there is a counter that is initialized at zero, and
the observer establishes criteria representing the amount of evi-
dence that is needed to make an A or B decision. If the sampled
perceptual effect falls in Region A, then the random walk takes a
unit step in the direction of Criterion A; otherwise, it takes a unit
step in the direction of Criterion B. The sampling process contin-
ues until either Criterion A or Criterion B has been reached. The
time to complete each individual-dimension decision process is
determined by the number of steps that are required to complete
the random walk. Note that, in accord with the RT-distance hy-
pothesis, stimuli with values that lie far from the decision bound-
ary (i.e., x2 in the present example) will tend to result in faster
decision times along that dimension.

The preceding paragraph described how classification decision
making takes place along each individual dimension. The overall
categorization response, however, is determined by a mental ar-
chitecture that implements the logical rules by combining the
individual-dimension decisions. That is, the observer classifies a
stimulus into the target category (A) only if both independent
decisions point to Region A (such that the conjunctive rule is
satisfied). By contrast, the observer classifies a stimulus into the
contrast category (B) if either independent decision points to B
(such that the disjunctive rule is satisfied).

In the present research, we consider five main candidate archi-
tectures for how the independent decisions are combined to im-
plement the logical rules. The candidate architectures are drawn
from classic work in other domains such as simple detection and
visual/memory search (Sternberg, 1969; Townsend, 1984). To
begin, processing of each individual dimension may take place in
serial fashion or in parallel fashion. In serial processing, the
individual-dimension decisions take place sequentially. A decision
is made first along one dimension, say, dimension x; then, if
needed, a second decision is made along dimension y. By contrast,
in parallel processing, the random-walk decision processes operate
simultaneously, rather than sequentially, along dimensions x and y.2

A second fundamental distinction pertains to the stopping rule,
which may be either self-terminating or exhaustive. In self-
terminating processing, the overall categorization response is made
once either of the individual random-walk processes has reached a
decision that allows an unambiguous response. For example, in
Figure 1, suppose that stimulus x0y2 is presented, and the random-
walk decision process on dimension x reaches the correct decision
that the stimulus falls in Region B of dimension x. Then the
disjunctive rule that defines the contrast category (B) is already
satisfied, and the observer does not need to receive information
concerning the location of the stimulus on dimension y. By con-
trast, if an exhaustive stopping rule is used, then the final catego-

2 In the present research, we focus on unlimited-capacity parallel mod-
els, in which the processing rate along each dimension is unaffected by the
number of dimensions that compose the stimuli. As is well known, by
introducing assumptions involving limited capacity and reallocation of
capacity during the course of processing, parallel models can be made to
mimic serial models. We consider issues related to this distinction in more
detail in a later section of the article.

Region B Region A

x1 x2x0

µ µ µx0 x1 x2

0 50 100 150
- 10

- 5

0

5

10

Time (ms)

R
an

do
m

 W
al

k 
C

ou
nt

er

+A

-B

RT

Figure 2. Schematic illustration of the perceptual-sampling (top panel)
and random-walk (bottom panel) processes that govern the decision pro-
cess on dimension x. RT � response time.
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rization response is not made until the decision processes have
been completed on both dimensions.

Combining the possibilities described above, there are thus far
four main mental architectures that may implement the logical
rules—serial exhaustive, serial self-terminating, parallel exhaus-
tive, and parallel self-terminating. It is straightforward to see that
if processing is serial exhaustive, then the total decision time is just
the sum of the individual-dimension decision times generated by
each individual random walk. Suppose instead that processing is
serial self-terminating. Then, if the first-processed dimension al-
lows a decision, total decision time is just the time for that first
random walk to complete; otherwise, it is the sum of both
individual-dimension decision times. In the case of parallel-
exhaustive processing, the random walks take place simulta-
neously, but the final categorization decision is not made until the
slower of the two random walks has completed. Therefore, total
decision time is the maximum of the two individual-dimension
decision times generated by each random walk. And in the case of

parallel self-terminating processing, total decision time is the min-
imum of the two individual-dimension decision times (assuming
that the first-completed decision allows an unambiguous catego-
rization response to be made). A schematic illustration of the
serial-exhaustive and parallel-exhaustive possibilities for stimulus
x1y2 from the target category is provided in Figure 3.

Finally, a fifth possibility that we consider in the present work
is that a coactive mental architecture is used for implementing the
logical rules (e.g., Diederich & Colonius, 1991; Miller, 1982;
Mordkoff & Yantis, 1993; Townsend & Nozawa, 1995). In coac-
tive processing, the observer does not make separate “macro-level”
decisions along each of the individual dimensions. Instead, “mic-
rolevel” decisions from each individual dimension are pooled into
a common processing channel, and it is this pooled channel that
drives the macro-level decision-making process. Specifically, to
formalize the coactive-rule-based process, we assume that the
individual dimensions contribute their inputs to a pooled random-
walk process. On each step, if the sampled perceptual effects on

Figure 3. Schematic illustration of the serial-exhaustive and parallel-exhaustive architectures, using stimulus
x1y2 as an example. In the serial example, we assume that dimension x is processed first. The value x1 lies near
the decision boundary on dimension x, so the random-walk process on that dimension tends to take a long time
to complete. The value y2 lies far from the decision boundary on dimension y, so the random-walk process on
that dimension tends to finish quickly. For the serial-exhaustive architecture, the two random walks operate
sequentially, so the total decision time is just the sum of the two individual-dimension random-walk times. For
the parallel-exhaustive architecture, the two random walks operate simultaneously, and processing is not
completed until decisions have been made on both dimensions, so the total decision time is the maximum (i.e.,
slower) of the two individual-dimension random-walk times. RT � response time.
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dimensions x and y both fall in the target-category region (A), then
the pooled random walk steps in the direction of Criterion A.
Otherwise, if either sampled perceptual effect falls in the contrast-
category region (B), then the pooled random walk steps in the
direction of Criterion B. The process continues until either Crite-
rion A or Criterion B has been reached.

Regarding the terminology used in this article, we should clarify
that when we say that an observer is using a self-terminating
strategy, we mean that processing terminates only when it has the
logical option to do so. For example, for the Figure 1 structure, in
order for an observer to correctly classify a member of the target
category into the target category, logical considerations dictate that
processing is always exhaustive (or coactive), because the observer
must verify that both independent decisions satisfy the conjunctive
rule. Therefore, for the Figure 1 structure, the serial-exhaustive and
serial self-terminating models make distinctive predictions only
for the members of the contrast category (and likewise for the
parallel models). All models assume exhaustive processing for
correct classification of the target-category members.

Finally, note that for all of the models, error probabilities and
RTs are predicted using the same mechanisms as correct RTs.3 For
example, suppose that processing is serial self-terminating and that
dimension x is processed first. Suppose further that x0y2 is pre-
sented (see Figure 1), but the random walk leads to an incorrect
decision that the stimulus falls in the target-category region (A) on
dimension x. Then processing cannot self-terminate, because nei-
ther the disjunctive rule that defines Category B nor the conjunc-
tive rule that defines Category A has yet been satisfied. The system
therefore needs to wait until the independent-decision process on
dimension y has been completed. Thus, in this case, the total
(incorrect) decision time for the serial self-terminating model will
be the sum of the decision times on dimensions x and y.

Free Parameters of the Logical-Rule Models

Specific parametric assumptions are needed to implement the
logical-rule models described above. For purposes of getting
started, we introduce various simplifying assumptions. First, in the
to-be-reported experiments, the stimuli vary along highly separa-
ble dimensions (Garner, 1974; Shepard, 1964). Furthermore, pre-
liminary scaling work indicated that adjacent dimension values
were roughly equally spaced. Therefore, a reasonable simplifying
assumption is that the psychological representation of the stimuli
mirrors the 3 � 3 grid structure illustrated in Figure 1. Specifi-
cally, we assume that associated with each stimulus is a bivariate
normal distribution of perceptual effects, with the perceptual ef-
fects along dimensions x and y being statistically independent for
each stimulus. Furthermore, the means of the distributions are set
at 0, 1, and 2, respectively, for stimuli with values of x0, x1, and x2

on dimension x (and likewise for dimension y). All stimuli have the
same perceptual-effect variability along dimension x, and likewise for
dimension y. To allow for the possibility of differential attention to the
component dimensions, or that one dimension is more discriminable
overall than the other, the variance of the distribution of perceptual
effects (see Figure 2, top panel) is allowed to be a separate free
parameter for each dimension, �x

2 and �y
2, respectively.

In addition, to implement the perceptual-sampling process that
drives the random walk (see Figure 2, top panel), the observer estab-
lishes a decision bound along dimension x, Dx, and a decision bound

along dimension y, Dy. Furthermore, the observer establishes criteria,
�A and �B, representing the amount of evidence needed for making
an A or a B decision on each dimension (see Figure 2, bottom panel).
A scaling parameter k is used for transforming the number of steps in
each random walk into milliseconds.

Each model assumes that there is a residual base time, not associ-
ated with decision-making processes (e.g., reflecting encoding and
motor-execution stages). The residual base time is assumed to be
log-normally distributed with mean �R and variance �R

2.
Finally, the serial self-terminating model requires a free param-

eter px representing the probability that, on each individual trial,
the dimensions are processed in the order x-then-y (rather than
y-then-x).

In sum, in the present applications, the logical-rule models use
the following nine free parameters: �x

2, �y
2, Dx, Dy, �A, �B, k, �R,

and �R
2. The serial self-terminating model also uses px. The ade-

quacy of these simplifying assumptions can be assessed, in part,
from the fits of the models to the reported data. Some generaliza-
tions of the models are considered in later sections of the article.

Fundamental Qualitative Predictions

In our ensuing experiments, we test the Figure 1 category
structure under a variety of conditions. In all cases, individual
subjects participate for multiple sessions and detailed RT-
distribution and error data are collected for each individual stim-
ulus for each individual subject. The primary goal is to test the
ability of the alternative logical-rule models to quantitatively fit
the detailed RT-distribution and error data and to compare their fits
with well known alternative models of classification RT. As an
important complement to the quantitative-fit comparisons, it turns
out the Figure 1 structure is a highly diagnostic one for which the
alternative models make contrasting qualitative predictions of
classification RT. Indeed, as shown later, the complete sets of
qualitative predictions serve to distinguish not only among the
rule-based models but also to distinguish the rule models from
previous decision-bound and exemplar models of classification
RT. By considering the patterns of qualitative predictions made by
each of the models, we gain insight into the reasons why one
model might yield better quantitative fits than the others. In this
section, we describe these fundamental qualitative contrasts. They
are derived under the assumption that responding is highly accu-
rate, which holds true under the initial testing conditions estab-
lished in our experiments.

Target-Category Predictions

First, consider the members of the target category (A). The
category has a 2 � 2 factorial structure, formed by the combination
of values x1 and x2 along dimension x and y1 and y2 along
dimension y. Values of x1 and y1 along each dimension lie close to
their respective decision boundaries, so they tend to be hard to
discriminate from the contrast-category values. We refer to them

3 Because strong qualitative contrasts are available for distinguishing
among the alternative models under conditions in which accuracy is high,
the initial emphasis in our article is on predicting only correct RTs. Later
in the article, we consider and test extensions of the models that are
designed to account simultaneously for correct and error RTs.
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as the low-salience (L) dimension values. The values x2 and y2 lie
farther from the decision boundaries, so they are easier to discrim-
inate. We refer to them as the high-salience (H) dimension values.
Thus, the target-category stimuli x1y1, x1y2, x2y1, and x2y2 are
referred to as the LL, LH, HL, and HH stimuli, respectively, as
depicted in the right panel of Figure 1. This structure forms part of
what is known as the double-factorial paradigm in the
information-processing literature (Townsend & Nozawa, 1995).
The double-factorial paradigm has been used in the context of
other cognitive tasks (e.g., detection and visual/memory search)
for contrasting the predictions from the alternative mental archi-
tectures described above. Here, we take advantage of these con-
trasts for helping to distinguish among the alternative logical-rule-
based models of classification RT. In the following, we provide a
brief summary of the predictions along with intuitive explanations
for them. For rigorous proofs of the assertions (along with a
statement of more technical background assumptions), see
Townsend and Nozawa (1995).

To begin, assuming that the high-salience values are processed
more rapidly than are the low-salience values (as is predicted, for
example, by the random-walk decision process represented in
Figure 2), then there are three main candidate patterns of mean
RTs that one might observe. These candidate patterns are illus-
trated schematically in Figure 4. The patterns have in common that
LL has the slowest mean RT, LH and HL intermediate mean RTs,
and HH the fastest mean RT. The RT patterns illustrated in the
figure can be summarized in terms of an expression known as the
mean interaction contrast (MIC):

MIC � [RT(LL) � RT(LH)] � [RT(HL) � RT(HH)], (1)

where RT(LL) stands for the mean RT associated with the LL
stimulus, and so forth. The MIC simply computes the difference
between (a) the distance between the leftmost points on each of the
lines [RT(LL) � RT(LH)] and (b) the distance between the right-
most points on each of the lines [RT(HL) � RT(HH)]. It is
straightforward to see that the pattern of additivity in Figure 4 is
reflected by MIC � 0. Likewise, underadditivity is reflected by
MIC � 0, and overadditivity is reflected by MIC � 0.

The serial-rule models predict MIC � 0, that is, an additive
pattern of mean RTs. Recall that, for the Figure 1 structure, correct
classification of the target-category items requires exhaustive pro-
cessing, so the serial self-terminating and serial-exhaustive models
make the same predictions for the target-category items. In gen-
eral, LH trials will show some slowing relative to HH trials due to
slower processing of the x dimension. Likewise, HL trials will
show some slowing relative to HH trials due to slower processing
of the y dimension. If processing is serial exhaustive, then the
increase in mean RTs for LL trials relative to HH trials will simply
be the sum of the two individual sources of slowing, resulting in
the pattern of additivity that is illustrated in Figure 4.

The parallel models predict MIC � 0, that is, an underadditive
pattern of mean RTs. (Again, correct processing is always exhaus-
tive for the target-category items, so in the present case there is no
need to distinguish between the parallel-exhaustive and parallel
self-terminating models.) If processing is parallel exhaustive, then
processing of both dimensions takes place simultaneously; how-
ever, the final classification decision is not made until decisions
have been made on both dimensions. Thus, RT will be determined
by the slower (i.e., maximum time) of the two individual-

dimension decisions. Clearly, LH and HL trials will lead to slower
mean RTs than HH trials, because one of the individual-dimension
decisions will be slowed. LL trials will lead to the slowest mean
RTs of all, because the more opportunities for an individual
decision to be slow, the slower on average the final response. The
intuition, however, is that the individual decisions along each
dimension begin to “run out of room” for further slowing. That is,
although the RT distributions are unbounded, once one individual-
dimension decision has been slowed, the probability of sampling a
still slower decision on the other dimension diminishes. Thus, one
observes the underadditive increase in mean RTs in the parallel-
exhaustive case.

Finally, Townsend and Nozawa (1995) have provided a proof
that the coactive architecture predicts MIC � 0, that is, the overad-
ditive pattern of mean RTs shown in Figure 4. Fific et al. (2008,
Appendix A) corroborated this assertion by means of computer
simulation of the coactive model. Furthermore, their computer
simulations showed that the just-summarized MIC predictions for
all of these models hold when error rates are low (and, for some of
the models, even in the case of moderate error rates).
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Figure 4. Schematic illustration of the three main candidate patterns of
mean response times (RTs) for the members of the target category, assum-
ing that the high-salience (H) values on each dimension are processed more
quickly than are the low-salience (L) values. The patterns are summarized
in terms of the mean interaction contrast (MIC): MIC � [RT(LL) �
RT(LH)] � [RT(HL) � RT(HH)]. When MIC � 0 (top panel), the mean
RTs are additive; when MIC � 0 (middle panel), the mean RTs are
underadditive; and when MIC � 0 (bottom panel), the mean RTs are
overadditive.
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A schematic summary of the target-category mean RT predic-
tions made by each of the logical-rule architectures is provided in
the left panels of Figure 5. We should note that the alternative rule
models make distinct qualitative predictions of patterns of target-
category RTs considered at the distributional level as well (see
Fific et al., 2008, for a recent extensive review). However, for
purposes of getting started, we restrict initial consideration to
comparisons at the level of RT means.

Contrast-Category Predictions

The target-category contrasts summarized above are well known
in the information-processing literature. It turns out, however, that
the various rule-based models also make contrasting qualitative
predictions for the contrast category, and these contrasts have not
been considered in previous work. Although the contrast-category
predictions are not completely parameter free, they hold over a
wide range of the plausible parameter space for the models. Fur-
thermore, parameter settings that allow some of the models to
“undo” some of the predictions then result in other extremely
strong constraints for telling the models apart. We used computer
simulation to corroborate the reasoning that underlies the key
predictions listed below. To help keep track of the ensuing list of
predictions, they are summarized in canonical form in the right
panels of Figure 5. The reader is encouraged to consult Figures 1
and 5 as the ensuing predictions are explained.

For ease of discussion (see Figure 1, left and right panels), in the
following we sometimes refer to stimuli x0y1 and x0y2 as the
left-column members of the contrast category, to stimuli x1y0 and
x2y0 as the bottom-row members of the contrast category, and to
stimulus x0y0 as the redundant (R) stimulus. Also, we sometimes
refer to stimuli x0y1 and x1y0 as the interior (I) members of the
contrast category and to stimuli x0y2 and x2y0 as the exterior (E)
members (see Figure 1, left and right panels). In our initial exper-
iment, subjects were provided with instructions to use a fixed-
order serial self-terminating strategy as a basis for classification.
For example, some were instructed to always process the dimen-
sions in the order x-then-y. In this case, we refer to dimension x as
the first-processed dimension and to dimension y as the second-
processed dimension. Of course, for the parallel and coactive
models, the dimensions are assumed to be processed simulta-
neously. Thus, this nomenclature refers to the instructions, not to
the processing characteristics assumed by the models.

As shown later, in Experiment 1, RTs were much faster for
contrast-category stimuli that satisfied the disjunctive rule on the
first-processed dimension as opposed to the second-processed di-
mension. To allow each of the logical-rule models to be at least
somewhat sensitive to the instructional manipulation, in deriving
the following predictions, we assume that the processing rate on
the first-processed dimension is faster than on the second-
processed dimension. This assumption was implemented in the
computer simulations by setting the perceptual noise parameter in
the individual-dimension random walks (see Figure 2) at a lower
value on the first-processed dimension than on the second-
processed dimension.

Fixed-order serial self-terminating model. Suppose that an
observer makes individual-dimension decisions for the contrast
category in serial self-terminating fashion. For starters, imagine
that the observer engages in a fixed order of processing by always

processing dimension x first and then, if needed, processing di-
mension y. Note that presentations of the left-column stimuli (x0y1

and x0y2) will generally lead to a correct classification response
after only the first dimension (x) has been processed. The reason is
that the value x0 satisfies the disjunctive OR rule, so processing
can terminate after the initial decision. (Note as well that this
fixed-order serial self-terminating model predicts that the redun-
dant stimulus, x0y0, which satisfies the disjunctive rule on both of
its dimensions, should have virtually the same distribution of RTs
as do stimuli x0y1 and x0y2.) By contrast, presentations of the
bottom-row stimuli (x1y0 and x2y0) will require the observer to
process both dimensions in order to make a classification decision.
That is, after processing only dimension x, there is insufficient
information to determine whether the stimulus is a member of the
target category or the contrast category (i.e., both include members
with values greater than or equal to x1 on dimension x). Because
the observer first processes dimension x and then processes di-
mension y, the general prediction is that classification responses to
the bottom-row stimuli will be slower than to the left-column
stimuli. More interesting, however, is the prediction from the serial
model that RT for the exterior stimulus x2y0 will be somewhat
faster than for the interior stimulus x1y0. Upon first checking
dimension x, it is easier to determine that x2 does not fall to the left
of the decision criterion than it is to determine the same for x1.
Thus, in the first stage of processing, x2y0 has an advantage
compared to x1y0. In the second stage of processing, the time to
determine that these stimuli have value y0 on dimension y (and so
are members of the contrast category) is the same for x1y0 and x2y0.
Because the total decision time in this case is just the sum of the
individual-dimension decision times, the serial self-terminating
rule model therefore predicts faster RTs for the exterior stimulus
x2y0 than for the interior stimulus x1y0.

In sum (see Figure 5, top-right panel), the fixed-order serial
self-terminating model predicts virtually identical fast RTs for the
exterior, interior, and redundant stimuli on the first-processed
dimension; slower RTs for the interior and exterior stimuli on the
second-processed dimension; and, for that second-processed di-
mension, that the interior stimulus will be somewhat slower than
the exterior one.

Mixed-order serial self-terminating model. A more general
version of the serial self-terminating model assumes that instead of
a fixed order of processing the dimensions, there is a mixed
probabilistic order of processing. Using the reasoning above, it is
straightforward to verify that (except for unusual parameter set-
tings) this model predicts an RT advantage for the redundant
stimulus (x0y0) compared to all other members of the contrast
category and that both exterior stimuli should have an RT advan-
tage compared to their neighboring interior stimuli. Also, to the
extent that one dimension tends to be processed before the other,
stimuli on the first-processed dimension will have faster RTs than
stimuli on the second-processed dimension (see Figure 5).

Parallel self-terminating model. The parallel self-
terminating rule-based model yields a markedly different set of
qualitative predictions than does the serial self-terminating model.
According to the parallel self-terminating model, decisions along
dimensions x and y are made simultaneously, and processing
terminates as soon as a decision is made that a stimulus has either
value x0 or y0. Thus, total decision time is the minimum of those
individual-dimension processing times that lead to contrast-
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category decisions. The time to determine that x0y1 has value x0 is
the same as the time to determine that x0y2 has value x0 (and
analogously for x1y0 and x2y0). Thus, the parallel self-terminating
rule model predicts identical RTs for the interior and exterior
members of the contrast category, in marked contrast to the serial
self-terminating model. Like the mixed-order serial model, it pre-
dicts an RT advantage for the redundant stimulus x0y0, because the
more opportunities to self-terminate, the faster the minimum RT
tends to be. Also, as long as the rate of processing on each
dimension is allowed to vary as described above, it naturally
predicts faster RTs for stimuli that satisfy the disjunctive rule on
the first-processed dimension rather than on the second-processed
one.

Serial-exhaustive model. For the same reason as the serial
self-terminating model, the serial-exhaustive model (see Figure 5,
fourth row) predicts longer RTs for the interior stimuli on each
dimension than for the exterior stimuli. Interestingly, and in con-
trast to the previous models, it also predicts a longer RT for the
redundant stimulus than for the exterior stimuli. The reasoning is
as follows. Because processing is exhaustive, both the exterior
stimuli and the redundant stimulus require that individual-
dimension decisions be completed on both dimensions x and y. The
total RT is just the sum of those individual-dimension RTs. Con-
sider, for example, the redundant stimulus (x0y0) and the bottom-
row exterior stimulus (x2y0). Both stimuli are the same distance
from the decision bound on dimension y, so the independent
decision on dimension y takes the same amount of time for these
two stimuli. However, assuming a reasonable placement of the
decision bound on dimension x (i.e., one that allows for above-
chance performance on all stimuli), then the exterior stimulus is
farther than the redundant stimulus from the x boundary. Thus, the
independent decision on dimension x is faster for the exterior
stimulus than for the redundant stimulus. Accordingly, the pre-
dicted total RT for the exterior stimulus is faster than for the
redundant one. Analogous reasoning leads to the prediction that
the left-column exterior stimulus (x0y2) will also have a faster RT
than the redundant stimulus. The predicted RT of the redundant
stimulus compared to the interior stimuli depends on the precise
placement of the decision bounds on each dimension. The canon-
ical predictions shown in the figure are for the case in which the
decision bounds are set midway between the means of the redun-
dant and interior stimuli on each dimension.

Parallel-exhaustive model. The parallel-exhaustive model
(see Figure 5, row 5) requires that both dimensions be processed,
and the total decision time is the slower (maximum) of each
individual-dimension decision time. For the interior stimuli and the
redundant stimulus, both individual-dimension decisions tend to
be slow (because all of these stimuli lie near both the x and y
decision bounds). However, for the exterior stimuli, only one
individual-dimension decision tends to be slow (because the exte-
rior stimuli lie far from one decision bound and close to the other).
Thus, the interior stimuli and redundant stimulus should tend to

have roughly equal RTs that are longer than those for the exterior
stimuli. Again, the precise prediction for the redundant stimulus
compared to the interior stimuli depends on the precise placement
of the decision bounds on each dimension. The canonical predic-
tions in Figure 5 are for the case in which the decision bounds are
set midway between the means of the redundant and interior
stimuli.

Coactive-rule-based model. Just as is the case for the target
category, the coactive model (see Figure 5, row 6) yields different
predictions than do all of the other rule-based models for the
contrast category. Specifically, it predicts faster RTs for the inte-
rior members of the contrast category (x1y0 and x0y1) than for the
exterior members (x2y0 and x0y2). The coactive model also predicts
that the redundant stimulus will have the very fastest RTs. The
intuitive reason for these predictions is that the closer a stimulus
gets to the lower left corner of the contrast category, the higher is
the probability that at least one of its sampled percepts will fall in
the contrast-category region. Thus, the rate at which the pooled
random walk marches toward the contrast-category criterion tends
to increase. The same intuition can explain why contrast-category
members that satisfy the disjunctive rule on the first-processed
dimension are classified faster than those on the second-processed
dimension (i.e., by assuming reduced perceptual variability along
the first-processed dimension).

Comparison Models and Relations Among Models

As a source of comparison for the proposed logical-rule-based
models, we consider some of the major extant alternative models
of classification RT.

RT-Distance Model of Decision-Boundary Theory

Recall that in past applications, decision-bound theory has been
used to predict classification RTs by assuming that RT is a de-
creasing function of the distance of a percept from a multidimen-
sional decision boundary. To provide a process interpretation for
this hypothesis, and to improve comparability among alternative
models, Nosofsky and Stanton (2005) proposed a random-walk
version of decision-bound theory that implements the RT-distance
hypothesis (see also Ashby, 2000). We refer to the model as the
RW-DFB (random-walk distance-from-boundary) model. The
RW-DFB model is briefly described here for the case of stimuli
varying along two dimensions. The observer is assumed to estab-
lish (two-dimensional) decision boundaries for partitioning per-
ceptual space into decision regions. On each step of a random-walk
process, a percept is sampled from a bivariate normal distribution
associated with the presented stimulus. If the percept falls in
Region A of the two-dimensional space, then the random walk
counter steps in the direction of Criterion A; otherwise it steps in
the direction of Criterion B. The sampling process continues until
either criterion is reached. In general, the farther a stimulus is from

Figure 5 (opposite). Summary predictions of mean response times (RTs) from the alternative logical-rule models of classification. The left panels show
the pattern of predictions for the target-category members, and the right panels show the pattern of predictions for the contrast-category members. Left
panels: L � low-salience dimension value; H � high-salience dimension value; D1 � Dimension 1; D2 � Dimension 2. Right panels: R � redundant
stimulus; I � interior stimulus; E � exterior stimulus; EBRW � exemplar-based random-walk model.
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the decision boundaries, the faster are the RTs that are predicted by
the model. (Note that in our serial and parallel logical-rule models,
this RW-DFB process is assumed to operate at the level of indi-
vidual dimensions but not at the level of multiple dimensions.)

A wide variety of two-dimensional decision boundaries could be
posited for the Figure 1 category structure, including models that
assume general linear boundaries, quadratic boundaries, and
likelihood-based boundaries (see, e.g., Maddox & Ashby, 1993).
Because the stimuli in our experiments are composed of highly
separable dimensions, however, a reasonable representative from
this wide class of models assumes simply that the observer uses the
orthogonal decision boundaries that are depicted in Figure 1. (We
consider alternative types of multidimensional boundaries in our
General Discussion; crucially, we can argue that our conclusions
hold widely over a very broad class of RW-DFB models.)

Given the assumption of the use of these orthogonal decision
boundaries, as well as our previous parametric assumptions in-
volving statistical independence of the stimulus representations, it
turns out that, for the present category structure, the coactive-rule-
based model is formally identical to this previously proposed
multidimensional RW-DFB model.4 Therefore, the coactive model
will serve as our representative of using the multidimensional
RT-distance hypothesis as a basis for predicting RTs. Thus, im-
portantly, comparisons of the various alternative serial- and
parallel-rule models to the coactive version can provide an indi-
cation of the utility of adding “mental-architecture” assumptions to
decision-boundary theory.

EBRW Model

A second comparison model is the exemplar-based random-
walk (EBRW) model (Nosofsky & Palmeri, 1997a, 1997b; Nosof-
sky & Stanton, 2005), which is a highly successful exemplar-based
model of classification. The EBRW model has been discussed
extensively in previous reports, so only a brief summary is pro-
vided here. According to the model, people represent categories by
storing individual exemplars in memory. When a test item is
presented, it causes the stored exemplars to be retrieved. The
higher the similarity of an exemplar to the test item, the higher its
retrieval probability. If a retrieved exemplar belongs to Category
A, then a random-walk counter takes a unit step in the direction of
Criterion A; otherwise it steps in the direction of Criterion B. The
exemplar-retrieval process continues until either Criterion A or
Criterion B is reached. In general, the EBRW model predicts that
the greater the “summed similarity” of a test item to one category,
and the less its summed similarity to the alternative category, the
faster its classification RT.

In the present applications, the EBRW uses eight free parame-
ters (see Nosofsky & Palmeri, 1997b, for detailed explanations):
an overall sensitivity parameter c for measuring discriminability
between exemplars; an attention-weight parameter wx representing
the amount of attention given to dimension x; a background-noise
parameter back; random-walk criteria �A and �B; a scaling
constant k for transforming the number of steps in the random walk
into milliseconds; and residual-time parameters �R and �R

2 that
play the same role in the EBRW model as in the logical-rule-based
models. Adapting ideas from Lamberts (1995), Cohen and Nosof-
sky (2003) proposed an elaborated version of the EBRW that
includes additional free parameters for modeling the time course

with which individual dimensions are perceptually encoded. For
simplicity in getting started, however, in this research we limit
consideration to the baseline version of the model.

We have conducted extensive investigations that indicate that,
over the vast range of its parameter space, the EBRW model makes
predictions that are similar to those of the coactive-rule model for
the target category (i.e., overadditivity in the MIC). These inves-
tigations are reported in Appendix A. In addition, like the coactive
model, the EBRW model predicts that, for the contrast category,
the interior stimuli will have faster RTs than the exterior stimuli
and that the redundant stimulus will have the fastest RTs of all.
The intuition, as can be gleaned from Figure 1, is that the closer a
stimulus gets to the lower left corner of the contrast category, the
greater is its overall summed similarity to the contrast-category
exemplars. Finally, the EBRW model can predict faster RTs for
contrast-category members that satisfy the disjunctive rule on the
first-processed dimension by assigning a larger attention weight to
that dimension (Nosofsky, 1986).

Because the EBRW model and the coactive-rule model make
the same qualitative predictions for the present paradigm, we
expect that they may yield similar quantitative fits to the present
data. However, on the basis of previous research (Fific et al.,
2008), we do not expect to see much evidence of coactive pro-
cessing for the highly separable dimension stimuli used in the
present experiments. Furthermore, as can be verified from inspec-
tion of Figure 5, the EBRW model makes sharply contrasting
predictions from all of the other logical-rule models of classifica-
tion RT. Thus, to the extent that observers do indeed use logical
rules as a basis for the classification in the present experiments, the
results should clearly favor one of the rule-based models compared
to the EBRW model.5

Free stimulus-drift-rate model. As a final source of compar-
ison, we also consider a random-walk model in which each indi-
vidual stimulus is allowed to have its own freely estimated step-
probability (or drift-rate) parameter. That is, for each individual
stimulus i, we estimate a free parameter pi that gives the proba-
bility that the random walk steps in the direction of Criterion A.
This approach is similar to past applications of Ratcliff’s (1978)

4 According to Nosofsky and Stanton’s (2005) random-walk version of
the RT-distance hypothesis, the probability that the random walk steps
toward Criterion A is given by the proportion of the stimulus’s bivariate
distribution that falls in Region A. According to the present coactive
model, the probability that the pooled random walk steps toward Criterion
A is given by the probability that the independently sampled percepts fall
in Region A on both dimensions. Because we are assuming perceptual
independence, the probability that a sample from the bivariate distribution
falls in Region A is simply the product of the individual-dimension
marginal probabilities, so the models are formally identical.

5 Although the EBRW model and coactive-rule model make similar
qualitative predictions for the present paradigm, other manipulations can be
used to sharply distinguish between them. For example, Nosofsky and
Stanton (2005) tested paradigms in which stimuli that were a fixed distance
from a decision boundary were associated with either deterministic or
probabilistic feedback during training. The EBRW model is naturally
sensitive to these feedback manipulations, whereas rule models (including
the coactive model) are naturally sensitive only to the distance of a
stimulus from the rule-based decision boundaries (see also Rouder &
Ratcliff, 2004).
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highly influential diffusion model. (The diffusion model is a con-
tinuous version of a discrete-step random walk.) In that approach,
the “full” diffusion model is fitted by estimating separate drift-rate
parameters for each individual stimulus or condition, and investi-
gations are then often conducted to discover reasons why the
estimated drift rates may vary in systematic ways (e.g., Ratcliff &
Rouder, 1998). The present free stimulus-drift-rate random-walk
model uses 14 free parameters: the nine individual stimulus step-
probability parameters; and five parameters that play the same role
as in the previous models: �A, �B, k, �R, and �R

2.
The free stimulus-drift-rate random-walk model is more de-

scriptive in form than the logical-rule models or the EBRW model,
in the sense that it can describe any of the qualitative patterns
involving the mean RTs that are illustrated in Figure 5. Neverthe-
less, because our model-fit procedures penalize models for the use
of extra free parameters (see the model-fit section for details), the
free stimulus-drift-rate model is not guaranteed to provide a better
quantitative fit to the data than do the logical-rule models or the
EBRW model. To the extent that the logical-rule models (or the
EBRW model) capture the data in parsimonious fashion, they
should provide better penalty-corrected fits than does the free
stimulus-drift-rate model. By contrast, dramatically better fits of
the free stimulus-drift-rate model could indicate that the logical-
rule models or exemplar model are missing key aspects of perfor-
mance.

Finally, it is important to note that, even without imposing a
penalty for its extra free parameters, the free stimulus-drift-rate
model could in principle provide worse absolute fits to the data
than do some of the logical-rule models.6 The reason is that our
goal is to fit the detailed RT-distribution data associated with the
individual stimuli. Although the focus of our discussion has been
on the predicted pattern of mean RTs, there is likely to also be a
good deal of structure in the RT-distribution data that is useful for
distinguishing among the models. For example, consider a case in
which an observer uses a mixed-order serial self-terminating strat-
egy. In cases in which dimension x is processed first, then the
left-column members of the contrast category should have fast
RTs. But in cases in which dimension x is processed second, then
the left-column members should have slow RTs. Thus, the mixed-
order serial self-terminating model allows the possibility of ob-
serving a bimodal distribution of RTs.7 By contrast, a random-
walk model that associates a single “drift rate” with each
individual stimulus predicts that the RT distributions should be
unimodal in form (see also Ashby, Ennis, & Spiering, 2007, p.
647). As shown later, there are other aspects of the RT-distribution
data that also impose interesting constraints on the alternative
models.

Ratcliff and McKoon (2008) have recently emphasized that
single-channel diffusion models are appropriate only for situations
in which a “single stage” of decision making governs performance.
To the extent that subjects adopt the present kinds of logical-rule-
based strategies in our classification task, “multiple stages” of
decision making are taking place, so even the present free
stimulus-drift-rate model may fail to yield good quantitative fits.

Experiment 1

The goal of our experiments was to provide initial tests of the
ability of the logical-rule models to account for speeded classifi-

cation performance, using the category structure depicted in Fig-
ure 1. Almost certainly, the extent to which rule-based strategies
are used will depend on a variety of experimental factors. In these
initial experiments, the idea was to implement factors that seemed
strongly conducive to the application of the rules. Thus, the ex-
periments serve more in the way of validation tests of the newly
proposed models, as opposed to inquiries of when rule-based
classification does or does not occur. If preliminary support is
obtained in favor of the rule-based models under these initial
conditions, then later research can examine boundary conditions
on their application.

Clearly, one critical factor is whether the category structure
itself affords the application of logical rules. Because for the
present Figure 1 structure, an observer can classify all objects
perfectly with the hypothesized rule-based strategies, this aspect of
the experiments would seem to promote the application of the
rules. The use of more complex category structures might require
that subjects supplement a rule-based strategy with the memory of
individual exemplars, exceptions to the rule, more complex deci-
sion boundaries, and so forth.

A second factor involves the types of dimensions that are used
to construct the stimuli. In the present experiments, the stimuli
varied along a set of highly separable dimensions (Garner, 1974;
Shepard, 1964). In particular, following Fific et al. (2008), the
stimuli were composed of two rectangular regions, one to the left
and one to the right. The left rectangle was a constant shade of red
and varied only in its overall level of saturation. The right rectan-
gle was uncolored and had a vertical line drawn inside it. The line
varied only its left–right positioning within the rectangle. One
reason why we used these highly separable dimensions was to
ensure that the psychological structure of the set of to-be-classified
stimuli matched closely the schematic 3 � 3 factorial design
depicted in Figure 1. A second reason is that use of the rule-based
strategies entails that separate independent decisions are made
along each dimension. Such an independent-decision strategy
would seem to be promoted by the use of stimuli varying along
highly separable dimensions. That is, for the present stimuli, it
seems natural for an observer to make a decision about the extent
to which an object is saturated, to make a separate decision about
the extent to which the line is positioned to the left, and then to
combine these separate decisions to determine whether the logical
rule is satisfied.

Finally, to most strongly induce the application of the logical
rules, subjects were provided with explicit knowledge of the rule-
based structure of the categories and with explicit instructions to
use a fixed-order serial self-terminating strategy as a basis for
classification. The instructions spelled out in step-by-step fashion

6 However, the free stimulus-drift-rate model must provide absolute fits
to the data that are at least as good as those provided by the coactive model
and the EBRW model. The reason is that both of those models are special
cases of the free stimulus-drift-rate model. Still, the coactive and EBRW
models can provide better penalty-corrected fits than does the free
stimulus-drift-rate model.

7 In general, however, because of noise in RT data, detecting multimo-
dality in RT distributions is often difficult. Cousineau and Shiffrin (2004)
provided one clear example of multimodal RT distributions in the domain
of visual search.

319CLASSIFICATION RESPONSE TIME



the application of the strategy (see Method section for this exper-
iment). Of course, there is no certainty that observers can follow
the instructions, and there is a good possibility that other automatic
types of classification processes may override attempts to use the
instructed strategy (e.g., Brooks, Norman, & Allen, 1991; Logan,
1988; Logan & Klapp, 1991; Palmeri, 1997). Nevertheless, we felt
that the present conditions could potentially place the logical-rule
models in their best possible light and that it was a reasonable
starting point. In a subsequent experiment, we test a closely related
design, with some subjects operating under more open-ended
conditions.

Method

Subjects. The subjects were five graduate and undergraduate
students associated with Indiana University. All subjects were
under 40 years of age and had normal or corrected-to-normal
vision. The subjects were paid $8 per session plus up to a $3 bonus
per session depending on performance.

Stimuli. Each stimulus consisted of two spatially separated
rectangular regions. The left rectangle had a red hue that varied in
its saturation and the right rectangular region had an interior
vertical line that varied in its left–right positioning. (For an illus-
tration, see Fific et al., 2008, Figure 5.)

As illustrated in Figure 1, there were nine stimuli composed of
the factorial combination of three values of saturation and three
values of vertical-line position. The saturation values were derived
from the Munsell color system and were generated on the com-
puter by using the Munsell color conversion program (Wallkill-
Color, Version 6.5.1). According to the Munsell system, the colors
were of a constant red hue (5R) and of a constant lightness (Value
5), but had saturation (chromas) equal to 10, 8, and 6 (for dimen-
sion values x0, x1, and x2, respectively). The distances of the
vertical line relative to the leftmost side of the right rectangle were
30, 40, and 50 pixels (for dimension values y0, y1, and y2, respec-
tively). The size of each rectangle was 133 � 122 pixels. The
rectangles were separated by 45 pixels, and each pair of rectangles
subtended a horizontal visual angle of about 6.4° and a vertical
visual angle of about 2.3°. The study was conducted on a Pentium
PC with a CRC monitor, with display resolution 1024 � 768
pixels. The stimuli were presented on a white background.

Procedure. The stimuli were divided into two categories, A
and B, as illustrated in Figure 1. On each trial, a single stimulus
was presented, the subject was instructed to classify it into Cate-
gory A or B as rapidly as possible without making errors, and
corrective feedback was then provided.

The experiment was conducted over five sessions, one session
per day, with each session lasting approximately 45 min. In each
session, subjects received 27 practice trials and then were pre-
sented with 810 experimental trials. Trials were grouped into six
blocks, with rest breaks in between each block. Each stimulus was
presented the same number of times within each session. Thus, for
each subject, each stimulus was presented 93 times per session and
465 times over the course of the experiment. The order of presen-
tation of the stimuli was randomized anew for each subject and
session. Subjects made their responses by pressing the right (Cat-
egory A) and left (Category B) buttons on a computer mouse. The
subjects were instructed to rest their index fingers on the mouse
buttons throughout the testing session. RTs were recorded from the

onset of a stimulus display up to the time of a response. Each trial
started with the presentation of a fixation cross for 1,770 ms. After
1,070 ms from the initial appearance of the fixation cross, a
warning tone was sounded for 700 ms. The stimulus was then
presented on the screen and remained visible until the subject’s
response was recorded. In the case of an error, the feedback
“INCORRECT” was displayed on the screen for 2 s. The intertrial
interval was 1,870 ms.

At the start of the experiment, subjects were shown a picture of
the complete stimulus set (in the form illustrated in Figure 1,
except with the actual stimuli displayed). While viewing this
display, subjects read explicit instructions to use a serial self-
terminating rule-based strategy to classify the stimuli into the
categories. (Subjects 1 and 2 were given instructions to process
dimension y [vertical-line position] first, whereas Subjects 3–5
were given instructions to process dimension x [saturation] first.)
The instructions for the “saturation-first” subjects were as follows:

We ask you to use the following strategy ON ALL TRIALS to classify
the stimuli. First, focus on the colored square. If the colored square is
the most saturated with red, then classify the stimulus into Category
B immediately. If the colored square is not the most saturated with
red, then you need to focus on the square with the vertical line. If the
line is furthest to the left, then classify the stimulus into Category B.
Otherwise classify the stimulus into Category A. Make sure to use this
same sequential strategy on each and every trial of the experiment.

Analogous instructions were provided to the subjects who pro-
cessed dimension y (vertical-line position) first. Finally, because
the a priori qualitative contrasts for discriminating among the
models were derived under the assumption that error rates are low,
the instructions emphasized that subjects needed to be highly
accurate in making their classification decisions. In a subsequent
experiment, we also test subjects with a speed–stress emphasis and
examine error RTs.

Results

Session 1 was considered practice and these data were not
included in the analyses. In addition, conditionalized on each
individual subject and stimulus, we removed from the analysis RTs
greater than 3 SDs above the mean and also RTs of less than 100
ms. This procedure led to dropping less than 1.2% of the trials
from analysis.

We examined the mean correct RTs for the individual subjects
as a function of sessions of testing. Although we observed a
significant effect of sessions for all subjects (usually, a slight
overall speed-up effect), the basic patterns for the target-category
and contrast-category stimuli remained constant across sessions.
Therefore, we combine the data across Sessions 2–5 in illustrating
and modeling the results.

The mean correct RTs and error rates for each individual stim-
ulus for each subject are reported in Table 1. In general, error rates
were low and mirrored the patterns of mean correct RTs. That is,
stimuli associated with slower mean RTs had a higher proportion
of errors. Therefore, our initial focus will be on the results involv-
ing the RTs.

The mean correct RTs for the individual subjects and stimuli are
displayed graphically in the panels of Figure 6. The left panels show
the results for the target-category stimuli and the right panels show the
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results for the contrast-category stimuli. Regarding the contrast-
category stimuli, for ease of comparing the results to the canonical-
prediction graphs in Figure 5, the means in the figure have been
arranged according to whether a stimulus satisfied the disjunctive
rule on the instructed first-processed dimension or the second-
processed dimension. For example, Subject 1 was instructed to
process dimension y first. Therefore, for this subject, the interior
and exterior stimuli on the first-processed dimension are x1y0 and
x2y0 (see Figure 1).

Regarding the target-category stimuli, note first that for all five
subjects, the manipulations of salience (high vs. low) on both the
saturation and line-position dimensions had the expected effects on
the overall pattern of mean RTs, in the sense that the high-salience
(H) values led to faster RTs than did the low-salience (L) values.
Regarding the contrast-category stimuli, not surprisingly, stimuli
that satisfied the disjunctive rule on the first-processed dimension
were classified with faster RTs than those on the second-processed
dimension. These global patterns of results are in general accord
with the predictions from all of the logical-rule models as well as
the EBRW model (compare to Figure 5).

The more fine-grained arrangement of RT means, however,
allows for an initial assessment of the predictions from the com-
peting models. To the extent that subjects were able to follow the
instructions, our expectation is that the data should tend to conform
to the predictions from the fixed-order serial self-terminating
model of classification RT. For Subjects 2, 3, and 4, the overall
results seem reasonably clear-cut in supporting this expectation
(compare the top panels in Figure 5 to those for Subjects 2–4 in
Figure 6). First, as predicted by the model, the mean RTs for the
target-category members are approximately additive (MIC � 0).

Second, for the contrast-category members, the mean RTs for the
stimuli that satisfy the disjunctive rule on the first-processed
dimension are faster than those for the second-processed dimen-
sion. Third, for those stimuli that satisfy the disjunctive rule on the
second-processed dimension, RTs for the exterior stimulus are
faster than for the interior stimulus (whereas there is little differ-
ence for the interior and exterior stimuli that satisfy the disjunctive
rule on the first-processed dimension). Fourth, the mean RT for the
redundant stimulus is almost the same as (or perhaps slightly faster
than) the mean RTs for the stimuli on the first-processed dimen-
sion. These qualitative patterns of results are all in accord with the
predictions from the fixed-order serial self-terminating model.
Furthermore, considered collectively, they violate the predictions
from all of the other competing models.

The results for Subjects 1 and 5 are less clear-cut. On the one
hand, for both subjects, the mean RTs for the target category are
approximately additive, in accord with the predictions from the
serial model. (There is a slight tendency toward underadditivity for
Subject 1 and toward overadditivity for Subject 5.) In addition, for
the contrast category, both stimuli that satisfy the disjunctive rule
on the first-processed dimension are classified faster than those on
the second-processed dimension. On the other hand, for stimuli in
the contrast category that satisfy the disjunctive rule on the second-
processed dimension, RTs for the external stimulus are slower than
for the internal one, which is in opposition to the predictions from
the serial self-terminating model. The qualitative results from these
two subjects do not point in a consistent, converging direction to
any single one of the contending models (although, overall, the
serial and parallel self-terminating models appear to be the best

Table 1
Experiment 1: Mean Correct RTs and Error Rates for Individual Stimuli, Observed and Best-Fitting Model Predicted

RT and error rate by subject x2y2 x2y1 x1y2 x1y1 x2y0 x1y0 x0y2 x0y1 x0y0

Subject 1
RT observed 501 585 564 637 467 476 578 552 446
RT parallel self-terminating 491 590 580 631 469 468 565 564 467
p(e) observed .00 .02 .00 .01 .00 .01 .03 .01 .00
p(e) parallel self-terminating .00 .01 .00 .01 .00 .00 .00 .00 .00

Subject 2
RT observed 609 682 687 748 476 479 635 658 452
RT serial self-terminating 618 681 674 737 478 476 632 686 480
p(e) observed .00 .04 .01 .04 .02 .03 .03 .02 .01
p(e) serial self-terminating .00 .04 .03 .08 .01 .01 .02 .02 .00

Subject 3
RT observed 596 664 665 709 707 721 559 548 531
RT serial self-terminating 606 659 658 707 699 745 548 553 534
p(e) observed .01 .00 .01 .01 .01 .02 .01 .00 .00
p(e) serial self-terminating .00 .00 .00 .01 .01 .01 .00 .00 .00

Subject 4
RT observed 590 618 619 657 624 657 424 423 432
RT serial self-terminating 591 617 620 647 628 659 431 433 432
p(e) observed .00 .01 .01 .03 .02 .04 .01 .01 .00
p(e) serial self-terminating .00 .01 .01 .02 .01 .01 .00 .00 .00

Subject 5
RT observed 546 618 596 687 630 615 484 481 464
RT serial self-terminating 548 626 596 674 611 658 478 481 476
p(e) observed .00 .02 .01 .05 .02 .03 .01 .00 .00
p(e) serial self-terminating .00 .04 .01 .05 .03 .03 .00 .00 .00

Note. RT � mean correct response time in milliseconds; p(e) � proportion of errors.
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Figure 6. Observed mean response times (RTs) for the individual subjects and stimuli in Experiment 1. Error
bars represent 	1 SE. The left panels show the results for the target-category stimuli, and the right panels show
the results for the contrast-category stimuli. Left panels: L � low-salience dimension value; H � high-salience
dimension value; D1 � Dimension 1; D2 � Dimension 2. Right panels: R � redundant stimulus; I � interior
stimulus; E � exterior stimulus.
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candidates). We revisit all of these results in the section on
quantitative model fitting.

We conducted various statistical tests to corroborate the descrip-
tions of the data provided above. The main results are reported in
Table 2. With regard to the target-category stimuli, for each
individual subject, we conducted three-way analyses of variance
(ANOVAs) on the RT data using as factors session (2–5), level of
saturation (high or low), and level of vertical-line position (high or
low). Of course, the main effects of saturation and line position
(not reported in the table) were highly significant for all subjects,
reflecting the fact that the high (H) values were classified more
rapidly than were the low (L) values. The main effect of sessions
was statistically significant for all subjects, usually reflecting ei-
ther a slight speeding up or slowing down of performance as a
function of practice in the task. However, there were no interac-
tions of session with the other factors, reflecting that the overall
pattern of RTs was fairly stable throughout testing.

The most important question is whether there was an interaction
between the factors of saturation and line position. The interaction
test is used to assess the question of whether the mean RTs show
a pattern of additivity, underadditivity, or overadditivity. The
interaction between level of saturation and level of line position
did not approach statistical significance for Subjects 1, 2, 4, or 5,
supporting the conclusion of mean RT additivity. This finding is
consistent with the predictions from the logical-rule models that
assume serial processing of the dimensions. The interaction be-

tween saturation and line position approached significance for
Subject 3, in the direction of underadditivity. Therefore, for Sub-
ject 3, the contrast between the serial versus parallel-exhaustive
models is not clear-cut for the target-category stimuli.

Regarding the contrast-category stimuli, we conducted a series
of focused t tests for each individual subject for those stimulus
comparisons most relevant to distinguishing among the models.
The results, reported in detail in Table 2, generally corroborate the
summary descriptions that we provided above. Specifically, for all
of the subjects, the RT difference between the interior and exterior
stimulus on the first-processed dimension was small and not sta-
tistically significant; the redundant stimulus tended to be classified
significantly faster than both the interior and exterior stimuli; and,
in the majority of cases, the exterior stimulus was classified
significantly faster than the interior stimulus on the second-
processed dimension.

Quantitative Model-Fitting Comparisons

We turn now to the major goal of the studies, which is to test the
alternative models on their ability to account in quantitative detail
for the complete RT-distribution and choice-probability data asso-
ciated with each of the individual stimuli. We fitted the models to
the data by using two methods. The first was a minor variant of the
method of quantile-based maximum-likelihood estimation
(QMLE; Heathcote, Brown, & Mewhort, 2002). Specifically, for

Table 2
Experiment 1: Statistical Test Results

Target-category factor df F

Contrast-category comparison

Stimuli M t

Subject 1
Session 3 24.33�� E1–I1 �9.6 �1.70
Sat. � LP 1 1.73 E2–I2 25.9 4.46��

Sat. � LP � Session 3 0.59 E1–R 20.8 4.20��

Error 1401 I1–R 30.5 6.21��

Subject 2
Session 3 2.86� E1–I1 �3.7 �0.39
Sat. � LP 1 0.80 E2–I2 �23.0 �2.18�

Sat. � LP � Session 3 0.21 E1–R 23.7 2.72��

Error 1373 I1–R 27.4 3.14��

Subject 3
Session 3 82.44�� E1–I1 11.4 1.26
Sat. � LP 1 3.52† E2–I2 �13.5 �1.31
Sat. � LP � Session 3 0.04 E1–R 28.2 3.27��

Error 1392 I1–R 16.8 2.22�

Subject 4
Session 3 139.74�� E1–I1 1.5 0.32
Sat. � LP 1 1.21 E2–I2 �33.0 �4.55��

Sat. � LP � Session 3 0.71 E1–R �7.5 �1.52
Error 1386 I1–R �9.0 �1.85†

Subject 5
Session 3 8.88�� E1–I1 3.0 0.44
Sat. � LP 1 2.63 E2–I2 15.0 1.80†

Sat. � LP � Session 3 0.92 E1–R 20.4 3.23��

Error 1383 I1–R 17.4 2.84��

Note. For the contrast-category t tests, the dfs vary between 687 and 712, so the critical values of t are essentially z. Sat. � saturation; LP � line position;
E1 � exterior stimulus on first-processed dimension; I1 � interior stimulus on first-processed dimension; E2 � exterior stimulus on second-processed
dimension; I2 � interior stimulus on second-processed dimension; R � redundant stimulus; M � mean response time difference (in milliseconds).
† p � .075. � p � .05. �� p � .01.
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each individual stimulus, the observed correct RTs were divided
into the following quantile-based bins: the fastest 10% of correct
RTs, the next four 20% intervals of correct RTs, and the slowest
10% of correct RTs. (The observed RT-distribution data, summa-
rized in terms of the RT cutoffs that marked each RT quantile, are
reported for each individual subject and stimulus in Appendix B.)
Because error proportions were low, it was not feasible to fit
error-RT distributions. However, the error data still provide a
major source of constraints, because the models are required to
simultaneously fit the relative frequency of errors for each indi-
vidual stimulus (in addition to the distributions of correct RTs).

We conducted extensive computer searches (a modification of
Hooke & Jeeves, 1961) for the free parameters in the models that
maximized the multinomial log-likelihood function:

ln L � �
i�1

n

ln
Ni !� � �
i�1

n �
j�1

m�1

ln
fij !� � �
i�1

n �
j�1

m�1

fij � ln
 pij�,

(2)

where Ni is the number of observations of stimulus i (i � 1, n); fij
is the frequency with which stimulus i had a correct RT in the jth
quantile (j � 1, m) or was associated with an error response (j �
m � 1); and pij (which is a function of the model parameters) is the
predicted probability that stimulus i had a correct RT in the jth
quantile or was associated with an error response.

Speckman and Rouder (2004) have criticized use of the QMLE
method because it does not provide a true likelihood. In brief, they
noted that the multinomial likelihood (Equation 2) is based on
category bins set a priori at fixed widths and having variable
counts, whereas quantile-based bins have variable widths and fixed
counts (for further details, see Speckman & Rouder, 2004; for a
reply, see Heathcote & Brown, 2004). To address this concern, we
also fitted all of the RT-distribution data by dividing the RTs into
fixed-width bins (of 100 ms), ranging from zero to 3,000, and
again searched for the free parameters that maximized the Equa-
tion 2 likelihood function with respect to these fixed-width bins.
The two methods provided identical qualitative patterns of results
in terms of the assessed model fits for each subject’s data. Because
the quantile-based method remains the more usual approach in the
field, we report those results in the present article. The results from
the alternative fixed-width bin approach are available upon re-
quest.

To take into account the differing number of free parameters for
some of the models, we used the Bayesian information criterion
(BIC; Wasserman, 2000). The BIC is given by

BIC � –2 ln(L) � P � ln(M), (3)

where ln(L) is the (maximum) log-likelihood of the data; P is the
total number of free parameters in the model; and M is the total
number of observations in the data set. The model that yields the
smallest BIC is the preferred model. In the BIC, the term P �
ln(M) penalizes a model for its number of free parameters. Thus,
if two models yield nearly equivalent log-likelihood fits to the
data, then the simpler model with fewer free parameters is pre-
ferred.

Modern work in mathematical psychology makes clear that the
overall flexibility of a model is based not only on its number of

free parameters but on its functional form as well (e.g., Myung,
Navarro, & Pitt, 2006). Therefore, use of the BIC is not a perfect
solution for evaluating the quantitative fits of the competing mod-
els. Nevertheless, at the present stage of development, we view it
as a reasonable starting tool. In addition, as shown later, the BIC
results tend to closely mirror the results from the converging sets
of qualitative comparisons that distinguish among the predictions
from the models. That is, the model that yields the best BIC fit
tends to be the one that yielded the best qualitative predictions of
the pattern of RT data.

We generated quantitative predictions of the RT-distribution
and choice-probability data by means of computer simulation (the
source codes for the simulations are available at http://
www.cogs.indiana.edu/nosofsky/). We used 10,000 simulations of
each individual stimulus to generate the predictions for that stim-
ulus (so that 90,000 simulations were used to generate the predic-
tions for the entire data set for each individual subject). Further-
more, we used 100 different random starting configurations of the
parameter values for each individual model in our computer
searches for the best-fitting parameters.

The BIC fits of the models are reported for each individual
subject in Table 3A. As can be seen, the serial self-terminating
model yields, by far, the best BIC fits for Subjects 2 and 4. This
result is not surprising because all of the focused qualitative
comparisons pointed in the direction of the serial self-terminating
model for those two subjects. (Furthermore, taken collectively, the
qualitative comparisons strongly violated the predictions from the
competing models.) The serial self-terminating model also yields
the best fits for Subjects 3 and 5, although the fit advantages are
not as dramatic for those two subjects. Only for Subject 1 was the
serial self-terminating model not the favored model. Here, the
pattern of mean RTs for the contrast category pointed away from
the serial model and was in greater overall accord with the parallel
self-terminating model.

It should be noted that, for all subjects, the parallel-exhaustive,
serial-exhaustive, coactive, and EBRW models yielded quite poor
fits to the data. The parallel-exhaustive and serial-exhaustive mod-
els had great difficulty accounting for the pattern that, for the
contrast category, both stimuli on the instructed first-processed
dimension were classified more rapidly than those on the second-
processed dimension (compare Figures 5 and 6). In addition, their
prior predictions of slow RTs for the redundant stimulus were
violated dramatically as well. The coactive-rule model and the
EBRW model yielded poor fits because (a) they predicted incor-
rectly that the target-category stimuli would show an overadditive
pattern of mean RTs and (b) they predicted incorrectly that the
interior members of the contrast category would tend to be clas-
sified more rapidly than the exterior members (compare Figures 5
and 6). Thus, in the present experiment, the logical-rule models
fared much better than did two of the major previous models of
classification RT, namely the EBRW model and the RW-DFB
model (represented here in terms of the coactive model).

The best-fitting parameter estimates from the favored models
are reported in Table 4. In general, these parameter values are
highly interpretable. In all cases, for example, the decision bound-
aries (Dx and Dy) that implement the logical rules and that underlie
the random-walk decision-making process (see Figure 2, top
panel) are located approximately midway between the means of
the x0/x1 values and the y0/y1 values, as seems sensible. In addition,
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according to the parameter estimate px, Subjects 3–5 almost al-
ways processed the dimensions in the order x-then-y, as they were
instructed to do. (According to the parameter estimate, Subject 3
very occasionally processed the dimensions in the order y-then-x,
which explains the small predicted and observed redundancy gain
for the redundant stimulus for that subject’s data.) By comparison,
Subject 2 almost always processed the dimensions in the order
y-then-x, as that subject was instructed to do. (The estimated px for
Subject 1 was .144, which is also in accord with the instructions;
however, the model fits suggest that Subject 1 may have engaged
in parallel processing of the dimensions.)

The predicted mean RTs and error probabilities from the best-
fitting models are reported along with the observed data in Table
1. Inspection of the table indicates that the models are doing a very

good job of quantitatively fitting the observed mean RTs and error
rates at the level of individual subjects and individual stimuli.

Interestingly, in the present experiment, the free stimulus-drift-
rate model provided worse BIC fits than did the preferred logical-
rule model for all five subjects (see Table 3A). A straightforward
interpretation is that, under the present experimental conditions,
the extra parameters provided to the free stimulus-drift-rate model
are not needed, and the logical-rule models provide a parsimonious
description of the observed performances. Even stronger, however,
is the fact that for each of the five subjects, the preferred logical-
rule model provided a better absolute log-likelihood fit than did the
free stimulus-drift-rate model. That is, even without imposing the
penalty term associated with the BIC, the best-fitting logical-rule
model is preferred. Apparently, the logical-rule models are cap-

Table 3
Experiment 1: BIC Fits for Various Models

Subject

Model type

A: Fits for all baseline models for each subject

Serial self-
terminating

Parallel self-
terminating

Serial
exhaustive

Parallel
exhaustive Coactive EBRW

Free stimulus-
drift-rate

�ln L BIC �ln L BIC �ln L BIC �ln L BIC �ln L BIC �ln L BIC �ln L BIC

1 295 671 267 607 440 953 571 1,214 338 749 342 749 271 655
2 235 551 389 850 507 1,087 690 1,453 440 952 423 910 364 840
3 204 489 225 523 327 727 447 967 259 591 289 643 216 544
4 248 577 452 976 619 1,310 1,046 2,165 481 1,035 535 1,134 345 802
5 215 511 251 575 437 946 668 1,409 315 702 333 731 248 608

M 240 560 317 706 446 1,005 685 1,442 367 806 384 833 289 690

B: Fits for some elaborated rule-based models

Serial, attention-switch Serial, free dim. rate Coactive, free dim. rate

�ln L BIC �ln L BIC �ln L BIC

1 254 605 270 637 290 669
2 201 499 232 561 389 867
3 195 486 184 464 237 562
4 169 435 211 520 368 826
5 208 512 202 502 267 623

M 205 507 220 537 310 709

Note. Best Bayesian information criterion (BIC) fits are indicated by boldface type. �ln L � negative ln-likelihood; EBRW � exemplar-based
random-walk model; dim. � dimension.

Table 4
Experiment 1: Best-Fitting Parameters for Only the Best-Fitting Model for Each Subject

Subject �x �y Dx Dy �A �B �R �R k px

1 1.90 0.42 0.51 0.90 14 13 442.0 66.7 2.04 —
2 0.56 0.54 0.44 0.49 3 2 336.7 96.2 47.43 .002
3 0.24 0.39 0.74 0.57 2 3 306.4 94.0 75.12 .891
4 0.20 0.38 0.72 0.46 2 2 272.8 66.4 79.64 1.000
5 0.46 0.71 0.57 0.52 3 3 356.5 64.7 30.96 .976

Note. For Subjects 2–5, the best-fitting model was the serial self-terminating rule model. For Subject 1, the best-fitting model was the parallel
self-terminating rule model.
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turing aspects of the shapes of the RT distributions that the free
stimulus-drift-rate model fails to capture. (To preview, the serial-
rule model will be seen to provide a better account of the relative
skew of some of the distributions.) Before addressing this point in
more detail, we first consider some elaborations of the rule-based
models.

Elaborated Rule-Based Models and Shapes of
RT Distributions

Although members from the class of logical-rule models are
already providing far better accounts of the RT data than are
important extant alternatives, there is still room for improvement.
In this section we briefly consider some elaborations of the logical-
rule models. One purpose is to achieve yet improved accounts of
the data and to gain greater insight into why the models are
providing relatively good fits. A second purpose is to gain more
general evidence for the utility of the logical-rule models by
relaxing some of the assumptions of the baseline models.

Attention switching. We begin by focusing on the serial
self-terminating model, that is, the model that is intended to reflect
the instructed strategy that was provided to the subjects. Recall that
to foster conditions that would likely be conducive to serial-rule-
based processing, we used stimuli that varied along highly sepa-
rable dimensions. Indeed, the stimuli were composed of spatially
separated components. A likely mechanism that was left out of the
modeling is that subjects would need to shift their attention from
one spatial component to another in order to implement the rules.
Furthermore, there is much evidence that shifting spatial attention
takes time (e.g., Sperling & Weichselgartner, 1995). Even under
conditions involving spatially overlapping dimensions, it may take
time for shifts of dimensional attention to occur. Therefore, with
the aim of providing a more complete description of performance,
we elaborated the serial self-terminating model by adding an
attention-shift stage.8 Specifically, we augmented the serial model
by including a log-normally distributed attention-shift stage. Thus,
the total classification RT would be the sum of decision-making
times on each processed dimension, the residual base time, and the
time to make the attention shift. Note that the attention-shift stage
is not redundant with the residual base time. In particular, it occurs
only for stimuli that require both dimensions to be processed (i.e.,
all members of the target category, and the members of the contrast
category on the second-processed dimension). This elaboration of
the serial model required the addition of two free parameters, the
mean �AS and variance �AS

2 of the log-normal attention-shift dis-
tribution. The fits of the serial self-terminating attention-shift
model are reported in Table 3B. The table indicates that, even
when penalizing the attention-shift model for its extra free param-
eters by using the BIC measure, it provides noticeably better fits
than did the baseline serial model for three of the five subjects, and
about equal fits for the other two (compare to results in Table 3A).
These results confirm the potential importance of including as-
sumptions about attention shifting in complete models of the time
course of rule-based classification.9

The fits of the attention-switching, serial self-terminating rule
model rule are illustrated graphically in Figure 7, which plots the
predicted RT distributions for each individual subject and stimulus
against the observed RT distributions. Although there are some

occasional discrepancies, the overall quality of fit appears to be
quite good. Thus, not only does the model account for the main
qualitative patterns involving the mean RTs, it captures reasonably
well the shapes of the detailed individual-stimulus RT distribu-
tions. None of the other models, including the free stimulus-drift-
rate model, came close to matching this degree of fit across the five
subjects.

A remaining question is why is the serial-rule model providing
better fits to the RT classification data than the free stimulus-drift-rate
model? Recall that the free stimulus-drift-rate model can describe any
pattern of mean RTs, so the answer has something to do with the
models’ predictions of the detailed shapes of the RT distributions. To
provide some potential insight, Figure 8 shows in finer detail the
predicted and observed RT distributions for Subject 2, where the
improvement yielded by the serial attention-shift model relative to the
free stimulus-drift-rate model was quite noticeable.

Consider first the free stimulus-drift-rate model’s predictions of
the RT distributions for the interior and exterior members of the
contrast category (see Figure 8, top panel). Recall that, for Subject
2, dimension y was the first-processed dimension and dimension x
was the second-processed dimension. The predicted RT distribu-
tions for the contrast-category members on the second-processed
dimension (x0y1 and x0y2) are of course pushed farther to the right
than those on the first-processed dimension (x1y0 and x2y0). Fur-
thermore, as is commonly the case for single-decision-stage
random-walk and diffusion models, the predicted RT distributions
are all positively skewed (e.g., see Ratcliff & Smith, 2004). It is
clear from inspection, however, that the predicted degree of skew-
ing is greater for the slower (i.e., left-column) members of the
contrast category. By contrast, while also predicting positively
skewed distributions, the serial attention-shift model (see Figure 8,
middle panel) makes the opposite prediction with regard to the
degree of skewing. For that model, it is the fast (bottom-row)
members of the contrast category (x1y0 and x2y0) that are predicted
to have the greater degree of positive skewing. The predicted RT
distributions for the slow (left-column) members of the contrast
category (x0y1 and x0y2) are more symmetric and bell-shaped.

The observed RT-distribution data for Subject 2 are shown in
the bottom panel of Figure 8. Inspection of the figure reveals
greater positive skewing for the fast members of the contrast
category than for the slow ones. This observation is confirmed by
calculation of skew statistics for the RT distributions, which are
summarized in Table 5. Indeed, as reported in Table 5, we ob-

8 We thank Gordon Logan (personal communication, March 25, 2009)
for his insights regarding the importance of considering the time course of
shifts of attention in our tasks.

9 We should note that augmenting the serial model with the attention-
shift stage does not change any of its qualitative predictions regarding the
predicted pattern of mean RTs for the Figure 1 category structure. The
same is not true, however, for parallel-processing models. Specifically,
instead of assuming an unlimited-capacity parallel model, one could as-
sume a limited-capacity model in which attention is reallocated depending
on how many dimensions remain to be processed. We explored a variety of
such attention-reallocation parallel models and found various examples
that could mimic the qualitative predictions from the serial model, although
none matched the serial model’s quantitative fits. Future research is needed
to reach more general conclusions about the extent to which limited-
capacity attention-reallocation parallel models could handle our data.
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served this same overall pattern of predicted and observed results
for all five of our subjects. That is, for each subject, the fast
members of the contrast category showed, on average, greater
skewing than did the slow members. Furthermore, for each subject,
the serial self-terminating attention-shift model predicted correctly
this direction of magnitude of skewing. By contrast, the free
stimulus-drift-rate model predicted the opposite direction of mag-
nitude of skewing for each subject.10

Why does the serial-rule model often predict that it is the slower
stimuli that are more symmetric and bell-shaped? The reason
probably stems, at least in part, from the fact that it is summing RT
distributions from separate stages to generate its predictions of the
overall classification RT distribution. Although the predicted out-
come of the summing process will depend on the detailed proper-
ties of the individual-stage distributions, the intuitive reasoning
here follows the central limit theorem. That theorem roughly states
that the sum of a sufficiently large number of independent random
variables, each with a finite mean and variance, will be approxi-
mately normally distributed. For the serial attention-shift rule
model, the predicted RT distribution for the slow stimuli is a sum
of four component RT distributions: the residual base time, the
attention-shift time, and two decision-stage times. By comparison,
it is a sum of only two component RT distributions for the fast
stimuli. Thus, the serial-rule model allows that the RT distributions
for the slow stimuli may turn out to be more bell-shaped.11

Relaxing the signal-detection assumptions. Our fits of the
logical-rule models have used a signal-detection approach to pre-
dicting the random-walk drift rates associated with each of the
dimension values. On the one hand, in our view, using some
approach to constraining the drift rates seems reasonable: If a
random-walk model is to provide a convincing account of the data,
then the drift rates should be meaningfully related to the structure
of the stimulus set. On the other hand, there are other approaches
to predicting the drift rates, and it is reasonable to ask whether our
conclusions may rest too heavily on the particular signal-detection
approach that we used.

For example, one of the main results of our model fitting was
that the serial self-terminating rule model yielded dramatically
better fits to the data than did the RW-DFB model (i.e., the
coactive model). This result provided evidence of the utility of
extending decision-boundary accounts of classification RT with
more detailed assumptions about mental architectures. However,
perhaps the coactive model fitted poorly because our signal-
detection approach to predicting the drift rates was badly flawed.
To address this concern, in this section we report fits of general-
izations of the serial-rule and coactive models that relax the
signal-detection assumptions. In particular, we now allow the drift
rates associated with each individual-dimension value to be free
parameters. That is, for each model, there are three freely varying
drift-rate parameters associated with the values on dimension x and
three freely varying drift-rate parameters associated with the val-
ues on dimension y. In all other respects, the serial-rule and
coactive models are the same as before.12 Note that this general-
ization adds a total of two free parameters to each logical-rule
model. Whereas the rule models with the signal-detection assump-
tions used two free parameters to predict the dimensional drift
rates on each dimension (Dx and �x on dimension x, and Dy and �y

on dimension y), the generalizations estimate three free drift-rate
parameters per dimension.

The fits of these generalized versions of the serial self-
terminating and coactive models are reported in Table 3B. The
results are clear-cut. Even allowing a completely free drift rate for
each individual-dimension value, the coactive model continues to
provide dramatically worse fits than does the serial self-
terminating rule model. Also, although the fits of the generalized
serial model are better than those of the baseline serial model
(compare results across Tables 3A and 3B), these improvements
tend to be relatively small, suggesting that the signal-detection
approach to constraining the drift rates provides a reasonable
approximation.

Experiment 2

The purpose of Experiment 2 was to extend the tests of the
logical-rule models of classification RT while simultaneously
meeting various new theoretical and empirical goals. As described
in greater detail below, a first goal was to obtain more general
evidence of the potential applicability of the models by testing
“whole object” stimuli composed of an integrated set of parts
instead of the “separate object” stimuli from Experiment 1. A
second goal was to fine-tune the category structure to yield even
stronger and more clear-cut contrasts among the competing models
than we achieved in the previous experiment. A third goal was to
test for the operation of the logical-rule models under conditions in
which subjects were not provided with explicit instructions for use
of a particular processing strategy. And a fourth goal was to test
the logical-rule models with regard to some intriguing predictions
that they make involving predicted patterns of error RTs compared
to correct RTs.

In the present experiment, we used the same logical category
structure as in Experiment 1. However, now the stimuli were a set
of schematic drawings of lamps, as depicted in Figure 9. The
stimuli varied along four trinary-valued dimensions: width of base,

10 The mean skew statistics reported in Table 5 are as calculated by Math-
ematica and SPSS and involve calculation of the third central moment. Ratcliff
(1993) has raised concerns about this statistic because it is extremely sensitive to
outliers. He suggests use of alternative measures of skew instead, such as Pearson’s
robust formula of 3 � (mean � median)/standard deviation. Regardless of which
one of these measures of skew is used, the predictions of direction of skew from
the serial attention-switch model always agreed with the observed data. By con-
trast, even using Pearson’s robust formula, the free stimulus-drift-rate model
predicted incorrectly the direction of skew for three of the five subjects.

11 Still another approach to gaining insight on the predicted and ob-
served shapes of the RT distributions, which we have not yet pursued,
would involve analyses that also assess the location of the leading edge of
the distributions. For example, Ratcliff and Murdock (1976) and Hockley
(1984) conducted analyses in which the convolution of a normal and an
exponential distribution (i.e., the ex-Gaussian distribution) was fitted to RT
distributions. Shifts in the leading edge of an RT distribution, which tend
to be predicted by models that posit the insertion of a serial stage, are
generally reflected by changes in the fitted mean of the normal component
of the ex-Gaussian. By contrast, changes in skew tend to be reflected by the
fitted rate parameter of the exponential component.

12 Note that these generalized rule models assign a freely varying drift-
rate parameter to each dimension value; they should not be confused with
the free stimulus-drift-rate model, which does not incorporate mental-
architecture assumptions and which assigns a freely varying drift-rate
parameter to each stimulus.

327CLASSIFICATION RESPONSE TIME



degree of curvature (or tallness) of the top finial, shape of the body
of the lamp, and shape of the shade of the lamp. Only the first two
dimensions (width of base and curvature of finial) were relevant to
the logical category structure. We varied the other dimension
values (shape of body and shade) only to increase the overall
category size and to possibly discourage exemplar-memorization

processes in classification. Importantly, as in Experiment 1, the
relevant dimension values that compose the stimuli continue to
be located in spatially nonoverlapping regions, which we believe
should foster observers’ use of a serial, logical-rule strategy. In the
present case, however, we achieve more generality than in Exper-
iment 1, because the separate dimension values compose familiar,

Figure 7. Fit (solid dots) of the serial self-terminating model (with attention switching) to the detailed response
time (RT) distribution data (open bars) of the individual subjects in Experiment 1. Each cell of each panel shows
the RT distribution associated with an individual stimulus. Within each panel, the spatial layout of the stimuli
is the same as in Figure 1.
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whole objects. Indeed, these types of lamp stimuli (as well as other
object-like stimuli composed of spatially separated parts) have
been used extensively in past research in the classification-RT and
object-recognition literatures.

Second, although the basic category structure is the same as in
Experiment 1, note that we greatly reduced the overall discrim-
inability between the dimension values that define the contrast
category and those that define the low-salience values of the target

Figure 8. Detailed depiction of the predicted and observed individual-stimulus response time (RT) distribu-
tions for Subject 2 of Experiment 1. Each bar of each histogram represents the predicted or observed number of
entries in a 100-ms interval. Top panel: Predictions from the free stimulus-drift-rate model. Middle panel:
Predictions from the serial self-terminating model with attention switching. Bottom panel: Observed data. Within
each panel, the spatial layout of the stimuli is the same as in Figure 1.

329CLASSIFICATION RESPONSE TIME



category (see Figure 9). The schematic structure of this modified
design is shown in Figure 10. The logical rules that define the
categories are the same as before. However, because of the mod-
ified spacings between the dimension values, the difference be-
tween the processing rates associated with the low-salience and
high-salience values should be magnified relative to Experiment 1.
The upshot is that the design should provide much stronger quan-
titative differences in the classification RTs of various critical
stimuli to allow stronger contrasts among the models. For exam-
ple, one of the critical qualitative contrasts that separates the
serial self-terminating, coactive, and parallel self-terminating
rule models is the pattern of mean RTs for the interior and
exterior stimuli on the second-processed dimension (see Figure 5):
The serial model predicts faster RTs for the external stimulus, the
coactive model predicts faster RTs for the interior stimulus, and
the parallel model predicts equal RTs. These predictions depend,
however, on the processing rate for the low-salience dimension
values being slower than the processing rate for the high-salience
dimension values. By magnifying these processing rate differ-
ences, the present modified design should thereby yield stronger
contrasts among the models.

Third, we varied the instructions provided to different subjects.
The first two subjects received instructions that were analogous to
those from Experiment 1, with one instructed to process the
dimensions in the order y-then-x and the other in the order
x-then-y. The second two subjects were also provided with knowl-
edge about the logical rules that defined the categories prior to
engaging in the classification task. However, they were not pro-
vided with any instructions for use of a particular processing
strategy as a basis for classification. Instead, they were free to use
whatever classification strategy they chose, including not using a
logical-rule-based strategy at all.

Because the critical RT contrasts that distinguish among the
models assume accurate responding, the instructions for these first
four subjects continued to emphasize that responding be extremely
accurate. Therefore, we refer to these four subjects as the accuracy
subjects. To investigate some further theoretical predictions from
the logical-rule models, we also tested two subjects under speed–
stress conditions. These subjects were instructed to respond as
rapidly as possible, while keeping their error rates to acceptable
levels (see the Method section of this experiment for details). The
goal here was to generate error-RT data that would be suitable for
model fitting. These speed subjects were provided with explicit
instructions to use a fixed-order serial self-terminating strategy, as
was the case for the subjects in Experiment 1. As seen later,
although some of the previous qualitative contrasts among the
models no longer hold under conditions with high error rates, the

Figure 10. Schematic illustration of the category structure and spacings
between dimension values for the stimuli used in Experiment 2.

Table 5
Experiment 1: Summary Skew Statistics for Interior and Exterior Stimuli Along the First-Processed (Fast) and Second-Processed
(Slow) Dimensions

Subject

Observed Free stimulus-drift-rate Serial with attention-switch

Slow Fast Slow Fast Slow Fast

1 0.59 0.92 1.03 0.45 1.12 1.53
2 0.71 0.99 1.53 0.65 0.20 1.14
3 0.71 1.33 0.95 0.54 1.98 2.43
4 0.76 1.06 0.55 0.51 0.74 0.84
5 0.94 1.42 1.59 0.49 1.00 1.38

Figure 9. Illustration of the “lamp” stimuli used in Experiment 2.
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serial-rule model makes a new set of intriguing predictions regard-
ing the relationship between correct and error RTs. Moreover,
these predictions vary in an intricate way across the individual
stimuli that compose the categories. Beyond testing these new
predictions, the aim was also to test whether the serial logical-rule
model could simultaneously fit complete distributions of correct
and error RTs.

Method

Subjects. The subjects were six undergraduate and graduate
students associated with Indiana University. All subjects were
under 40 years of age and had normal or corrected-to-normal
vision. The subjects were paid $8 per session plus a $3 bonus per
session depending on performance.

Stimuli. The stimuli were drawings of lamps composed of
four parts (see Figure 9): a finial (or top piece), which varied in
amount of curvature (or tallness or area); a lamp shade, which
varied in the angle at which the sides connected the bottom of
the shade to the top of the shade; the design or body of the lamp,
which varied in three qualitatively different forms; and the base
of the lamp, which varied in width. The shade and body of the
lamp were irrelevant dimensions and varied in nondiagnostic
fashion from trial to trial. The shade and the body together were
385 pixels tall and 244 pixels at the widest point (the bottom of
the shade piece).

The two relevant dimensions were the finial and the base. The
combination of values on these dimensions formed the category
space, as shown in Figures 9 and 10. The finial curvature was
created by drawing an arc inside of a rectangle with a 60-pixel
width and variable height (15, 17, or 24 pixels). The base was a
rectangle with a 20-pixel height and variable width (95, 105, or
160 pixels). The stimuli were assigned to Categories A and B as
illustrated in Figure 9 (with the shade and body dimensions vary-
ing randomly across trials and being irrelevant to the definition of
the categories).

Procedure. In each session, subjects completed 27 practice
trials (three repetitions of the nine main stimulus types) followed
by six blocks of 135 experimental trials (810 trials in total).
Because the stimuli were composed of four trinary-valued dimen-
sions, there was a total of 81 unique stimulus tokens. Each of the
81 tokens was presented 10 times in each session. Within each
block of 135 trials, each of the nine critical stimulus types was
presented 15 times. For each individual subject and session, the
ordering of presentation of the stimuli was randomized within
these constraints. There were five sessions in total, with the first
session considered practice.

Subjects initiated each trial by pressing a mouse key. A fixation
cross then appeared for 1,770 ms. After 1,070 ms from the initial
appearance of the fixation cross, a warning tone was sounded for
700 ms. Following the warning tone, a stimulus was presented and
remained onscreen until the subject made a response. If the re-
sponse was incorrect or the response took longer than 5 s, feedback
(“WRONG” or “TOO SLOW”) was presented for 2 s. Subjects
were then shown instructions to press a mouse key to advance to
the next trial.

Using the same procedure as in Experiment 1, all subjects were
provided with explicit knowledge about the logical rules that

defined the category structure prior to engaging in the classifica-
tion task.

There were four accuracy subjects, whom we denote as Subjects
A1–A4. The accuracy subjects were instructed to classify the
stimuli without making any errors. They understood, however, that
their RTs were being measured, so they needed to make their
responses immediately once they had made a classification deci-
sion. The first two accuracy subjects (A1 and A2) were given
explicit instructions for using a fixed-order, serial self-terminating
strategy to apply the classification rules. These instructions were
directly analogous to the ones we already presented in the Method
section of Experiment 1. Subject A1 was provided with instruc-
tions to process the dimensions in the order y-then-x (base fol-
lowed by finial), whereas Subject A2 processed the dimensions in
the order x-then-y.

Although the second two accuracy subjects (A3 and A4) were
provided with knowledge of the logical category structure prior to
engaging in the classification task, they were not provided with
any instructions for use of a particular processing strategy. They
were instructed to formulate some single strategy for categorizing
the items during the first session. Then, in Sessions 2–5, they were
instructed to maintain that strategy (whatever that may be) on all
trials.

There were two speed subjects, whom we denote as Subjects S1
and S2. The speed subjects were given explicit instructions to use
a fixed-order serial self-terminating processing strategy for apply-
ing the rules (as in Experiment 1), with S1 processing the dimen-
sions in the order y-then-x and S2 processing the dimensions in the
order x-then-y. In the first session, to ensure that the speed subjects
understood the rules and the intended strategy, they were in-
structed to categorize the stimuli without making any errors. (Sub-
ject S1 received two sessions of this preliminary accuracy training,
as this subject had some difficulty during the first session in
discriminating the stimulus dimensions.) Then, in Sessions 2 to 5,
the speed subjects were instructed to respond as fast as possible,
while trying to keep their error rate at about 15 total errors per
block.

Results and Theoretical Analysis: Accuracy Subjects

In this section we report and analyze the results from the four
accuracy subjects. As was the case in Experiment 1, the practice
session (Session 1) was not included in the analyses. RTs associ-
ated with error responses were not analyzed. In addition, condi-
tionalized on each individual subject and stimulus, we removed
from the analysis correct RTs greater than 3 SDs above the mean
and also RTs of less than 150 ms. This latter procedure led to
dropping less than 2% of the trials from analysis. Due to computer/
experimenter error, the data from 81 trials from the first block of
Session 2 of Subject A2 are missing.

Mean RTs and error rates. The mean correct RTs and error
rates for each individual stimulus for each subject are reported
in Table 6. (The detailed RT-distribution data for each individ-
ual subject and stimulus are reported in Appendix B.) As
intended by the nature of the design, error rates are very low.
The mean RTs for the individual subjects and stimuli are
displayed graphically in the panels in Figure 11. The left panels
show the results for the target-category stimuli and the right
panels show the results for the contrast-category stimuli. The
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format for displaying the results is the same as used in Exper-
iment 1. Comparing the observed data to the canonical-
prediction graphs in Figure 5, the results are clear-cut: For each
subject, the results point strongly toward a form of the serial
self-terminating rule model. First, as can be seen in the left
panels of Figure 11, the mean RTs for the target-category
members are very close to additive (MIC � 0). Second, as can
be seen in the right panels, for those contrast-category stimuli
that satisfy the disjunctive rule on the second-processed dimen-
sion, RTs for the exterior stimulus are markedly faster than for
the interior stimulus. In addition, for Subjects A1, A2, and A4,
there is little difference among the RTs for the redundant
stimulus and the interior and exterior stimuli on the first-
processed dimension. The overall combined pattern of results
for these subjects is indicative of a fixed-order, serial self-
terminating, rule-based processing strategy. This strategy was
the instructed one for Subjects A1 and A2 and was apparently
the strategy of choice for uninstructed Subject A4. Interest-
ingly, for Subject A3, the mean RTs on the faster processed
dimension also show the pattern in which the exterior stimulus
is classified markedly faster than the interior stimulus. Further-
more, for this subject, the redundant stimulus has the fastest
mean RT among all of the contrast-category members. This
combined pattern of results is indicative of a mixed-order, serial
self-terminating, rule-based processing strategy. Apparently,
Subject A3 chose to vary the order of processing the dimensions
in applying the logical rules.

We conducted the same statistical tests as described previously
in Experiment 1 to corroborate the descriptions of the data pro-
vided above. The results of the tests are reported in Table 7. The
most important results are that (a) the interaction between level of
finial and level of base did not reach statistical significance for
Subjects A2, A3, or A4, and only approached significance for

Subject A1, supporting our summary description of an additive
pattern of mean RTs for the target-category members, and (b) for
all subjects, mean RTs for the external stimulus on the second-
processed dimension were significantly faster than for the internal
stimulus on that dimension. Some of the other results are more
idiosyncratic and difficult to summarize: They basically bear on
whether the pattern of data is more consistent with a pure, fixed-
order serial strategy or a mixed-order serial strategy for each
individual subject. Whereas the qualitative patterns of results are
generally consistent with the predictions from either a fixed-order
or mixed-order serial self-terminating rule strategy, they strongly
contradict the predictions from all of the competing rule models as
well as the exemplar model.

Quantitative model fitting. We fitted the models to the com-
plete distributions of correct RT data and to the error proportions
by using the same methods as described in Experiment 1.13 The
model fits are reported in Table 8A. The results are clear-cut: The
serial self-terminating rule model provides, by far, the best BIC fit
to each of the individual subjects’ data. Furthermore, the advan-
tages in fit for the serial self-terminating model are far more
pronounced than was the case in Experiment 1, a result that attests

13 For simplicity, in the modeling, the means of the signal-detection
distributions corresponding to the three levels of lamp base and lamp finial
were set equal to the physical dimension values that we reported in the
Method section of this experiment. We arbitrarily scaled the lamp-base
dimension values by 0.1, so that the base and finial had approximately the
same range of means. The only substantive constraint entailed by this
approach is the simplifying assumption that the signal-detection distribu-
tion means are linearly related to the physically specified dimension values.
Any differences in overall discriminability between the dimensions are
modeled in terms of the perceptual-distribution standard-deviation param-
eters, �x and �y.

Table 6
Experiment 2 (Accuracy Subjects): Mean Correct RTs and Error Rates for Individual Stimuli, Observed and Best-Fitting Baseline
Model Predicted

RT and error rate by subject x2y2 x2y1 x1y2 x1y1 x2y0 x1y0 x0y2 x0y1 x0y0

Subject A1
RT observed 668 895 882 1,160 566 625 825 974 607
RT serial self-terminating 677 917 882 1,129 617 618 783 1,005 618
p(e) observed .01 .04 .02 .12 .04 .04 .02 .01 .00
p(e) serial self-terminating .00 .04 .03 .08 .01 .00 .01 .01 .00

Subject A2
RT observed 611 834 866 1,077 828 1,045 583 606 631
RT serial self-terminating 622 819 879 1,079 811 1,048 590 604 604
p(e) observed .00 .01 .05 .02 .02 .01 .01 .01 .00
p(e) serial self-terminating .00 .00 .01 .02 .00 .00 .00 .00 .00

Subject A3
RT observed 676 997 973 1,275 793 922 816 978 755
RT serial self-terminating 692 991 973 1,269 822 951 833 979 771
p(e) observed .01 .04 .03 .07 .03 .04 .01 .03 .00
p(e) serial self-terminating .00 .05 .04 .08 .02 .02 .02 .02 .00

Subject A4
RT observed 808 1,031 1,041 1,270 799 797 958 1,169 822
RT serial self-terminating 815 1,029 1,035 1,247 820 819 970 1,184 822
p(e) observed .00 .01 .01 .05 .03 .01 .02 .03 .00
p(e) serial self-terminating .00 .02 .02 .04 .01 .01 .01 .01 .00

Note. RT � mean correct response time in milliseconds; p(e) � probability of error.

332 FIFIC, LITTLE, AND NOSOFSKY



to the more diagnostic nature of the modified category structure
used in the present experiment. Although we are fitting complete
RT distributions, we summarize the predictions from the best-
fitting serial self-terminating model in terms of the predicted mean
RTs and error rates for each stimulus, which are reported along
with the observed data in Table 6. Inspection of the table indicates
that the model is providing extremely accurate predictions of each
individual subject’s data at the level of the mean RTs. The best-
fitting parameters, reported in Table 9, are easily interpretable. For

example, the table indicates that Subjects A1, A2, and A4 pro-
cessed the dimensions in a nearly fixed order across trials ( px near
0 or 1), whereas Subject A3 used a mixed-order strategy ( px �
.448).

We also fitted the elaborated versions of the serial self-
terminating and coactive models that we described in Experiment
1. The fits of these elaborated models are reported in Table 8B. As
was the case in Experiment 1, elaborating the serial self-
terminating model with a dimensional attention-switching stage
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Figure 11. Observed mean response times (RTs) for the individual subjects and stimuli in Experiment 2. Error
bars represent 	1 SE. The left panels show the results for the target-category stimuli, and the right panels show
the results for the contrast-category stimuli. Left panels: L � low-salience dimension value; H � high-salience
dimension value; D1 � Dimension 1; D2 � Dimension 2. Right panels: R � redundant stimulus; I � interior
stimulus; E � exterior stimulus.
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yields even better accounts of the data than does the baseline
model, as measured by the BIC statistic. And, once again, relaxing
the signal-detection constraints from the serial and coactive mod-
els (by allowing freely estimated dimension-rate parameters) does
nothing to change the pattern of results: Regardless of whether one
adopts the signal-detection constraints or estimates freely varying
dimension-rate parameters, the serial self-terminating model yields
dramatically better fits to the data compared to the coactive model.

Finally, as was the case in Experiment 1, not only does the serial
self-terminating model yield better fits than do any of the alterna-
tive rule models or the exemplar model, it continues to yield better
absolute log-likelihood fits than does the free stimulus-drift-rate
model, which can describe any pattern of results involving the
mean RTs. Thus, the serial self-terminating rule model again
appears to be capturing important aspects of the detailed RT-
distribution data that the free stimulus-drift-rate model fails to
capture. This latter result attests to the importance of combining
mental-architecture assumptions with the random-walk modeling
in the present design.

The predicted RT distributions from the serial self-terminating
model (with attention switching) are shown along with the observed
RT distributions for each of the individual subjects and stimuli in
Figure 12. Although there are a couple of noticeable deviations (e.g.,
the first quantile for stimulus x0y2 of Subject A1, and the first quantile
for stimulus x2y0 of Subject A2), overall the model is doing a very
good job of capturing the detailed shapes of the individual-stimulus
RT-distribution data. None of the alternative models came close to
matching this degree of predictive accuracy.

Results and Theoretical Analysis: Speed Subjects

In general, in the information-processing literature, the model-
ing of error RTs poses a major challenge to formal theories, and a
key issue is whether models can account for relationships between
correct RTs and error RTs. There are two main mechanisms
incorporated in standard single-decision-stage random-walk and
diffusion models that allow for rigorous quantitative accounts of
such data (e.g., see Ratcliff, Van Zandt, & McKoon, 1999). First,
when there is variability in random-walk criterion settings across
trials, the models tend to predict fast error responses and slow
correct responses. Second, when there is variability in drift rates
across trials, the models tend to predict the opposite.

The present logical-rule models of classification RT inherit the
potential use of these mechanisms involving criterial and drift-rate
variability. In this section, however, we focus on a more novel
aspect of the models’ machinery. In particular, because they com-
bine mental-architecture assumptions with the random-walk mod-
eling, even the baseline versions of the present logical-rule models
(i.e., without drift-rate and criterial variability) predict intriguing
and intricate relations between correct and error RTs that vary
across individual stimuli within the category structures.

We bring out these predictions with respect to the serial self-
terminating model, which corresponds to the instructed strategy for
our two speed–stress subjects. The overall category structure is
illustrated again in Figure 13, but now with respect to explaining
predicted patterns of correct and error RTs. The top panel illus-
trates the main pattern of a priori predictions for correct and error

Table 7
Experiment 2 (Accuracy Subjects): Statistical Test Results

Target-category factor df F

Contrast-category comparison

Stimuli M t

Subject A1
Session 3 33.76�� E1–I1 �55.72 �3.31��

Base � Finial 1 4.00� E2–I2 �145.97 �14.13��

Session � Base � Finial 3 1.65 E1–R �49.26 �3.37��

Error 1288 I1–R 6.46 0.33
Subject A2

Session 3 65.54�� E1–I1 �22.15 �2.20�

Base � Finial 1 0.91 E2–I2 �217.57 �21.89��

Session � Base � Finial 3 1.76 E1–R �47.44 �4.00��

Error 1375 I1–R �25.29 �2.10�

Subject A3
Session 3 39.30�� E1–I1 �129.52 5.08��

Base � Finial 1 0.39 E2–I2 �162.19 �6.45��

Session � Base � Finial 3 0.78 E1–R 38.00 1.75†

Error 1346 I1–R 167.52 6.18��

E2–R 61.18 2.84��

I2–R 223.37 8.29��

Subject A4
Session 3 77.14�� E1–I1 2.32 0.13
Base � Finial 1 0.06 E2–I2 �211.83 �14.7��

Session � Base � Finial 3 2.24† E1–R �22.17 �1.32
Error 1373 I1–R �24.49 �1.48

Note. For the contrast-category t tests, the dfs vary between 650 and 705, so the critical values of t are essentially z. E1 � exterior stimulus on
first-processed dimension; I1 � interior stimulus on first-processed dimension; E2 � exterior stimulus on second-processed dimension; I2 � interior
stimulus on second-processed dimension; R � redundant stimulus; M � mean response time difference (in milliseconds).
† p � .075. � p � .05. �� p � .01.
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RTs for the case in which the subject processes the dimensions in
the order y-then-x (as Subject S1 was instructed to do). Suppose
that one of the bottom-row members of the contrast category (x1y0

or x2y0) is presented. If the subject decides correctly that the
stimulus falls below the decision bound on dimension y (Dy), then
he or she will make a correct classification response in this first
decision-making stage, because the disjunctive rule will have been
immediately satisfied. By contrast, if the first stage of decision
making leads to an incorrect judgment (i.e., that the stimulus lies
above Dy), then no rule will have yet been satisfied, so the subject
will need to evaluate the stimulus on dimension x. The most likely
scenario is that, in this next stage, the subject judges correctly that
the stimulus falls to the right of decision bound x (Dx). Combining
the initial incorrect decision with the subsequent correct one, the
outcome is that the subject will incorrectly classify the stimulus
into the target category, a sequence that will have encompassed

two stages of decision making. The upshot is that the model
predicts that, for these bottom-row contrast-category members,
error RTs should be substantially slower than correct RTs.

Whereas the serial self-terminating rule model predicts slow
error RTs for the bottom-row contrast-category members, it pre-
dicts fast error RTs for the members of the target category that
border them (i.e., x1y1 and x2y1). If presented with either one of
these stimuli, and the subject judges incorrectly that they fall
below Dy, then the subject will immediately and incorrectly clas-
sify them into the contrast category (thinking that the disjunctive
rule has been satisfied). Error responses resulting from this process
undergo only a single stage of decision making. By contrast, to
correctly classify x1y1 and x2y1 into the target category, the subject
needs to undergo both decision-making stages (to verify that the
conjunctive rule is satisfied). In sum, assuming the processing
order y-then-x, the serial self-terminating model predicts that, for

Table 8
Experiment 2 (Accuracy Subjects): BIC Fits for Various Models

Subject

Model type

A: Fits for the baseline models

Serial self-
terminating

Parallel self-
terminating

Serial
exhaustive

Parallel
exhaustive Coactive EBRW

Free stimulus-
drift-rate

�ln L BIC �ln L BIC �ln L BIC �ln L BIC �ln L BIC �ln L BIC �ln L BIC

A1 465 1,009 791 1,655 822 1,716 1,114 2,299 877 1,827 1,006 2,007 706 1,523
A2 358 796 560 1,193 625 1,323 859 1,791 820 1,712 964 1,992 422 958
A3 257 594 386 844 418 908 542 1,157 570 1,213 644 1,353 344 801
A4 250 581 439 951 476 1,024 618 1,308 553 1,179 635 1,335 379 871

M 333 745 544 1,161 585 1,243 783 1,639 705 1,483 812 1,672 463 1,038

B: Fits for some elaborated rule-based models

Serial, attention-switch Serial, free dim. rate Coactive, free dim. rate

�ln L BIC �ln L BIC �ln L BIC

A1 271 639 367 829 831 1,750
A2 303 704 348 787 670 1,429
A3 221 539 254 606 549 1,187
A4 207 511 240 576 537 1,162

M 251 598 302 700 647 1,382

Note. Best Bayesian information criterion (BIC) fit is indicated by boldface type. �ln L � negative ln-likelihood; EBRW � exemplar-based random-walk
model; dim. � dimension.

Table 9
Experiment 2: Best-Fitting Parameters for the Serial Self-Terminating Model

Subject �x �y Dx Dy �A �B �R �R k px

A1 1.890 0.988 15.970 10.027 6 4 364.5 88.4 25.955 .000
A2 1.992 2.845 16.672 9.900 24 16 542.1 105.0 1.650 .913
A3 3.325 1.723 15.650 9.824 12 5 415.9 109.6 11.440 .448
A4 2.603 1.234 15.782 9.922 9 5 563.2 126.6 14.049 .000
S1a 2.292 0.652 16.358 10.519 1 4 278.9 53.2 29.742 .000
S2b 2.397 1.628 16.279 9.832 3 3 364.1 64.6 27.229 1.000

Note. A1–A4 � Accuracy Subjects 1–4; S1–S2 � Speed Subjects 1–2; BIC � Bayesian information criterion.
a For S1, pB � .023, �AS � 232.0, �AS � 62.1, �ln L � 455, BIC � 1,015. b For S2, pB � .160, �AS � 79.0, �AS � 125.9, �ln L � 396, BIC � 897.
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stimuli x1y1 and x2y1, error RTs will be substantially faster than
correct RTs.

Although the model predicts differences between correct and
error RTs for the remaining stimuli in the category structure as
well, they tend to be far smaller in magnitude than the funda-
mental predictions summarized above. The reason is that the
kinds of error responses that result in changed sequences of
decision making are either much rarer for the remaining stimuli
in the set or else would not change the number of decision-
making stages that are required to make a response. The major
summary predictions are illustrated schematically in the top
panel of Figure 13, where a solid square denotes a very slow
error response and a solid circle denotes a very fast error
response. Analogous predictions are depicted in the bottom
panel of Figure 13, which assumes the processing order x-then-y
instead of the processing order y-then-x.

Before turning to the data, we introduce an extension to the
logical-rule models, which is required to handle a final aspect of

the correct and error RTs. To preview, an unanticipated result was
that, for the external stimulus on the second-processed dimension
(e.g., x0y2 in the top panel of Figure 13), error RTs were much
faster than correct RTs. As an explanation for the finding (which
concurs with our own subjective experience in piloting the task),
we hypothesize that, especially under speed–stress conditions,
subjects occasionally bypass the needed second stage of decision
making. For example, when stimulus x0y2 is presented, there is a
strong decision that the value y2 does not fall below the decision
bound Dy. This strong initial “no” decision (with respect to the
disjunctive rule that defines the contrast category) then leads the
observer to immediately classify the stimulus into the target cat-
egory, without checking its value on dimension x to determine if
the conjunctive rule has been satisfied. Thus, we add a single free
parameter to the serial self-terminating rule model, pB, represent-
ing the probability that this bypass process takes place. Note that
the same bypass process applies to all stimuli that have this
extreme value on the first-processed dimension (e.g., x0y2, x1y2,
and x2y2 in the top panel of Figure 13). In the case just described,
it leads to fast errors, whereas in the other cases, by chance, it
works to increase slightly the average speed of correct responses.
The fast-error prediction made by the bypass process is illustrated
schematically in terms of the dashed circles in the panels of
Figure 13.

Mean RTs and error rates. The mean correct RTs, error
RTs, and error rates for each of the stimuli for each speed subject
are reported in Table 10. (The detailed RT-distribution quantiles
are reported in Appendix B.) As predicted by the serial self-
terminating model (see Figure 13, top panel), for Subject S1, the
bottom-row members of the contrast category (x1y0 and x2y0) have
much slower error RTs than correct RTs, average t(352) � –10.97,
p � .001; the bordering members of the target category (x1y1 and
x2y1) have much faster error RTs than correct RTs, average
t(356) � 10.77, p � .001; and for external stimulus x0y2, the error
RT is significantly faster than is the correct RT, t(354) � 11.58,
p � .001. An analogous pattern of results is observed for Subject
S2, who processed the dimensions in the order x-then-y (for
predictions, see Figure 13, bottom panel). The left-column mem-
bers of the contrast category (x0y1 and x0y2) have much slower
error RTs than correct RTs, average t(350) � –15.14, p � .001; the
bordering members of the target category (x1y1 and x1y2) have
much faster error RTs than correct RTs, average t(352) � 8.54,
p � .001; and the external stimulus x2y0 has a much faster error RT
than a correct RT, t(353) � 12.16, p � .001. For the remaining
stimuli, the differences between the mean correct and error RTs
were either much smaller in magnitude or were based on extremely
small sample sizes. Finally, we should note that the overall pat-
terns of correct RTs are similar in most respects to those of the
accuracy subjects reported in the previous section; one difference,
however, is that, for both speed subjects, the external stimulus on
the second-processed dimension does not have a faster mean

Figure 12 (opposite). Fit (solid dots) of the serial self-terminating model (with attention switching) to the detailed response time (RT) distribution data
(open bars) of the individual accuracy subjects (A1�A4) in Experiment 2. Each cell of each panel shows the RT distribution associated with an individual
stimulus. The spatial layout of the stimuli is the same as in Figure 1.

Figure 13. Schematic illustration of the main predicted pattern of mean
error response times (RTs) from the serial self-terminating rule model for
the speed subjects tested in Experiment 2. Stimuli enclosed by rectangles
denote cases in which the mean error RT is predicted to be much slower
than the mean correct RT. Stimuli enclosed by circles denote cases in
which the mean error RT is predicted to be much faster than the mean
correct RT.
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correct RT than does the internal stimulus. As shown later, this
result too is captured fairly well by the serial-rule model when
applied under speed–stress conditions.14

Quantitative model fitting. We fitted the serial self-
terminating rule model to the complete distributions of correct and
error responses of each subject. (The model fits reported here made
allowance for the attention-shift stage.) The criterion of fit was
essentially the same as described in the previous sections (see
Equations 2 and 3), except now the Equation 2 expression is
expanded to include the complete distribution of error responses
into individual RT quantiles. Because there are nine stimuli, each
with six correct RT quantiles and six error-RT quantiles, and
because the probabilities across all 12 quantiles for a given stim-
ulus must sum to 1, the model is being used to predict 99 degrees
of freedom in the data for each subject.

The predicted mean correct and error RTs for each stimulus, as
well as the predicted error rates, are shown along with the observed
data in Table 10. Inspection of the table indicates that the model
predicts extremely accurately the mean correct RTs for each indi-
vidual subject and stimulus and does a reasonably good job of
predicting the error rates. (One limitation is that it overpredicts the
error rate for stimulus x0y2 of Subject S1.) The model also does a
reasonably good job of predicting mean error RTs associated with
individual stimuli that have large error rates (i.e., adequate sample
sizes). Of course, for stimuli with low error rates and small sample
sizes, the results are more variable. In all cases, the model accu-
rately predicts the main qualitative patterns of results involving the
relations between correct and error RTs that were depicted in
Figure 13. The best-fitting parameters and summary-fit measures
are reported in Table 9.

The complete sets of predicted correct and error-RT distribu-
tions are shown along with the observed distributions in Figure 14.
With respect to Subject S1, a noticeable limitation is the one we
described previously, namely that the model overpredicts the over-
all error rate for stimulus x0y2. For Subject S2, a limitation is that
the model overpredicts the proportion of entries in the fastest
quantiles for stimulus x2y0. Natural directions for extensions of the
model are to make allowance for drift-rate variability and
criterion-setting variability across trials. In our view, however, the

baseline model is already providing a very good first-order account
of the individual-subject/individual-stimulus correct and error-RT-
distribution data. An interesting question for future research is
whether some extended version of a free stimulus-drift-rate model
that makes allowance for criterial and drift-rate variability could fit
these data. Regardless, such a model does not predict a priori the
intricate pattern of correct and error RTs successfully predicted by
the serial logical-rule model in the present study.

General Discussion

Summary of Contributions

To summarize, the goal of this work was to begin the develop-
ment of logical-rule-based models of classification RT and to
conduct initial tests of these models under simplified experimental
conditions. The idea that rule-based strategies may underlie vari-
ous forms of classification is a highly significant one in the field.
In our view, however, extant models have not addressed in rigor-
ous fashion the cognitive processing mechanisms by which such
rules may be implemented. Thus, the present work fills a major
theoretical gap and provides answers to the question, If logical-
rule-based strategies do indeed underlie various forms of classifi-
cation, then what would the patterns of classification RT data look
like? Furthermore, because the predictions from rule-based models
and various alternatives are often exceedingly difficult to distin-
guish on the basis of choice-probability data alone, the present
direction provides potentially highly valuable tools for telling such
models apart.

14 The explanation is as follows. Consider Figure 13 (top panel) and the
interior stimulus on the second-processed dimension (x0y1). There will be
a sizeable proportion of trials in which, during the first stage of speed–
stress decision making, the subject judges (incorrectly) this stimulus to fall
below the dimension y decision bound. On such trials, the subject correctly
classifies the stimulus into the contrast category for the wrong reason!
Mixing these fast-correct responses with the slower two-stage ones leads
the model to predict much smaller differences in mean RTs between the
interior and exterior stimuli on the second-processed dimension.

Table 10
Experiment 2 (Speed Subjects): Mean Correct RTs, Error RTs, and Error Rates for the Individual Stimuli, Observed and Predicted

Subject x2y2 x2y1 x1y2 x1y1 x2y0 x1y0 x0y2 x0y1 x0y0

S1
Mean correct RT observed 540 610 646 675 431 435 724 679 431
Mean correct RT predicted 564 627 613 681 429 433 710 690 431
Mean error RT observed 573 434 704 507 668 782 582 622 512
Mean error RT predicted — 538 736 587 573 633 590 659 612
p(e) observed .003 .168 .092 .270 .025 .039 .256 .388 .011
p(e) predicted .000 .218 .062 .274 .064 .054 .398 .292 .026

S2
Mean correct RT observed 550 720 709 854 798 778 520 542 562
Mean correct RT predicted 579 669 736 848 748 807 536 539 553
Mean error RT observed 526 673 543 609 577 793 822 1,190 675
Mean error RT predicted — 725 581 668 625 883 701 803 856
p(e) observed .008 .081 .246 .268 .352 .288 .077 .068 .008
p(e) predicted .000 .101 .192 .287 .389 .225 .073 .062 .023

Note. RT � response time in milliseconds; p(e) � probability of error.
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Figure 14. Fit (solid dots) of the serial self-terminating model (with attention switching) to the detailed response
time (RT) distribution data (open bars) of the individual speed subjects (S1 and S2) in Experiment 2. Each cell of each
panel shows the RT distributions associated with an individual stimulus. The top distribution in each cell corresponds
to correct RTs and the bottom distribution in each cell corresponds to error RTs. The spatial layout of the stimuli is
the same as in Figure 1. For purposes of visibility, the error RT distributions are shown with a magnified scale.
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Another significant contribution of the work is that, en route to
developing these rule-based classification RT models, we further
investigated the idea of combining mental-architecture and ran-
dom-walk/diffusion approaches within an integrated framework.
In our view, this integration potentially remedies limitations of
each of these major approaches when applied in isolation. Past
applications of mental-architecture approaches, for example, have
generally failed to account for error processes, and the impact of
errors on the RT predictions from mental-architecture models is
often difficult to assess. Conversely, random-walk/diffusion ap-
proaches are among the leading process models for providing joint
accounts of correct and error-RT distributions; however, modern
versions of such models are intended to account for performance
involving “single-stage” decision-making processes. Various
forms of cognitive and perceptual decision making, such as the
present forms of logical-rule evaluation, may entail multiple
decision-making stages. Thus, the present type of integration has
great potential utility.

Relations to Previous Work

Mental architectures and decision-bound theory. The
present logical-rule-based models have adopted the assumption
that a form of decision-bound theory operates at the level of
individual dimensions. Specifically, the observer establishes a
criterion along each individual dimension to divide it into category
regions (see Figure 2, top panel). Perceptual sampling along that
dimension then drives the random-walk process that leads to
decision making on that individual dimension. Unlike past appli-
cations of decision-bound theory, however, multidimensional clas-
sification decisions are presumed to arise by combining those
individual-dimension decisions via mental architectures that im-
plement the logical rules.

As noted earlier, past applications of decision-bound theory
have assumed that multidimensional classification RT is some
decreasing function of the distance of a stimulus to some multidi-
mensional boundary. Furthermore, as we previously explained, the
coactive-rule model turns out to provide an example of a random-
walk implementation of this multidimensional distance-from-
boundary hypothesis. Specifically, the coactive model arises when
the multidimensional boundary consists of two linear boundaries
that are orthogonal to the coordinate axes of the space. In the
present work, a major finding was the superior performance of
some of the serial- and parallel-processing rule-based models
compared to this coactive one. Those results can be viewed as
providing evidence of the utility of adding alternative mental-
architecture assumptions to the standard decision-bound account.

A natural question is whether alternative versions of distance-
from-boundary theory might provide improved accounts of the
present data, without the need to incorporate mental-architecture
assumptions such as serial processing or self-terminating stopping
rules. In particular, the orthogonal decision bounds assumed in the
coactive model are just a special case of the wide variety of
decision bounds that the general theory allows. For example, one
might assume instead that the observer adopts more flexible qua-
dratic decision boundaries (Maddox & Ashby, 1993) for dividing
the space into category regions.

The use of more flexible, high-parameter decision bounds would
undoubtedly improve the absolute fit of a standard distance-from-

boundary model to the classification RT data. Recall, however,
that we have already included in our repertoire of candidate
models the free stimulus-drift-rate model, in which each
individual-stimulus drift rate was allowed to be a free parameter.
A random-walk version of distance-from-boundary theory (Nosof-
sky & Stanton, 2005) is just a special case of this free stimulus-
drift-rate model, regardless of the form of the decision boundary.
We found that, under the present conditions, the logical-rule mod-
els outperformed the free stimulus-drift-rate model. It therefore
follows that they would also outperform random-walk versions of
distance-from-boundary theory that made allowance for more flex-
ible decision bounds.

Decision-tree models of classification RTs. In very recent
work, Lafond, Lacouture, and Cohen (2009) have developed and
tested decision-tree models of classification RTs. Following earlier
work of Trabasso, Rollins, and Shaughnessy (1971), the basic idea
is to represent a sequence of feature tests in a decision tree (e.g.,
Hunt, Marin, & Stone, 1966). Free parameters are then associated
with different paths of the tree. These parameters correspond to the
processing time for a given feature test or to some combination of
those tests. The models can be used to predict the time course of
implementing classification rules of differing complexity.

On the one hand, Lafond et al. (2009) have applied these
decision-tree models to category structures with rules that are more
complex than the conjunctive and disjunctive rules that were the
focus of the present research. In addition, the most general ver-
sions of their models allow separate free parameters to be associ-
ated with any given collection of feature tests. In these respects,
their approach has more generality than the present one.

On the other hand, their modeling approach has been applied
only in domains involving binary-valued stimulus dimensions. In
addition, their specific decision-tree applications assumed what
was essentially a fixed-order serial self-terminating processing
strategy (with free parameters to “patch” some mispredictions
from the strong version of that model; see Lafond et al., 2009, for
details). By contrast, our development makes allowance for dif-
ferent underlying mental architectures for implementing the logi-
cal rules. Another unique contribution of the present work was the
derivation of fundamental qualitative contrasts for distinguishing
among the alternative classes of models (whereas Lafond et al.,
2009, relied on comparisons of quantitative fit). Finally, whereas
Lafond et al.’s (2009) models are used for predicting mean RTs,
the present models predict full correct and error-RT distributions
associated with each of the individual stimuli in the tasks. Thus,
the decision-tree models of Lafond et al. and the present mental-
architecture/random-walk models provide complementary ap-
proaches to modeling the time course of rule-based classification
decision making.

Higher level concepts. In the present work, our empirical
tests of the logical-rule models involved stimuli varying along
highly salient primitive dimensions. Furthermore, the minimum-
complexity classification rules were obvious and easy to imple-
ment. We conducted the tests under these highly simplified con-
ditions because the goals were to achieve sharp qualitative
contrasts between the predictions from the models and to use the
models to provide detailed quantitative fits to the individual-
stimulus RT distributions of the individual subjects. In principle,
however, the same models can be applied in far more complex
settings in which classification is governed by application of
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logical rules. For example, rather than being built from elementary
primitive features, the stimuli may be composed of emergent,
relational dimensions (Goldstone, Medin, & Gentner, 1991), or the
features may even be created as part of the category-learning
process itself (Schyns, Goldstone, & Thibaut, 1998). Likewise,
rather than relying on minimum-complexity rules, the observer
may induce more elaborate rules owing to the nature of
hypothesis-testing processes (Nosofsky et al., 1994) or the influ-
ence of causal theories and prior knowledge (Murphy & Medin,
1985; Pazzani, 1991). In a sense, the present theory starts where
these other theoretical approaches leave off. Whatever the building
blocks of the stimuli and the concepts may be, an observer needs
to decide in which region of psychological space the building
blocks of a presented stimulus fall. The time course of these
decision processes can be modeled in terms of the random-walk
components of the present synthesized approach. Given the out-
comes of the individual decisions, they are then combined via an
appropriate mental architecture to produce the classification choice
and RT. The candidate architectures will vary depending on the
logical rules that the observer induces and uses, but the modeling
approach is essentially the same as already illustrated herein.

Directions for Future Research

In this article, our empirical tests of the logical-rule RT models
were more in the way of “validation testing” rather than testing for
the generality of rule-based classification processes. That is, we
sought to arrange conditions that would likely be maximally con-
ducive to rule-based classification processing and to evaluate the
models under such conditions. Even under these validation-testing
conditions, the proposed rule models did not provide complete
accounts of performance (although they far outperformed the ma-
jor extant approaches in the field). In these final sections, we
outline two major directions for continued research. First, we
consider further possible elaborations of the rule-based models that
might yield even better accounts of performance. Second, we
describe some new paths of empirical research that are motivated
by the present work.

Directions for generalization of the models. As acknowl-
edged earlier in our article, our present implementations assumed
that the random-walk decision processes along each dimension had
fixed criterion settings. Also, we did not allow for drift-rate vari-
ability across trials. To provide more complete accounts of per-
formance, these simplifying assumptions almost certainly need to
be relaxed. Based on extensive analysis of speed–accuracy trade-
off data, for example, there is overwhelming evidence from past
applications of random-walk and diffusion models that criterion
settings and drift rates vary across trials. Our focus in the present
article was to point up novel aspects of the predictions of our
logical-rule models for correct and error RTs, but complete models
would need to incorporate these other sources of variability. A
closely related issue is that the present work ignored consideration
of trial-to-trial sequential effects on classification decision making,
which are known to be pronounced (e.g., Stewart, Brown, &
Chater, 2002).

Another possible avenue for improvement lies in our assumption
that the random-walk processes along each dimension operated inde-
pendently. In more complicated versions of the models, forms of
cross-talk might take place (e.g., Mordkoff & Yantis, 1991;

Townsend & Thomas, 1994). In these cases, perceptual processing
and decision outcomes along the first dimension might influence the
processing and decision making along the second dimension. The
coactive architecture provides only an extreme example in which
inputs from separate dimensions are pooled into a common process-
ing channel. A wide variety of intermediate forms of dimensional
interactions and cross-talk can also be posited.

The present development also ignored the possible role of
working-memory limitations in applying the logical-rule strate-
gies. In the present cases, applications of the logical rules required
only one or two stages of decision making, and observers were
highly practiced at implementing the logical-rule strategies. In our
view, under these conditions, working-memory limitations proba-
bly do not contribute substantially relative to the other components
of processing that we modeled in the present work. However, for
more complex rule-based problems requiring multiple stages of
decision making, or for inexperienced observers, they would likely
play a larger role. So, for example, for more complex multiple-
stage problems, forms of forgetting or back-tracking might need to
be included in a complete account of rule-based classification.

Finally, another avenue of research needs to examine the possibility
that the present rule-based strategies are an important component of
classification decision making but that they operate in concert with
other processes. For example, consider Logan’s (1988) and Palmeri’s
(1997) models of automaticity in tasks of skilled performance. Ac-
cording to these approaches, initial task performance is governed by
explicit cognitive algorithms. However, following extensive experi-
ence in a task, there is a shift to the retrieval of specific memories for
past skilled actions. In the present context, observers may simply store
the exemplars of the categories in memory, with automatic retrieval of
these exemplars then influencing classification responding. Thus,
performance may involve some mix of rule-based responding (the
algorithm) and the retrieval of remembered exemplars (cf. Johansen
& Palmeri, 2002).

Directions for new empirical research. In conducting the
present validation tests, the idea was to assess model performance
under conditions that seemed highly conducive to logical-rule-based
processing. To reiterate, we do not claim that rule-based processing is
even a very common classification strategy. Instead, our work is
motivated by the age-old idea in the categorization literature that,
under some conditions, some human observers may develop and
evaluate logical rules as a basis for classification. Until very recently,
however, rule-based theories have not specified what classification
RT data should look like. The present work was aimed at filling that
gap. Using RT data, we now have tools that we can use to help assess
the conditions under which rule-based classification does indeed
occur and which individual observers are using them.

Natural lines of inquiry for future empirical work include the
following. In our validation testing conditions, we used category
structures in which observers could achieve excellent performance
through use of the simple rule-based strategies. Would observers
continue to use rule-based strategies with more complex category
structures in which use of such rules might entail some losses in
overall accuracy? In our tests, we used stimuli composed of spatially
separated components. The idea was to maximize the chances that
observers could apply the independent decisions related to assessing
each component part of the logical rules. Would such rule-based
strategies also be observed in conditions involving spatially overlap-
ping dimensions or even integral-dimension stimuli? In our tests, most
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observers were given explicit instructions to follow serial self-
terminating strategies to implement the rules (although some subjects
were left to their own devices). We provided such instructions be-
cause they seemed to us to be the most natural rule-based processing
strategy that an observer might use or could exert top-down control
over. If instructed to do so, could observers engage in parallel-
processing implementations instead? Finally, in our tests, all observ-
ers had knowledge of the rule-based structure of the categories prior
to engaging in the classification tasks. Would logical-rule use con-
tinue to be observed under alternative conditions in which subjects
needed to learn the structures via induction over training examples?
These questions can now be addressed with the new theoretical tools
developed in this work.
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Appendix A

EBRW Predictions of the Mean Interaction Contrast

We conducted extensive investigations into the predictions that
the exemplar-based random-walk (EBRW) model makes for the
mean interaction contrast (MIC) for the target-category members.
These investigations follow in the spirit of earlier investigations
made by Thomas (2006) for the EBRW and other process-oriented
response time (RT) models for the closely related additive-factors
paradigm. The present EBRW predictions are based on analytic
formulas for mean RTs (Nosofsky & Palmeri, 1997b, pp. 269–
270) and did not require computer simulation. For each set of
parameter values, we generated the EBRW predictions of mean
RTs for the LL, LH, HL, and HH members of the target category
and then computed MIC � RT(LL) � RT(LH) – RT(HL) �
RT(HH), where L and H refer to high- and low-salience dimension
values, respectively. The coordinate values of the stimuli were as
given in Figure 1. A city-block metric (Shepard, 1964) was used
for computing distances among the stimuli. The qualitative pattern
of results is the same if a Euclidean distance metric were used
instead.

The parameters of greatest interest for the MIC are c and A.
Here, we report predictions for cases in which the sensitivity
parameter c varies between 1.0 and 5.0 in increments of 0.2 and in
which the criterion parameter A varies between 3 and 8 in incre-
ments of 1. (The criterion parameter B was set equal to A.) As c
and A increase, predicted accuracy gets higher. For predictions of
present interest, boundary conditions need to be established on c
and A. If these parameters both take on values that are too small,
then error rates get exceedingly high, whereas if these parameters
both take on values that are too large, then predicted accuracy
exceeds realistic bounds (i.e., the model predicts that observers
will never make any errors). For the present report, we focus
mainly on cases in which error rates for the LL stimulus (i.e., the
most difficult stimulus to classify) vary between .01 and .20.

In the investigations in this appendix, we report results in which
the attention weight parameter is set at wx � .50. As long as wx is
not too extreme (i.e., close to 0 or 1), the EBRW’s predictions of
the MIC remain essentially the same. (If wx were too extreme, then
observers would be unable to discriminate between the target- and
contrast-category members, so those cases are of limited interest.)

The MIC predictions are also unaffected by the magnitude of the
residual-stage parameters �R and �R. The background-noise pa-
rameter is set at back � 0. As back increases, predicted accuracy
decreases. As long as back is set at values that produce reasonable
predictions of accuracy, the predictions for the MIC are unaf-
fected.

To generate the MIC predictions, we needed to decide the
magnitude of the scaling parameter k. The scaling parameter
simply transforms the mean number of steps in the random walk,
which have arbitrary time units, into milliseconds. The value of k
has no influence on the direction of the MIC (i.e., less than zero,
equal to zero, or greater than zero), only on its absolute magnitude.
To make things comparable across the different values of c and A,
for each combination of those parameters we set the scaling
constant k at the value that produced a 200-ms difference between
the predicted mean RTs of the LL and the HH stimuli. Thus, the
predicted magnitude of underadditivity (MIC � 0) or overadditiv-
ity (MIC � 0) is measured relative to this constant 200-ms differ-
ence.

The results are shown in Table A1. The table shows, for each
combination of c and A, the predicted MIC value and also the
predicted error rate associated with the LL stimulus. Note that for
the upper left cells in the table (i.e., the region of italic values),
error rates for the LL stimulus exceed .20. As can be seen, as long
as error rates on the LL stimulus are low to moderate (i.e., less than
.20), then the EBRW predicts an overadditive MIC (MIC � 0),
which is the same qualitative signature produced by the coactive
model. For higher error rates (upper left italic values in the table),
the MIC switches to being underadditive (MIC � 0). Again, the
same pattern occurs for the coactive model. (Intuitively, this pat-
tern may be thought of as a speed–accuracy trade-off in which
random-walk paths for the LL stimulus that would have resulted in
very long RTs result in errors instead.) Although not shown in the
table, for combinations in which the magnitude of c and A are both
very large, the predicted MIC eventually changes from being
overadditive to additive; however, these parameter-value combi-
nations lead to unrealistic predictions in which the observer never
makes any errors.
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Table A1
Predictions From the EBRW Model of Mean RT Interaction Contrasts and Error Rates for the LL Stimulus as a Function of c and A

c

A

3 4 5 6 7 8

1.2
RT con. �41.8 �18.4 4.3 24.6 41.9 56.3
Error .37 .33 .29 .25 .22 .19

1.4
RT con. �27.0 �0.1 23.5 42.7 57.7 69.2
Error .32 .26 .22 .18 .14 .11

1.6
RT con. �14.4 14.0 36.6 53.5 65.7 74.4
Error .27 .21 .16 .12 .09 .06

1.8
RT con. �3.9 24.4 45.0 59.3 68.8 75.2
Error .22 .16 .11 .08 .05 .04

2.0
RT con. 4.6 31.8 50.0 61.6 68.8 73.3
Error .19 .12 .08 .05 .03 .02

2.2
RT con. 11.3 36.7 52.3 61.6 67.0 70.1
Error .15 .09 .05 .03 .02 .01

2.4
RT con. 16.4 39.6 52.8 60.1 64.0 66.1
Error .12 .07 .04 .02 .01 .01

2.6
RT con. 20.1 41.0 52.1 57.6 60.4 61.8
Error .10 .05 .02 .01 .01 .00

2.8
RT con. 22.8 41.3 50.4 54.6 56.5 57.4
Error .08 .03 .02 .01 .00 .00

3.0
RT con. 24.4 40.8 48.1 51.3 52.6 53.2
Error .06 .02 .01 .00 .00 .00

3.2
RT con. 25.3 39.6 45.5 47.9 48.8 49.1
Error .05 .02 .01 .00 .00 .00

3.4
RT con. 25.6 38.0 42.7 44.5 45.0 45.3
Error .04 .01 .00 .00 .00 .00

3.6
RT con. 25.5 36.2 39.9 41.1 41.5 41.6
Error .03 .01 .00 .00 .00 .00

3.8
RT con. 25.0 34.1 37.0 37.9 38.2 38.2
Error .02 .01 .00 .00 .00 .00

4.0
RT con. 24.2 32.0 34.3 34.9 35.0 35.1
Error .02 .00 .00 .00 .00 .00

4.2
RT con. 23.2 29.8 31.6 32.0 32.1 32.2
Error .01 .00 .00 .00 .00 .00

4.4
RT con. 22.1 27.7 29.0 29.4 29.4 29.4
Error .01 .00 .00 .00 .00 .00

4.6
RT con. 20.9 25.6 26.7 26.9 26.9 26.9
Error .01 .00 .00 .00 .00 .00

4.8
RT con. 19.7 23.6 24.4 24.6 24.6 24.6
Error .01 .00 .00 .00 .00 .00

Note. Italic entries at the upper left of table demarcate the region where the LL stimulus has a predicted error rate greater than .20. EBRW � exemplar-based random-walk
model; RT con. � mean response time (RT) interaction contrast; Error � error rate on the LL stimulus; LL � a stimulus where both values are of low salience.

(Appendices continue)
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Appendix B

Table B1
Experiment 1: Correct RT Quantiles and Error Probabilities for Each Individual Stimulus and Subject

Subject and
stimulus

RT quantile

N p(e).1 .3 .5 .7 .9

1
x2y2 419 466 494 535 600 358 .00
x2y1 459 525 578 628 711 357 .02
x1y2 446 505 547 603 711 355 .00
x1y1 505 583 632 691 768 358 .01
x2y0 391 421 452 488 575 357 .00
x1y0 395 428 460 503 582 353 .01
x0y2 489 535 565 603 689 355 .03
x0y1 460 506 544 590 651 353 .01
x0y0 383 413 442 467 516 357 .00

2
x2y2 482 545 595 656 744 354 .00
x2y1 523 598 672 749 864 356 .04
x1y2 533 621 682 750 834 355 .01
x1y1 577 659 728 810 940 358 .04
x2y0 332 401 455 527 634 353 .02
x1y0 338 396 465 527 632 352 .03
x0y2 514 581 626 673 767 354 .03
x0y1 468 557 644 721 889 357 .02
x0y0 333 388 436 500 581 356 .01

3
x2y2 486 529 574 629 738 356 .01
x2y1 527 584 640 711 858 356 .00
x1y2 515 575 639 711 866 352 .01
x1y1 550 616 681 758 906 354 .01
x2y0 563 634 692 748 888 356 .01
x1y0 553 624 689 780 938 359 .02
x0y2 422 478 541 595 720 351 .01
x0y1 429 487 533 588 686 352 .00
x0y0 427 481 514 556 658 355 .00

4
x2y2 502 544 577 630 694 356 .00
x2y1 505 566 613 659 731 355 .01
x1y2 521 560 606 663 737 354 .01
x1y1 533 593 641 694 799 354 .03
x2y0 528 569 611 650 745 354 .02
x1y0 540 596 642 701 801 355 .04
x0y2 355 390 417 446 503 352 .01
x0y1 357 389 414 446 490 352 .01
x0y0 361 395 421 449 513 355 .00

5
x2y2 456 505 536 573 642 356 .00
x2y1 486 552 606 668 766 357 .02
x1y2 495 544 585 633 727 355 .01
x1y1 535 611 666 747 863 359 .05
x2y0 518 570 618 666 768 356 .02
x1y0 494 537 592 669 778 360 .03
x0y2 387 432 467 509 600 358 .01
x0y1 390 426 467 505 602 356 .00
x0y0 379 420 457 490 556 359 .00

Note. RT � response time in milliseconds; N � total number of nonexcluded trials for each stimulus; p(e) � probability
of error.
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Table B2
Experiment 2 (Accuracy Subjects): Correct RT Quantiles and Error Probabilities for Each Individual
Stimulus and Subject

Subject and
stimulus

RT quantile

N p(e).1 .3 .5 .7 .9

A1
x2y2 552 605 657 708 800 347 .01
x2y1 661 774 856 947 1,146 339 .04
x1y2 680 804 870 946 1,091 342 .02
x1y1 875 990 1,105 1,239 1,535 349 .12
x2y0 419 476 540 617 947 339 .04
x1y0 417 478 540 617 947 340 .04
x0y2 698 763 814 877 982 355 .02
x0y1 802 906 967 1,044 1,159 341 .01
x0y0 430 481 546 661 972 357 .00

A2
x2y2 497 552 595 653 731 356 .00
x2y1 679 757 812 889 1,019 353 .01
x1y2 645 766 858 941 1,095 354 .05
x1y1 847 961 1,049 1,145 1,360 354 .02
x2y0 693 764 812 873 976 354 .02
x1y0 863 968 1,044 1,117 1,225 357 .01
x0y2 454 506 546 614 771 353 .01
x0y1 480 521 567 649 766 351 .01
x0y0 471 521 573 654 878 352 .00

A3
x2y2 561 608 655 713 813 354 .01
x2y1 743 852 940 1,048 1,337 351 .04
x1y2 713 851 962 1,070 1,241 354 .03
x1y1 909 1,084 1,206 1,366 1,737 354 .07
x2y0 476 686 795 877 1,049 352 .03
x1y0 457 604 927 1,102 1,398 355 .04
x0y2 519 655 804 908 1,113 349 .01
x0y1 528 700 950 1,122 1,569 354 .03
x0y0 460 551 649 818 1,242 356 .00

A4
x2y2 552 605 657 708 800 347 .01
x2y1 661 774 856 947 1,146 339 .04
x1y2 680 804 870 946 1,091 342 .02
x1y1 875 990 1,105 1,239 1,535 349 .12
x2y0 419 476 540 617 947 339 .04
x1y0 417 478 540 617 947 340 .04
x0y2 698 763 814 877 982 355 .02
x0y1 802 906 967 1,044 1,159 341 .01
x0y0 430 481 546 661 972 357 .00

Note. RT � response time in milliseconds; N � total number of nonexcluded trials; p(e) � probability of error.
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Table B3
Experiment 2 (Speed Subjects): RT Quantiles and Error Probabilities for Each Individual Stimulus
and Subject

Subject and
stimulus

RT quantile

N p(e)

Correct trials Error trials

.1 .3 .5 .7 .9 .1 .3 .5 .7 .9

S1
x2y2 451 492 529 576 638 573 573 573 573 573 358 .00
x2y1 506 555 588 647 750 342 368 400 448 607 357 .20
x1y2 476 588 646 704 810 599 656 704 732 847 358 .09
x1y1 511 584 652 728 884 339 367 426 562 849 359 .27
x2y0 348 384 413 453 539 460 662 680 715 800 353 .03
x1y0 346 377 413 453 572 498 743 782 865 993 355 .04
x0y2 627 667 718 763 832 449 496 559 641 756 356 .26
x0y1 383 484 712 837 937 495 551 607 658 758 358 .39
x0y0 346 383 414 460 534 462 467 484 535 620 356 .01

S2
x2y2 436 490 535 587 690 418 474 560 583 599 358 .01
x2y1 480 594 715 812 970 535 602 663 697 846 357 .08
x1y2 526 616 685 768 935 401 454 497 569 735 354 .25
x1y1 586 703 783 943 1,223 418 509 598 664 791 354 .27
x2y0 627 692 778 859 971 422 476 534 605 780 355 .35
x1y0 506 631 731 866 1,129 555 650 754 833 1,135 354 .29
x0y2 410 451 494 551 660 615 678 769 866 1,148 352 .08
x0y1 413 461 507 576 742 746 925 1,064 1,435 1,949 351 .07
x0y0 407 477 535 602 752 399 437 494 876 1,131 354 .09

Note. RT � response time in milliseconds; N � total number of nonexcluded trials; p(e) � probability of error.
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