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6
Analyzing Response Times to

Understand Decision Processes
WOLFGANG GAISSMAIER, MARIO FIFIC, and

JÖRG RIESKAMP

T he central aim of contemporary research in cognitive psychology is the
isolation of plausible cognitive mechanisms that are engaged in judgment
and decision making. Given that a solely behavioral approach is unable to

deal with some empirical phenomena, researchers have gradually begun exploring
the cognitive principles underlying decision making. When two cognitive models
predict the same outcome at the behavioral level, assuming completely different
mechanisms, it becomes obvious that research focus should shift from testing the
outcome to testing actually assumed processes (Anderson, 1990).

Most of the time, the cognitive processes underlying decision making are
hidden from direct observation. With process tracing – an approach that has been
explored in great detail – it is possible to monitor the information search process as
it takes place during decision making. For instance, information can be repre-
sented by the use of a computerized information board where information is
hidden behind boxes but can be acquired by clicking on the boxes. This provides
high experimental control about what information people search for and in what
order, allowing us to make strong inferences about the cognitive models describing
the decision process (e.g., Bröder, 2000, 2003; Maule, 1994; Newell & Shanks,
2003; Newell, Weston, & Shanks, 2003; Payne, Bettman, & Johnson, 1988, 1993;
Rieskamp & Hoffrage, 1999, 2008). However, the application of process tracing
techniques might change the decision strategies that people apply, limiting the
conclusions one can draw.

In less controlled experimental settings researchers often only monitor the
final decision. Typically, when the task is displayed, participants deliberate about
the best response and then make a final decision. An observable output could be
a simple verbal response or the pressing of a decision button. For more than
50 years, the predominant interest in testing models of decision making lay in the
analysis of the choices made in such tasks. Rarely, the main research focus was
directed to an alternative observable aspect, namely, how long a person took to
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make a decision, that is, the response time. Yet response times provide another
noninvasive pathway to understanding the cognitive process underlying decision
making (e.g., Busemeyer & Townsend, 1993). The neglect of response time analy-
sis in the judgment and decision making literature is somewhat surprising con-
sidering that it is an established, standard approach in cognitive psychology. In
general, cognitive psychologists have used both choice probabilities and response
times to test assumptions of cognitive models (e.g., Ashby, 2000; Ashby & Maddox,
1994; Heath, 1992; Lamberts, 1998, 2000; Link, 1992; Nosofsky & Palmeri, 1997;
Ratcliff, 1978; Smith, 1995). The response time approaches to process decom-
position date even earlier, to the latter half of the 19th century, starting with the
work of Donders (1868) and Wundt (1880), and flourished with the development
of the information processing approach (e.g., Sternberg, 1966, 1969).

In this chapter, we will follow the lead of prominent scientists in various areas of
cognitive psychology and use a response time analysis as the main methodological
tool to infer the mental processes underlying judgment and decision making. We
argue that studying response time could enhance our understanding of the cogni-
tive processes underlying decision making. In the present work we will focus on
how the analysis of response time can be used to test different cognitive strategies
for making probabilistic inferences. In such tasks people have to infer which of
several alternatives has the highest criterion value on the basis of various cues. We
will report conclusions from a few studies that have investigated memory-based
probabilistic inferences (e.g., Bröder & Gaissmaier, 2007; Bröder & Schiffer, 2003;
Juslin, Olsson, & Olsson, 2003; Persson & Rieskamp, 2009). Finally we will pres-
ent advanced techniques in response time analysis and illustrate their advantages.

RESPONSE TIME ANALYSIS FOR TESTING PROCESS
MODELS OF PROBABILISTIC INFERENCES

In a probabilistic inference task participants have to compare objects and decide
which of, for instance, two objects scores higher on a criterion. Each of the two
objects has several attributes (“cues”), which the participants can use to make their
inferences. For example, assume that participants have to decide which of two
stocks will perform best in the future. Let us assume that participants can use only
two cues to make such an inference, for instance, the companies’ past investments
and recent returns. The central question is how the information of the two cues
is processed and combined to form a final decision.

There are many cognitive models that have been suggested to predict prob-
abilistic inferences (e.g., Bergert & Nososfsky, 2007; Dougherty, Gettys, & Ogden,
1999; Gigerenzer & Goldstein, 1996; Hammond, 1990; Juslin & Persson, 2002;
Lee & Cummins, 2004; Payne et al., 1988; Rieskamp, 2006; Rieskamp & Hoffrage,
1999, 2008; Rieskamp & Otto, 2006). These include, among others, connectionist
models (Gluck & Bower, 1988), exemplar models (Juslin & Persson, 2002),
sequential sampling models (Lee & Cummins, 2004; Wallsten & Barton, 1982),
and procedural strategies (Gigerenzer, Todd, & the ABC Research Group, 1999;
Payne et al., 1993).
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In the present chapter we will not discuss the response time predictions that
can be derived from all the models mentioned above. Instead, for illustration
purposes we will only focus on how response times can be used to test two proto-
typical inference strategies suggested by the strategy approach. This illustration,
however, can be generalized to a variety of cognitive models. The strategy
approach assumes that people are equipped with a repertoire of different strat-
egies to make inferences. The different inference strategies can be differentiated
by two aspects of processing, namely, the amount of information used and the way
information is processed. The strategy approach has its roots in the information
processing theory concerning these two critical processes.

Regarding the amount of information, the critical question is whether the
processing is exhaustive or self-terminating. In the self-terminating case, process-
ing stops as soon as the gathered information, for instance, from one single cue,
provides enough evidence for the final decision. By contrast, in the exhaustive
case, processing continues until all available information has been gathered
regardless of the evidence that had been accumulated. Concerning the way infor-
mation is processed, one basic question is whether the processing of information
operates in a serial or parallel fashion. In serial processing, information from each
cue is processed sequentially, one cue at a time. By contrast, in parallel processing,
information from both cues is gathered simultaneously.

The first prototypical strategy that we consider is a noncompensatory lexico-
graphic one, of which the take-the-best heuristic (Gigerenzer & Goldstein, 1996)
is an example. The strategy predicts limited and serial processing of information.
Take-the-best assumes that people compare objects cue-wise, starting with the
most valid cue with regard to predicting the criterion, and stopping as soon as one
cue is found that discriminates between the two objects. That is, a person using
take-the-best first searches for the most valid cue, which is the best discriminating
cue between two objects on a criterion. If this cue discriminates, the person does
not search further and makes a decision. Otherwise, searching for cues (in order
of validity) continues until a discriminating cue is found. Therefore, when take-
the-best finds the first (i.e., most valid) discriminating cue, it stops searching
and makes a decision based on that cue alone, while all the remaining cues are
ignored.

In contrast, compensatory strategies, such as the weighted additive strategy
(WADD), assume that all available information is processed in serial fashion (e.g.,
Gigerenzer & Goldstein, 1996; Payne et al., 1988). WADD assumes that each cue
is weighted (usually by the validity of the cue), and that a decision maker calculates
the sum of all weighted cue values when choosing between two alternatives. A
decision maker chooses the alternative with the largest weighted sum. A simplified
version of WADD is the Tally decision strategy. For Tally it is assumed that a
decision maker also calculates the sum of the cue values for each alternative but
weights each cue equally. The alternative with the largest sum is selected. In the
case of a tie, the person has to guess. The idea of Tally goes back to Dawes’ (1979)
work on unit-weight models, showing that it is often better to rely on robust
equal weights than to try to differentiate the predictive accuracy of the various
cues. Because less valid cues can overrule more valid cues, WADD and Tally are
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compensatory strategies. Note that a limited information search is in principle
possible even for compensatory strategies (see Bergert & Nosofsky, 2007;
Dieckmann & Rieskamp, 2007; Persson & Rieskamp, 2009).

In contrast to the strategy approach to probabilistic inferences, alternative
models often do not assume serial processing of information. For instance,
similarity-based models (e.g., exemplar models), which are also compensatory,
assume that all available information is processed and that similarity computations
are processed in a parallel manner (e.g., Juslin & Persson, 2002; Nosofsky &
Bergert, 2007).

It is important to note that mean response time predictions, which can be
derived from each of the above decision strategies, can provide a sufficient statistic
to differentiate between the models. When information is processed in a serial
manner, it can be predicted that inference strategies that rely on a limited self-
terminating information search will lead to shorter response times than strategies
that rely on an exhaustive search. When information is processed in a parallel
fashion one would expect shorter response times than if it is processed in a
serial manner.

However, a mean response time analysis allows for differentiation between
the models only under limited conditions. For example, it is possible that different
variants of parallel information processing models can also predict an increase in
response time as a function of the number of compared attributes n (Townsend &
Ashby, 1983; Townsend & Wenger, 2004a, p. 1011). The rationale for this is that
parallel models can exhibit a decrease in processing resources as n increases. For
example, as the number of compared cues increases, it is possible that less and
less of the available resources are devoted to each comparison, in turn making
the overall decision time longer and longer. This leads to the mimicking dilemma
(e.g., Townsend, 1969, 1971, 1972; Townsend & Ashby, 1983). The dilemma states
that, based only on a mean response time analysis, it is impossible to distinguish
between serial and parallel information processing. In the following we will report
how models can be tested against each other when assuming serial processing of
information. Thereafter we will discuss how models can be tested against each
other when additionally assuming parallel processing.

EMPIRICAL EVIDENCE AND A TEST OF DIFFERENT
MODELS OF PROBABILISTIC INFERENCES ASSUMING

SERIAL INFORMATION PROCESSING

In this section we present empirical evidence for the application of specific infer-
ence strategies on the basis of response times. We divide the results into two
sections, depending on how information was presented to the participants. First,
we illustrate the approach for an inference situation in which all information was
presented to participants simultaneously, employed by Bergert and Nosofsky
(2007). This is defined as “inferences from givens”. Thereafter, we show evidence
for probabilistic inferences where a person has to retrieve the relevant cues from
memory to make a decision, as studied by Bröder and Schiffer (2003, 2006),
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Bröder and Gaissmaier (2007), and Persson and Rieskamp (2009). This is defined
as “inferences from memory”.

Inferences from Givens

In the task used by Bergert and Nosofsky (2007), participants were presented with
pictures of bugs that could be described by six attributes/cues, such as length of
the antennae, body texture, shape of the tail, and so forth. Participants had to
decide which of the two bugs was more poisonous based on those cues. Bergert
and Nosofsky tested generalized models of take-the-best and WADD, which they
did by relaxing some of the model assumptions while at the same time preserving
the core components of the stricter original versions (see Bergert & Nosofsky,
2007, for details).

These generalized versions of the models indeed provided a superior fit com-
pared to the stricter versions, even when taking their increased complexity into
account. However, although these models differ strongly in the spirit of the under-
lying processes they assume, they are formally identical in their predictions of
choice probabilities. The authors concluded that choice data were not sufficient
to tell take-the-best and WADD models apart, and that the response time data
could provide an additional source of information for testing the models against
each other.

To maximize the difference between take-the-best and WADD predictions,
Bergert and Nosofsky (2007) constructed stimulus pairs of objects (hereafter, item
types) for which the two models made diverging response time predictions. The
idea was to create two kinds of item types in which the stimuli would differ on
every cue (Figure 6.1). The first item type had positive cues for one alternative and
negative cues for the other. Therefore the first object was favored by all cues and
when applying WADD a quick decision for this alternative should result. In con-
trast, for the second item type, the cues favored different alternatives, so that some

FIGURE 6.1 Two different item types (pairs of objects) that generate different
response time predictions from a compensatory and a noncompensatory infer-
ence strategy. The compensatory strategy predicts faster decisions for inferential
choices between A and B and slower response times for choices between C and D.
The noncompensatory strategy predicts identical response times for both pairs
of objects.
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cues were in favor of the first object and others were in favor of the second. For
this item type the application of WADD should require some additional time to
compute which of the two alternatives has a larger weighted sum of evidence.

In contrast to WADD’s prediction, the noncompensatory strategy take-the-
best, which relies on only a single discriminating cue, made identical predictions
for both item types. This is because when using take-the-best, every cue provides
sufficient information to discriminate between the two alternatives. Thus, the
take-the-best strategy should lead to an equally fast decision for both item types.
Bergert and Nosofsky found that the results of response time analysis largely
supported take-the-best over WADD. Less than a quarter of their participants
could be classified as WADD decision makers.

Inferences from Memory

In a paradigm involving memory-based inferences people make inferences based
on information that has to be retrieved from memory. In experiments run by
Bröder and Schiffer (2003, 2006), a hypothetical criminal case was employed
involving 10 suspects in a murder: A famous singer was murdered near a pool,
presumably by one of his former girlfriends. The participants were asked to help
find the murderer. The basic idea of these experiments was to separate the acquisi-
tion of knowledge about the suspects from making inferences about them, so that
knowledge had to be retrieved from memory when making decisions.

Each experiment consisted of four phases. First, in an anticipation learning
paradigm, participants acquired knowledge about the individual cue patterns of
10 suspects, which differed on four cues (e.g., type of jacket). A portrait and a
name of a suspect appeared on the screen, and participants had to reproduce the
cue values with appropriate feedback. To prevent participants from prematurely
making inferences during learning, a cue hierarchy was established only in a sec-
ond phase when they were informed about the evidence (cues) witnessed at the
site of the crime and about its relative importance. In the third phase, consisting
of complete paired comparisons of all suspects, participants had to decide which
suspect was most likely to be the murderer. Importantly, only the names of the
suspects and their portraits were displayed. To decide between the two suspects,
participants had to retrieve the cue values from memory. After this decision phase,
a final memory test assessed the stability of cue memory.

Bröder and Gaissmaier (2007) reanalyzed the data of Bröder and Schiffer
(2003, 2006), focusing on response times. They also investigated the strategies
described above, namely, take-the-best, WADD, and Tally, but in addition they
included a baseline guessing model. Recall that the lexicographic take-the-best
heuristic assumes that participants sequentially retrieve cues describing the sus-
pects in the order of their validity and stop searching as soon as a discriminating
cue is found. Therefore, the first (i.e., most valid) discriminating cue determines
when take-the-best stops searching and decides. Take-the-best assumes serial pro-
cessing of information, so that the response time should monotonically increase
with the number of cues that have to be retrieved until this first discriminating
cue is found (Figure 6.2).
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To derive response time predictions Bröder and Gaissmaier (2007) assumed
serial and exhaustive information processing for WADD and Tally. Accordingly,
when Tally is used for making memory-based inferences, it is assumed that all cues
need to be retrieved and summed up and the alternative with the larger sum
should be selected. A person who applies WADD also has to retrieve all cue
values, but in addition to Tally’s steps all cue values have to be weighted by their
validity. It is assumed that, due to this additional weighting process, people who
apply WADD should need the most time for their decisions. In contrast to Bergert
and Nosofsky (2007), Bröder and Gaissmaier (2007) assumed that both WADD
and Tally require, at least in a strict sense, searching for all cues in an unspecified
order. Response times should therefore not depend on which cue is the first
discriminating cue. In contrast, for someone who uses the noncompensatory take-
the-best strategy the response times should depend on the first discriminating
cue that is retrieved from memory. If the first cue retrieved from memory dis-
criminates between the two alternatives a quick decision can be made. In general,
response time predicted by take-the-best should be an increasing function of the
number of cues that have to be retrieved from memory. Finally, a person who
makes random decisions does not need to retrieve any information and therefore
should decide most quickly. The response times of guessers should not vary with
the position of the first discriminating cue. In sum, on average, WADD should be
slower than Tally, and guessing should be quickest overall. The response times
of take-the-best depend on the number of cues retrieved from memory.

Following these ideas Bröder and Gaissmaier (2007) re-examined five of
Bröder and Schiffer’s (2003, 2006) experiments to determine whether the strategy
classification analysis was in line with a response time analysis. For this purpose
they split the participants into four groups with identical strategy classifications
on the basis of their inferences. Of all participants 198 were classified as using
take-the-best, 90 as using WADD, 83 as using Tally, and 44 as guessing. For each
participant, Bröder and Gaissmaier computed the outlier-robust median response
time for each of the four item types (see Figure 6.2), depending on the position of

FIGURE 6.2 Four different item types differing with regard to the position of the
first discriminating cue.
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the first discriminating cue. These individual response time medians were entered
in the subsequent analyses and averaged across participants.

The mean response times for each strategy group are shown in Figure 6.3. The
response times followed the predicted pattern and supported the assumption of
sequential search: Participants classified as using take-the-best showed a robust
increase in response time depending on the position of the best discriminating
cue, while this increase was much less pronounced for participants who were
classified as using WADD or Tally. The increase was absent for participants classi-
fied as guessers. WADD users generally needed more time than Tally users, which
was expected, given that Tally users only have to count evidence, while WADD
users also have to calculate the sum of weighted evidence. Participants with pre-
dominantly nonsystematic guessing behavior generally needed less time than all
the others. In sum, the analysis shows that the response times of the participants
were in line with the strategies they were using, classified according to their choice
behavior. Thus, both the response time analysis and the analysis of participants’
choices led to the same conclusion about people’s decision processes.

Learning of Cue Validities and Inference Strategies

Bröder and Gaissmaier (2007) showed that both the response time and choice
probability analyses conformed to the prevalence of take-the-best in Bröder and

FIGURE 6.3 Mean response times in seconds (and standard errors) as a func-
tion of best discriminating cue and outcome-based strategy classification on the
combined data from Bröder and Schiffer (2003, 2006). TTB = take-the-best,
WADD = weighted additive strategy.
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Schiffer (2003, 2006). One of the remaining questions, however, was whether the
prevalence of take-the-best was induced by the experimental requirements. For
instance, in Bröder and Schiffer’s (2003) experiments, participants were given the
rank order of cue validities. This procedure might have fostered the selection of
take-the-best, which requires this information. In contrast, if participants had to
learn the validities of the cues, this might lead them to use other inference strat-
egies, such as Tally, which does not require any cue validities. Persson and
Rieskamp (2009) tested the models of probabilistic inferences in experiments in
which cue validities had to be learned. The authors conducted a choice probability
analysis and a response time analysis to evaluate the conclusions drawn from each
analysis alone.

The experimental procedure of Persson and Rieskamp (2009) was very similar
to the one used by Bröder and Schiffer (2003). However, in Persson and Rieskamp’s
experiment the participants had to make inferences about the stage of an illness of
15 hypothetical patients. Each patient was described by four symptoms (i.e., cues)
that could be either present or absent. In the first, memorization phase, participants
had to learn all cue values by heart. In the second, learning phase, participants
started to compare a subset of patients to learn the validities of the cues. In the
learning phase, participants received feedback about which patient was in a more
severe stage of the disease. Finally, in the test phase, they had to infer which of
two patients (from the remaining subset of patients) was at a more severe stage
of the disease. This final test phase was used to classify the strategies that people
were using.

Persson and Rieskamp (2009) conducted two experiments that varied the type
of feedback in the learning phase. In the first experiment, the participants simply
received dichotomous feedback about whether their choice was correct or wrong.
In the second experiment, the participants received additional continuous feed-
back, that is, they were informed about the stage of the disease. In turned out that
two strategies were best in predicting participants’ inferences. In the first experi-
ment, the inferences of the majority of participants (60%) were best predicted by
take-the-best. In contrast, in the second experiment with continuous feedback the
inferences of the majority (64%) were best described by the compensatory WADD.
Apparently, providing continuous feedback about the criterion induced the use of
a strategy that could also predict this criterion, such as a compensatory strategy.

Persson and Rieskamp (2009) additionally performed a response time analysis
to confirm the results of their strategy classification analysis, similar to Bröder and
Gaissmaier (2007). However, due to lower statistical power they only differenti-
ated two item types, namely, items where the most valid cue discriminated and
items where it did not discriminate. Participants classified as using take-the-best
should make quicker decisions for the first item type than for the second type.
Indeed, this was exactly what was found: If the most valid cue discriminated,
participants who were classified as using take-the-best required 8.1 s for their
decisions (median response times), but 9.6 s for the second item type.

For the compensatory strategies Tally and WADD, Persson and Rieskamp
(2009) assumed that the response time should be a function of the difference
between each alternative’s cue sums. The underlying rationale for this prediction
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relies on the idea that people will not literally execute a strategy step by step when
its prediction can easily be foreseen. For example, if one alternative has only
positive cue values and the other has only negative cue values, someone applying
WADD does not need to determine the exact score for each alternative. Instead,
the person can foresee WADD’s prediction and make a corresponding choice. In
contrast, if some cues favor one alternative and some cues favor the other, the
decision maker cannot simply foresee WADD’s prediction and has to compute the
alternatives’ scores, which will take some time. Accordingly, the larger the differ-
ence between the alternatives’ scores, the faster a decision should be made. When
Tally is applied and both alternatives have the same score, a slow response time is
expected (cf. Bergert & Nosofsky, 2007; see also Figure 6.1).

When examining the response times for participants classified as using WADD
or Tally, Persson and Rieskamp (2009) considered all items where the sum of cue
values differed for the two alternatives so that Tally could discriminate between
the alternatives, in comparison to those items where the cue sums were the same
and Tally could not discriminate. For the first group of items the average differ-
ence between the two scores determined by WADD for the alternatives was 3.5,
as opposed to the second group with an average difference of 2.3. Therefore,
participants assigned to Tally or WADD should have a faster response time for the
first as opposed to the second group of items.

In line with these predictions, Tally users made their inferences with a median
response time of 3.6 s for the first group of items compared to 5.7 s for the second
group. Note that the response times for participants using Tally were much faster
than for those assigned to take-the-best. This is surprising, when assuming serial
information processing for Tally and take-the-best (Gigerenzer & Goldstein,
1996). Take-the-best searches on average for fewer cues and therefore one would
expect people to apply take-the-best faster than Tally. This finding can be
explained in two ways. First, it could be that trying to retrieve the cues in the
correct order is cumbersome, which slows take-the-best down, while Tally does
not have to order cues in any fashion. Second, one could argue that Tally can be
processed rather quickly if one does not assume a serial search process, but a
parallel one. The current data do not allow us to tell precisely.

The participants assigned to WADD made their inferences with an average
median response time of 5.7 s for the first group of items compared to 8.4 s for the
second group. Replicating Bröder and Gaissmaier’s (2007) results, the response
times of WADD users were larger compared to Tally users, which can be expected
when considering that WADD requires a specific weighting of cues that Tally
ignores. Thus, overall, the response times of the participants assigned to the dif-
ferent strategies were consistent with the strategies’ predicted response times.

The reported studies illustrate how a response time analysis can be used to
validate the inference that had been made on a pure analysis of people’s choices.
The goal of the reported response time analyses was to find convergent evidence
for the processes assumed to underlie memory-based probabilistic inferences.
For memory-based decisions, process tracing techniques cannot be applied.
Therefore, response times were analyzed to validate the idea of a sequential
cue search in inference processes and as an independent source of support for
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the outcome-based strategy classification method. In this manner, Bergert and
Nosofsky (2007), Bröder and Gaissmaier (2007), and Persson and Rieskamp
(2009) tried to answer the call that models should ideally aim to be testable with
different kinds of data (e.g., Jacobs & Grainger, 1994). When assuming serial
processing of information, this leads to specific response time predictions for the
various inference strategies. These tests led to convergent evidence for the inter-
pretations that were drawn on the analysis of participants’ choices.

PARALLEL PROCESSING OF INFORMATION

Bröder and Gaissmaier (2007) and Persson and Rieskamp (2009) tested different
inference strategies against each other by assuming serial processing of informa-
tion. Yet when examining memory-based inferences, it is natural to assume that
the information could also be processed in a parallel fashion. Of course, when
information is processed in parallel, different response time predictions could
result. The key idea of this section is to introduce the processing order (serial and
parallel) as an additional basis for comparison. The processing order is more fre-
quently referred to as a mental architecture. Interestingly, the class of parallel
models can also predict an increase in response time as a function of the number
of compared attributes n (Townsend & Ashby, 1983; Townsend & Wenger, 2004a,
p. 1011). This leads to the mimicking dilemma (e.g., Townsend, 1969, 1971, 1972;
Townsend & Ashby, 1983), so that it is impossible to distinguish between serial
and parallel decision strategies based only on examining mean response times.

In the next part we will review and recommend the application of a powerful
theory-driven methodology for testing response time predictions. This method-
ology has evolved over the past several decades and is able to avoid most, if not
all, model-mimicking challenges. The systems factorial technology (SFT) method-
ology is being developed to diagnose the type of processing architecture that
underlies performance in different cognitive tasks – for example, whether infor-
mation processing is serial or parallel, and exhaustive or self-terminating (e.g.,
Schweickert, 1985; Schweickert, Giorgini, & Dzhafarov, 2000; Townsend & Ashby,
1983; Townsend & Nozawa, 1995; Townsend & Wenger, 2004b). The key to the
SFT methodology is twofold: SFT is a nonparametric methodology, and the SFT
diagnostic properties are achieved by exploration of a survivor interaction contrast
(SIC) function, which is calculated from the data. By judging the overall shape of
the SIC function, it is possible to uniquely identify serial versus parallel processing
and exhaustive versus self-terminating information search. Previously, the SFT
method has been employed for a variety of cognitive tasks: stimulus detection
where the task is to detect the presence or absence of a stimulus (Townsend &
Nozawa, 1995), visual and memory search tasks, (e.g., Egeth & Dagenbach, 1991;
Fific, Townsend, & Eidels, 2008; Sung, 2008; Townsend & Fific, 2004; Wenger &
Townsend, 2001, 2006), face perception tasks (Fific, 2006; Ingvalson & Wenger,
2005), classification (Eidels, Townsend, & Pomerantz, 2008; Fific, Nosofsky, &
Townsend, 2008), and global–local perception tasks (Johnson, Blaha, Houpt, &
Townsend, 2009).
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Constructing Specific Experimental Designs for a Response
Time Analysis Using the SFT Methodology

The standard approach that we reported above compresses data by averaging and
then plots the mean or median response times as a function of the number of
discriminating cues or the number of memorized items. This approach is able to
distinguish exhaustive versus self-terminating information search processes when
assuming serial processing of data. However, when assuming that information can
also be processed in parallel, the standard approach reaches its limit and cannot
distinguish when information search stops. For this purpose SFT was developed.
To achieve more diagnostic power with SFT than with the standard approach, the
data are not averaged but instead plotted as a function, namely, a survivor func-
tion. A survivor function is a probability function that tells us the survival rate of
some components of interest, after some time t. Instead of converting a dataset
into a single response time mean value, each dataset is converted into a survivor
function, which can easily be done using standard statistical software packages.
The additional information, contained in the shape of the survivor function, pro-
vides more diagnostic power than a single response time value. SFT utilizes the
SIC function, and in the next section we will provide a short tutorial on how
diagnostic information can be obtained from calculating SIC functions.

A Guide to Calculating Survivor Function

The survivor function S for a random variable T (which in the present case corres-
ponds to the time of processing) is defined as the probability that the process
T takes greater than t time units to complete: S(t) = P(T > t). Note that for time-
based random variables, when t = 0 it is the case that S(t) = 1; and as t approaches
infinity it is the case that S(t) approaches zero. Slower processing is associated with
greater values of the survivor function across the time domain.

The survivor function is estimated from the data using the following procedure:

1. Determine the response time bin size. A bin size corresponds to an inter-
val on a response time scale; usually one can use 10 ms. Divide the time
scale into equal-sized bins, up to the maximum single response time
observed.

2. Count the total number of observed single response times that fall in each
bin. This step generates a frequency distribution.

3. Divide each frequency of observations in each bin by the total number of
observations. This will produce a relative frequency distribution, that is,
an empirical probability density function.

4. Calculate the empirical CDF (cumulative distribution function) F(t) by
accumulating the empirical probabilities (from Step 3) from the lowest to
the highest valued bin.

5. Calculate an empirical survivor function by subtracting the value of F(t)
from 1, that is, calculate S(t) = 1 − F(t). This step generates an empirical
survivor distribution function S(t), which converges to the real survivor
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function for a sufficient amount of data (for more details see appendix in
Townsend, Fific, & Neufeld, 2007).

How can SFT be applied to a probability inference task as described above?
For instance, the task could be to infer which of two suspects is more likely to be a
murderer (cf. Bröder & Gaissmaier, 2007). For simplicity let us assume that only
two cues are available. The research question is whether people process cues in
serial or in parallel fashion, and whether people make their inferences on the basis
of one or two processed cues. The number of cues defines the number of pro-
cesses, which in our case is two. In addition we assume that, via experimental
control, we can manipulate whether these two processes take place or not, that
is, we can turn them off or on. The question is whether doing so is sufficient
to infer processing order and stopping rule. The answer is no. Decades of research
on this problem have indicated that we will readily confuse parallel and serial
processing orders (e.g., Townsend, 1969, 1971, 1972; Townsend & Ashby, 1983).
To infer correct decision strategies we need additional manipulation. Let us
define the first factor as the first cue comparison, and the second factor as the
second cue comparison. Then each factor (defined as a single cue comparison
process) needs to have at least two levels, orthogonally combined – a so-called
“double factorial design” (as used in a 2 × 2 ANOVA; see Table 6.1). We will omit
the detailed explanation of why this design permits correct inferences about the
underlying decision strategy, because of the abstract nature of the mathematical
proofs (e.g., Townsend & Nozawa, 1995). However, it is important to note that
with this design the different decision strategies will exhibit different data patterns
of mean response times and, more importantly, their corresponding survivor
functions.

How are the levels of each factor defined in a double factorial design? Usually
they are defined as the saliency of the cue. Saliency manipulation should affect the
overall speed of the two cue comparison processes: One level should correspond
to a manipulation that speeds up the processing of a cue, and the other level
should correspond to a manipulation that slows down a cue comparison. It is
possible to choose between different types of manipulations to produce such
speeding up or slowing down, which can depend on whether the task requires

TABLE 6.1 Experimental conditions of two factors corresponding to the
processing of two cues. Each process is manipulated at two levels of saliency, fast
(F) and slow (S). In the experiment this defines four different experimental condi-
tions. In the FS condition, for instance, the first cue is highly salient and can be
processed quickly; the second cue has low salience and is processed slowly. This
experimental setup is called the double factorial paradigm.

Second cue

Fast Slow

First cue Fast FF FS
Slow SF SS
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inferences from givens or from memory. For the case of probabilistic inferences,
salience of a cue could be defined as the difference between rates of cue retrieval
from memory: The candidate manipulations could be presentation frequency,
familiarity, or similarity between the cues. We assume that the larger the saliency,
the faster the cue comparison. When two processes are involved, factorially
combined with saliency levels, the SIC function is defined as follows:

SIC(t) = [SSS(t) − SSF(t)] − [SFS(t) − SFF(t)] (6.1)

Here SFS indicates the survivor function for the condition where the first cue
comparison was of high salience (thus F, for fast), and the second cue comparison
was of low salience (thus S, for slow). One can compute the survivor functions
associated with each of the four types of factorial combinations of cues and sali-
ency levels, which we denote SSS(t), SSF(t), SFS(t), and SFF(t). Because processing is
presumably slower for low-saliency (S) than for high-saliency (F) cue comparisons,
the following should hold: SSS(t) = SSF(t), SFS(t) = SFF(t), for all time t (Townsend &
Nozawa, 1995).

As illustrated in Figure 6.4, different mental architectures and decision strat-
egies yield distinct predictions of the form of the SIC function. To understand
why this is the case we need to consult Equation (6.1). Equation 6.1 determines
the difference of two differences (in brackets). The different decision strate-
gies (Figure 6.4) predict that the difference between the terms in brackets
(Equation 6.1) should change at a different rate across time. This then leads
to different SIC shapes. If processing is serial and self-terminating, then the
value of the SIC is equal to zero at all time values (Figure 6.4A). For instance,
if only the first cue is processed, denoted by a left subscript in Equation 6.1, then
the cognitive process terminates on a first cue and makes a final decision. This
implies for Equation 6.1 that the terms in the left and right brackets become
identical, and they cancel each other out. The definition of take-the-best closely
corresponds to a serial self-terminating mental architecture. If cues are ordered
and searched according to their validity, from the highest to the lowest, the pro-
cessing should terminate on recognition of the first cue and should not continue
any further.

For serial exhaustive processing, the SIC is negative at early values of time but
positive thereafter, with the total area spanned by the negative portion of the
function equal to the total area spanned by the positive portion (i.e., the area
bounded by the SIC function below the x-axis should be equal to the area bounded
by the SIC function above the x-axis) (Figure 6.4B). The predicted SIC function
crosses the x-axis only once. The intuition is that the serial exhaustive model
predicts that a total decision time, for each term in Equation 6.1, is a sum of two
cue comparisons. As there are more slow (S) than fast (F) comparisons (in the
following conditions: SS, SF, FS, FF), each S(t) function in Equation 6.1 should
appear more stretched over time. Imagine that the SIC function is made of
rubber. Then stretching corresponds to elongating this object to the right. So,
when the predictions for each condition are combined in Equation 6.1, the result-
ing function “weaves” around the x-axis.
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We do not expect take-the-best to exhibit this type of SIC function, except if
processing is conducted on all cues in serial fashion. This is possible only if the
processing of the first cue did not provide a basis for an overall decision. By contrast,
for both WADD and Tally, exhaustive processing of both cues appears most likely.

FIGURE 6.4 Survivor interaction contrast (SIC) functions for different mental
architectures (serial, parallel) combined with stopping rules (terminating, exhaust-
ive). The comparable decision-making strategies (take-the-best (TTB), Tally,
WADD) are given in parentheses.
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If processing is parallel self-terminating, then the value of the SIC is positive
at all values of t (Figure 6.4C). The intuition here is that the left bracket term
is always larger than the right bracket term in Equation 6.1, for all time points t.
This is because in the condition SS, described by SSS(t), the processing cannot self-
terminate quickly because both processes are slow. Hence, the survival rate is
higher for the left bracket term than for the right bracket term, for all time t.
Although this model makes distinct predictions in comparison to take-the-best,
WADD, or Tally, it is a very representative model of human cognition involved in
visual and perceptual domains.

Finally, for parallel exhaustive processing, the SIC function is negative at all
values of t (Figure 6.4D). The intuition here is that the left bracket term is always
smaller than the right bracket term in Equation 6.1, and this is due to the parallel
exhaustive stopping rule: The cognitive system always waits for the longest com-
ponent to be accomplished and then makes a final decision. Because both terms in
the left bracket [SSS(t) − SSF(t)] have at least one slow component that determines
total time, this difference tends to be very small. In contrast, the discrepancy in the
right-hand bracket is larger, thus the outcome is a negative SIC function, for all
time t. This SIC function is also a likely candidate for both WADD and Tally, but
not for take-the-best.

In Figure 6.5 we display four representative observed SIC functions from two
different studies that employed a memory search task and a face categorization
task (Townsend & Fific, 2004). In both studies we manipulated two processes and
their saliency levels (F and S) and factorially combined them. These four empirical
SIC functions revealed four distinct underlying cognitive processes. In one of the
studies, the face study, the task was to categorize displayed faces into two groups,
based on processing of two features. The faces in the two groups did not share
facial features, but some of them appeared similar. Less similar ones appeared
more salient than the more similar, thus slow and fast levels were determined by
facial feature similarity. Given that no features were shared between groups, the
participants could terminate processing on recognition of either of the two face
features (eyes and lips). Figure 6.5A shows a SIC function of a participant who
processed both features in parallel but chose to stop on positive recognition of
either eyes or lips. Panel B shows a participant who exhibited a serial self-
terminating SIC function. In short, this participant based his or her decision on
positive recognition of a single face feature only, namely, the eyes. This participant
ignored the lips feature, although it was informative and could support the overall
decision. We classify this performance as a noncompensatory decision strategy.
Obviously the eyes were more informative than the lips. The participant elected to
attend only to the eyes and terminated the decision on positive recognition. Note
that the slight variability of the SIC function exhibited for the short response times
was due to response latency noise.

Figures 6.5C and 6.5D display the SIC functions showing serial exhaustive
and parallel exhaustive processing, taken from the short-term memory study of
Townsend and Fific (2004). The participant in Panel C processed both items in a
sequential manner. The participant in Panel D processed both memorized items
in parallel but waited for the completion of both before making an overall decision.
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In the memory study, the stopping rule for memory search was necessarily
exhaustive. It is important to note that both participants’ SIC functions conformed
to the exhaustive stopping rule and thus validated the methodology. The SFT
approach that we described here with two cues could be extended to multiple
processes of, for instance, three or four cues.

CONCLUSIONS

In this chapter, we argued that response times are a valuable resource for testing
process models of judgment and decision making. Decisions and judgments are
the result of the processing of information. Cognitive models of decision making

FIGURE 6.5 SIC functions of four participants observed in two different studies.
Panels A and B are taken from a face categorization study, where subjects learned
to classify faces based on a previously memorized set of two features (eyes and
lips; Fific & Townsend, 2009). Panels C and D are from a short-term memory
search study (Townsend & Fific, 2004), where subjects had to process two memor-
ized items before making a decision. RT = response time.
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imply different types of information processing that lead to a decision. Very gener-
ally one can differentiate two aspects of information processing: the scope of
information search (self-terminating vs. exhaustive) and the type of information
processing (serial vs. parallel). These two aspects can be found in different com-
binations in a variety of models. Despite different processing assumptions, how-
ever, these models often cannot be distinguished by the decisions they predict,
leading to an identification problem (cf. Anderson, 1990).

We have illustrated that response time analyses can help to solve this identifi-
cation problem. Bergert and Nosofsky (2007) were able to distinguish between
two different models based on response time analyses. These models were for-
mally identical but very different in the spirit of the underlying process assump-
tions. Moreover, the response time analyses of both Bröder and Gaissmaier (2007)
and Persson and Rieskamp (2009) supported the assumption of self-terminating,
serial cue search in memory-based decision making, at least for a substantial pro-
portion of their participants. The results demonstrate the usefulness of response
time analyses as a method for tracing processes that are not directly observable.
The analysis of response times can therefore provide valuable information on
whether the interpretations drawn from an analysis of participants’ decisions
alone appear valid.

To tackle the issue of serial versus parallel information processing we intro-
duced the SFT methodology. It provides a detailed assessment of the scope of
information search (self-terminating vs. exhaustive) and the type of information
processing (serial vs. parallel). We outlined the main properties of SFT and
suggested how it could be applied in comparisons of different types of decision
making strategies, such as noncompensatory strategies and compensatory strat-
egies, thereby extending the scope of such inquiries. We hope to have shown
convincingly that analyzing response times is a fruitful endeavor that can foster
an understanding of cognitive processes underlying people’s judgments and
decisions.

RECOMMENDED READING LIST

• Bröder and Gaissmaier (2007) showed how response time analyses can provide
convergent evidence for assumptions about information search in memory-
based decision making.

• Fific, Nosofsky, and Townsend (2008) extended the systems factorial tech-
nology (SFT), which can diagnose the types of information processing
architectures (serial, parallel, or coactive) and stopping rules (exhaustive or
self-terminating), to foundational issues in multidimensional classification.

• Persson and Rieskamp (2009) tested an exemplar-based approach to predict-
ing people’s inferences from memory against the strategy-based approach and
used response time analyses to confirm strategy classifications.
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