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Introduction to X-Rays

• X-rays were discovered by the German Physicist Rontgen – he found 
that unlike ordinary light x-rays were invisible, but they traveled in 
straight lines and affected photographic film in the same way as light.

• X-rays are also more penetrating then light and could easily pass 
through the human body, wood, thick pieces of metal, and other opaque 
objects – an immediate application of this was the radiograph used by 
the physicians.

• In 1912 the exact nature of x-rays  was established and in the same year 
the phenomenon of x-ray diffraction by crystals was discovered. This 
discovery provided a new method for investigating the fine structure of 
matter. 



More Facts about X-Rays
• We now know that X-rays are electromagnetic radiation of exactly 

the same nature as light but of very shorter wavelength  (10-10 m = 1 
Angstrom). So X-rays are ideal to probe interatomic distances which 
are typically of that order.

• Typical energy scale = hc/λ = 12.3 KeV which is the characteristic 
energy of x-rays. 

How do you get X-rays? 
How does the X-ray spectrum look like?



X-rays are high-energy photons that 
are produced when electrons make 
transitions from one atomic orbit to 
another. 
These transitions can be generated via 
the photoelectric effect as shown. If 
you send a photon into an atom with 
an energy greater than the binding 
energy of an electron in that atom, the 
photon can knock that electron out of 
its orbit, leaving a hole (or vacancy). 
This hole can then be filled by 
another electron in the atom, giving 
off an x-ray in the transition to 
conserve energy. This process is 
known as fluorescence. 
Many different atomic electrons of 
different binding energies can fill this 
hole, so you would expect to see 
many energy peaks in an x-ray 
spectrum.



Electron transitions to the K 
shell of an atom are called K 
X-rays, and transitions to the 
L shell are called L X-rays. 
Not only are energy levels 
labeled, but specific atomic 
transitions are labeled also. 
Some of these labels are 
displayed in the Figure.

The Kα1 x-ray is emitted in a 
transition from the n = 2, j = 
3/2 level to the K-shell; the 
Kα2 x-ray is emitted in a 
transition from the n = 2, j = 
1/2 level to the K-shell.

The K’β1 transition is a 
combination of all the 
transitions from the M shell to 
the K shell and the K’β2
transition is a combination of 
all the transitions from the N 
shell to the K shell.



An X-ray spectrum of erbium (Z = 68) showing both K and L x-
rays. Notice that the L x-rays have lower energy than the K x-rays 
due to the fact that the allowed electron levels of an atom get closer 
together in energy as n increases.



Crystal Structures

Lattices



• A crystal may be defined as a solid 
composed of atoms, ions  or 
molecules arranged in a pattern 
periodic in three dimensions. 

• Many solids are crystalline – single 
crystals or polycrystalline. 

• Not all solids are crystalline, however; 
some are amorphous, like glass, and 
do not have any regular interior 
arrangement of atoms, ions, or 
molecules.

• Ignoring the actual atoms, ions, or 
molecules we will focus on the 
geometry of periodic arrays – the 
crystal is then represented as a lattice, 
i.e. a three dimensional array of points 
(lattice points) each of which has 
identical surroundings.

NaCl Structure

CsCl Structure



• Two distinct concepts 
in crystallography: 

Lattice: consists of 
points in geometrical 
arrays,

Basis: describes the 
arrangement of atoms 
associated with each 
lattice point.

Crystal Structure 
= Lattice + Basis



Bravais Lattice

(Two equivalent descriptions)

(a) It is an infinite array of discrete 
points with an arrangement and 
orientation that appears exactly the 
same, from whichever of the points 
the array is viewed.

(b) A 3D Bravais lattice consists of 
all points with position vectors R
of the form R = p a + q b + r c, 
where p, q, r are integers and 
(a,b,c) are any 3 vectors. 



Primitive vectors: 
In 3D the vectors (a, b, c) define a unit 
cell of a Bravais lattice. These vectors 
are called primitive vectors and they are 
said to generate or span the lattice. 
Example of primitive vectors in a 3D 
Bravais lattice is shown below.

2D Bravais lattice of no particular 
symmetry: the oblique net. 
Primitive vectors are (a, b). All the 
points are linear combinations of 
these with integer coefficients for 
example: P = a + 2b, Q = -a + b
etc.



Is this a Bravais lattice?
It’s not a Bravais lattice!

The arrays of points look the 
same whether viewed from points 
P or Q.
But the view from point R is 
rotated  by 180o. So it’s not a 
Bravais lattice.

Lesson:
The arrangement and orientation 
both must appear the same from 
every point in a Bravais lattice.

The vertices of a 2D 
honeycomb lattice.



Infinite Lattices and Finite crystals:

For a Bravais lattice since all points 
are equivalent it must be infinite in 
extent. (idealization)

But actual crystals are finite! If the 
crystals are large enough the vast 
majority of points will be so far 
from the surface that one can neglect 
the surface boundaries.

There are cases where surface 
effects are important – then the 
notion of Bravais lattice is still 
relevant, but then one must think of 
the physical crystal as filling up a 
finite portion of the ideal Bravais
lattice.

Are the primitive vectors 
unique?

No! There are infinitely 
many nonequivalent 
choices!!



More examples
Simple Cubic Lattice (SC):

A choice of primitive vectors are the 
three orthogonal vectors 
(a x, a y, a z). 

(Note: x, y, z are unit vectors)

Body Centered Cubic (BCC):
A set of primitive vectors are:
a = a x, 
b = a y, 
c = a/2 (x + y + z).

Point P  for example :
P = - a – b + 2c
(check that is is equal to a z).



A more symmetric set of 
primitive vectors for the 
BCC lattice is

a = a/2 (y + z – x ),
b = a/2 (z + x – y),
c = a/2 (x + y – z).



Face Centered Cubic (FCC) Lattice

A more symmetric set of 
primitive vectors for the BCC 
lattice is

a = a/2 (y + z ),
b = a/2 (z + x),
c = a/2 (x + y).

P = a + b + c, Q = 2b,
R = b + c, S = - a + b + c.



Coordination Number

The points in a Bravais lattice that are closest to a given point are 
called its nearest neighbors. 

Because of the periodic nature of the Bravais lattice, each point has 
the same number of nearest neighbors. This number is thus a property 
of the lattice, and is referred to  as the coordination number of the 
lattice.

Coordination numbers for 
SC: 6 ( 2 x 3 )
BCC: 8 ( 2 x 4 )
FCC: 12 ( 2 x 6)



Primitive Unit Cell

• The parallelepiped defined by the 
primitive vectors (a, b, c) is 
called a primitive cell or a unit 
cell. 

• A cell will fill all space by the 
repetition of suitable crystal 
translation operations.

• A primitive cell is a minimum 
volume cell and there are many 
ways of choosing the primitive 
axes and primitive cell for a 
given lattice. 



Other Properties of Primitive Unit Cell 

• The number of atoms in  a primitive cell is always the same for a 
given lattice structure.

• There is always one lattice point per primitive cell. If the 
primitive cell is a parallelepiped with lattice points at each of the 
8 corners, each lattice point is shared among 8 cells, so that the 
total number of lattice points in the cell is one: 8 x (1/8) = 1.

• The volume of a parallelepiped with axes (a, b, c) is 
Vc = | a . ( b x c) |



Wigner-Seitz Primitive Cell

• Another way of choosing a 
primitive cell is known to physicists 
as a Wigner-Seitz cell.

• Wigner-Seitz cell for a 2D 
Bravais lattice:

The 6 sides of the cell bisect the 
lines joining the central points to its 
6 neighboring points.

• In 2D, the Wigner-Seitz cell is 
always a hexagon unless the lattice 
is rectangular. 



Wigner-Seitz Primitive Cell in 3D

Wigner-Seitz primitive cell for 
theFCC Bravais lattice

(a “rhombic dodecahedron ”)

Wigner-Seitz primitive cell for the 
BCC Bravais lattice 

(a “truncated octahedron”)



Fundamental Types of Lattices



2D Lattice Types 



• In 2D there are infinite number of 
possibilities. 

• A general lattice is the oblique 
lattice and is invariant only under 
rotation of π and 2π about any 
lattice point. 

• There are 4 special lattice type: 
Square lattice, Rectangular 
lattice, Hexagonal lattice, and 
Centered rectangular lattice.

• So, there are 5 distinct types of 
lattices in 2D.

Oblique Lattice





3D Lattice Types 





Index system for Crystal planes

• It is a standard practice to describe directions in the crystal 
by a vector related to the principal axes of the system. 

• A general vector of the form 
u a , v b, w c is denoted by 
< u v w >.

• For  all u v w positive the convention is [ u v w].

• For say u negative the convention is [ ubar v w].



Indices of planes in a cubic crystal



Miller Indices
• The orientation of a crystal plane is 

determined by 3 points in the 
plane, provided they are not 
collinear. 

Rules:
• Find the intercept on the axes in 

terms of the lattice constants a, b, 
c. The axes may be those of a 
primitive or nonprimitive cell.

• Take the reciprocals of these 
numbers and then reduce to 3 
integers having the same ratio, 
usually the smallest 3 integers. The 
result, (h k l), is called the index of 
a plane.

• h, k, l are known as Miller 
Indices.

This plane intercepts the a, b, c
axes at 3a, 2b, 2c. The reciprocals of 
these numbers are 1/3, 1/2, 1/2. So 
indices of the plane are (2 3 3).



Crystal Plane Animation



Spacing between Crystal planes

• It can be shown geometrically that the spacing d between 
planes of Miller indices {h k l} (curly brackets imply 
both +/- choices) in the cubic system is

d = a / (h2 + k2 + l2)1/2.
where a is the length of the edge of the cubic unit cell.



Simple Crystal Structures



Sodium Chloride Structure
• FCC lattice structure. 
• The basis consists of one Na atom 

(green) and one Cl atom (blue) 
separated by one-half the body 
diagonal of a unit cube.

• There are 4 units of NaCl in each 
unit cube, with atoms in the 
positions
Cl: 000; ½ ½ 0; ½ 0 ½; 0 ½ ½;
Na:½ ½ ½; 00 ½; 0 ½ 0; ½0 0. 

• Each atom has as nearest neighbors 
6 atoms of opposite kind. 

• Similar structures are LiH, MgO, 
MnO etc.



NaCl Rock Salt (Halite)



The fcc nature of the lattice can be seen by examining just one 
atom of the motif at a time (i.e. just Cl or just Na)



Cesium Chloride Structure

• BCC lattice structure.

• One molecule per primitive cell, 
with atoms at the corners 000 
and body-centered positions 
½ ½ ½ of the simple cubic space 
lattice. 

• Coordination number is 8.

• Similar structures are BeCu, 
AlNi, CuZn, CuPd, AgMg etc.



CSCl Cesium Chloride Structure

Lattice:
Cubic – P 
(Primitive)



Diamond Structure

• Space lattice is FCC. 

• Primitive basis has two identical 
atoms at 000; ¼ ¼ ¼ associated 
with each point of the fcc
lattice. 

• Each atom has 4 nearest 
neighbors and 12 next nearest 
neighbors. 

• The diamond lattice represents 
the crystal structure of diamond, 
germanium and silicon. 



Zincblende Structure
• The zincblende lattice consist 

of a face centered cubic 
Bravais point lattice which 
contains two different atoms 
per lattice point. The distance 
between the two atom equals 
one quarter of the body 
diagonal of the cube. 

• The zincblende lattice 
represents the crystal structure 
of zincblende (ZnS), gallium 
arsenide, indium phosphide, 
cubic silicon carbide and cubic 
gallium nitride. 



ZnS Zinc Blende (Sphalerite)



Close-packed  Structure 

• Goldschmidt proposed 
that atoms could be 
considered as packing in 
solids as hard spheres.

• This reduces the 
problem of examining 
the packing of like 
atoms to that of 
examining the most 
efficient packing of any 
spherical object.

Have you noticed how oranges 
are most effectively packed in 
displays at your local shop?



Close-packing of spheres

A single layer of spheres is closest-packed with a 
HEXAGONAL coordination of each sphere



A second layer of spheres is 
placed in the indentations left 
by the first layer

• space is trapped between the 
layers that is not filled by the 
spheres 

• TWO different types of 
HOLES (so-called
INTERSTITIAL sites) are 
left : 
OCTAHEDRAL (O) holes 
with 6 nearest sphere 
neighbours and 
TETRAHEDRAL (T±) 
holes with 4 nearest sphere
neighbours. 



• When a third layer of spheres is 
placed in the indentations of the 
second layer there are TWO
choices:

• The third layer lies in indentations 
directly in line (eclipsed) with the 
1st layer. Layer ordering may be 
described as ABA. 

• The third layer lies in the 
alternative indentations leaving it 
staggered with respect to both 
previous layers. Layer ordering 
may be described as ABC.  



Simplest close-packing structures

• ABABAB.... repeat gives Hexagonal Close-Packing (HCP)
Unit cell showing the full symmetry of the arrangement is 
Hexagonal 
Hexagonal: a = b, c = 1.63a, α = β = 90°, γ = 120°
2 atoms in the unit cell: (0, 0, 0) ; (2/3, 1/3, 1/2) 

• ABCABC.... repeat gives Cubic Close-Packing (CCP) 
Unit cell showing the full symmetry of the arrangement is 
Face-Centred Cubic
Cubic: a = b =c, α = β = γ = 90°
4 atoms in the unit cell: (0, 0, 0);  (0, 1/2, 1/2) ; (1/2, 0, 1/2); 
(1/2, 1/2, 0) 



HCP Structure



CCP Structure



The most common close-packed structures are METALS

A NON-CLOSE-PACKED structure adopted by some metals is:

68% of space is occupied.

Coordination Number ?

8 Nearest Neighbours at 0.87a and 6 Next-Nearest Neighbours
at 1a.



• Polymorphism: Some metals exist in different structure types at 
ambient temperature & pressure. 

• Many metals adopt different structures at different 
temperature/pressure. 

• Not all metals are close-packed. 



Other systems may be Classified as 
having Similar Structures



Reciprocal Lattice 



Definition

• Consider a set of points R constituting a Bravais lattice (B. L), and a plane 
wave, exp(ik.r). For general k, such a plane wave will not, of course, have 
the periodicity of the B. L, but for certain special choices of k it will.

• The set of all wave vectors K that yield plane waves with the periodicity of a 
given B. L is known as its reciprocal vector. 

• Mathematically, K belongs to the reciprocal lattice of a B. L of points R, 
provided that the relation 

exp (i K.(r+R) )= exp(i K.r)
holds for any r, and for all R in the B. L.

• So we can characterize the reciprocal lattice as the set of wave vectors K
satisfying

exp(i K.R) = 1 for all R in the B. L. 



Properties of Reciprocal Lattice

• The reciprocal lattice is a B. L.
• If a1, a2, a3 are a set of primitive vectors for a direct lattice then the 

reciprocal lattice can be generated by the three primitive vectors
b1 = 2π (a2 x a3)/(a1. (a2 x a3)),
b2 = 2π (a3 x a1)/(a1. (a2 x a3)),
b3 = 2π (a1 x a2)/(a1. (a2 x a3)).

• Note that bi. aj = 2πδij. 
• Any vector k can be written as k = k1b1 + k2b2 + k3b3.
• If R is any direct lattice vector, then  R = n1a1+ n2a2 + n3a3.
• Check that k.R = 2π(k1n1+k2n2+k3n3) = 2π x integer. 

So, exp(i k.R) =1.



Examples

Primitive vectors for the simple hexagonal Bravais lattice (Left)
Primitive vectors for the corresponding reciprocal lattice (Right)



First Brillouin Zone

The Wigner-Seitz primitive cell of the reciprocal lattice is known 
as the first Brillouin zone.
Left: First BZ for BCC lattice Right: First BZ for FCC lattice



Reciprocal lattice vectors and 
Real space planes

• If a plane in real space has Miller indices (h k l) 
then the reciprocal lattice vector 

K = h b1+ k b2 + l b3

is perpendicular to it. 

• The spacing d(hkl) between parallel lattice planes 
that are normal to the direction K is 

d(hkl) = 2π/|K|.



Interplanar Spacing d:



Diffraction of waves by crystals



Scattering of x rays by a perfect 
periodic structure

Two equivalent views:
• Bragg Formulation of X-ray diffraction by a 

crystal – widely used by x-ray crystallographers.

• von Laue approach – exploits the reciprocal 
lattice. This approach is closer to the spirit of 
modern solid state physics.

• Note: Both formulations are equivalent.



Bragg formulation of x-ray diffraction 
by a crystal

Rays interfere 
constructively if 

2a = m λ
Now 

a= d sin θ.
Bragg’s law of 
diffraction:
2dsin θ = m λ



How do we perform an experiment?

• Measure angle and 
intensity of radiation 
as the table is 
rotated.

• Apply Bragg’s law

2dsin θ = m λ



Result:



Data



Atomic Scattering Factor

• The incoming X-rays are scattered by the electrons 
of the atoms. 

• We define a quantity f, the atomic scattering 
factor. It describes the “efficiency” of scattering of 
a given atom in a given direction:

f = (amplitude of the wave scattered by an 
atom)/(amplitude of the wave scattered by one 
electron). 

f decreases with increase in θ. For θ = 0, f =Z for any 
atom. (Z=atomic number ).



Structure Factor

• Resultant wave scattered by all the atoms of the unit cell is called the 
structure factor, as it describes how the atom arrangement, given by 
uvw of each atom, affects the scattered beam.

• The intensity is directly related to the structure factor: 

where the factor LP is a combined geometry and polarization 
factor which depends on the particular experimental setup.



Example: BCC lattice
• It has two identical atoms per unit cell 

located at 000 and ½ ½ ½ . So,

F = f [ e 2πi(0) + e 2πi(h/2+k/2+l/2) ]
= f [1 + e πi(h+k+l)].

F = 2f, |F|2 = 4f2 when (h+k+l) is
even;
F = 0 , |F|2 = 0 when (h+k+l) is odd.

=> In the diffraction pattern no reflections 
occur for planes (100), (300), (111), (221)
etc. but reflections may occur for planes 
(200), (110), and (222) .



Example: FCC lattice
• It has identical atoms per unit cell at 000, 

0 ½ ½ , ½ 0 ½, ½ ½ 0. So,
F = f [ e 2πi(0) + e 2πi(h/2+k/2)

+ e 2πi(k/2+l/2) + e 2πi(h/2+l/2) ]
= f [1 + e πi(h+k) + e πi(k+l) 

+ e πi(h+l) ].
F = 4f, |F|2 = 16f2 when all (hkl) are
even/odd;
F = 0 , |F|2 = 0 when (hkl) are mixed.

=> In the diffraction pattern no reflections 
occur for planes (100), (210), (112), etc. 
but reflections may occur for planes 
(111), (200), and (220) .



Example: NaCl
• Cubic lattice with 4 Na and 4 Cl atoms per unit 

cell, located at  
Na 000, ½ ½ 0, ½ 0 ½, 0 ½ ½
Cl ½ ½ ½ , 0 0 ½ , 0 ½ 0, ½ 0 0

In this case, the proper atomic scattering factors 
for each atom must be used. So,

F = f Na [ e 2πi(0) + e 2πi(h/2+k/2) + e 2πi(k/2+l/2) 

+ e 2πi(h/2+l/2) ]
+ f Cl [ e 2πi(h/2+k/2+l/2) + e 2πi(l/2) + e2πi(k/2) 

+ e 2πi(h/2) ]
= [1 + e πi(h+k) + e πi(k+l) + e πi(h+l) ]

x [f Na + f Cl e πi(h+k+l) ].

Note: The 1st term 
correspond to the face-
centering translations and 
the 2nd factor contains the 
terms that describe the 
basis of the unit cell, 
namely the Na atom at 000 
and Cl atom at ½ ½ ½ . 



NaCl Structure Factor

F = 0 , |F|2 = 0 when (hkl) are mixed.
For unmixed indices,

F = 4 [f Na + f Cl e πi(h+k+l) ].
F = 4(f Na + f Cl ) if (h+k+l) is even;
|F|2 = 16 (f Na + f Cl ) 2.
F = 4(f Na - f Cl ) if (h+k+l) is odd;
|F|2 = 16 (f Na - f Cl ) 2.



X-ray reflections from KCl
and KBr powders.

Both KCl and KBr have a 
FCC lattice, but KCl
simulates a SC lattice with a 
lattice constant a/2 (Note: 
only even integer occur in the 
reflection indices ) because 
the number of electrons of K+

and Cl- ions are equal. 
So, the scattering amplitudes 
f (K+) and f (Cl-) are almost 
exactly equal. But in case of 
KBr, the form factor of Br- is 
quite different than that of 
K+ , and all reflections of the 
FCC lattice are present.



Neutron diffraction pattern for powdered diamond.

The basis consists of eight atoms if the cell is taken as conventional 
cube. Allowed reflections of the diamond structure satisfy 
h+k+l = 4n, where all indices are even and n is any integer, or else 
all indices are odd. 
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Thanks to all of you!!
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