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1 Fundamentals of Chemical Kinetics

1.1 Concentrations

Chemical kinetics is the quantitative study of chemical systems that are
changing with time. (Thermodynamics, another of the major branches of
physical chemistry, applies to systems at equilibrium—those that do not
change with time.)

In this course, we will restrict our attention to systems that are homoge-
neous and well mixed (a major restriction), and that are at constant volume
(a minor restriction that simplifies the notation, but can be easily lifted.)
With these two restrictions it is useful to describe the chemical system in
terms of concentrations of the species present:

[A] =
nA

V
(1)

where [A] indicates the concentration of species A, V is the volume, and nA
indicates the amount of A present in that volume. In discussions of reac-
tions in solution, the usual units for [A] are mol dm−3 or mol/L, called mo-
lar and written M. (The name “molar” and the symbol M are now regarded
as obsolete by NIST and by IUPAC, and the explicit notations mol dm−3

or mol/L are preferred; however, most chemists appear to be ignoring their
lead.)

For gas phase reactions, the customary units are molecules cm−3, often
written simply cm−3.

The chemical state of a homogeneous system can be described by spec-
ifying the concentrations of all the species present and the pressure and
temperature.

1.2 Reaction rates

For a general chemical reaction

aA + bB + . . . −−→ yY + zZ + . . . , (2)

we define specific reaction rates with respect to each reactant or product:

rΓ = ±1
1
γ

dΓ
dt

, (3)
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1. Fundamentals of Chemical Kinetics 2

where γ is the stochiometric coefficient for species Γ in the balanced equa-
tion. The + sign is used if Γ is a product, the − sign if it is a reactant. Thus

rA = −1
a

d[A]
dt

. (4)

The rate always has units of concentration/time. For solution reactions
the usual units are M s−1, while for gas phase reactions the most common
unit is cm−3 s−1.

These specific rates are not necessarily the same for different species. If
there are no reaction intermediates of significant concentrations, then

rA = rB = rY = rZ = v, (5)

the rate of the reaction. For very many systems, intermediates are impor-
tant, all the specific rates are different, and it is then necessary to specify
which specific rate is being discussed.

1.3 Rate laws

For most reactions, the rate(s) depend on the concentrations of one or more
reactants or products. Then we write

rΓ = f ([A], [B], [Y], [I], [C], T, p, . . .) (6)

where the list shows explicitly that r might depend on the concentrations
of species other than those in the balanced equation, as well as on temper-
ature, pressure, and so on. Often the dependence on variables other than
concentrations is suppressed (a set of conditions is implied or specified), so
that we write

rΓ = f ([A], [B], [Y], [I], [C], . . .). (7)

This kind of expression, giving the rate of the reaction as a function of the
concentrations of various chemical species, is called a rate law. Notice that
the rate law is a differential equation: it gives the derivative (with respect
to time) of one of the concentrations in terms of all the concentrations. The
solution to such a differential equation is a function that gives the concen-
tration of species Γ as a function of time.

1.3.1 Examples

The gas phase reaction that is the foundation of the very powerful infrared
HBr laser is

H2 + Br2 −−→ 2HBr. (8)
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1. Fundamentals of Chemical Kinetics 3

It has the rate law
1
2

d[HBr]
dt

=
k1[H2][Br2]

1
2

1 + [HBr]
k2[Br2]

, (9)

where k1 and k2 are numbers (called rate coefficients, or sometimes rate con-
stants) that are independent of the species concentrations but do depend on
T.

The solution phase two-electron transfer reaction

2Fe2+ + Tl3+ −−→ 2Fe2+ + Tl+ (10)

has the rate law
1
2

d[Fe2+]
dt

= k[Fe2+][Tl3+]. (11)

The gas phase reaction between hydrogen and chlorine,

H2 + Cl2 −−→ 2HCl, (12)

is the basis of a popular demonstration (the “HCl cannon”). In the presence
of oxygen it has the rate law

1
2

d[HCl]
dt

=
k1[H2][Cl2]

2

k2[Cl2] + [O2]([H2] + k3[Cl2])
(13)

1.4 Simple rate laws and reaction order

In some cases, the rate law takes on the simple form

rΓ = k[A]m[B]n[C]o · · · , (14)

proportional to powers of reactant concentrations. Then the sum of the
powers is called the reaction order (or overall order), and the individual
powers are called the orders with respect to the particular reactants. The
orders m, n, o, etc., must be determined experimentally; neither the form of
the rate law nor the orders (should they be defined at all) can be predicted
from the balanced equation.

In the second example above, the overall reaction is second order: first
order with respect to each of Fe2+ and Tl3+.

The other two example reactions do not have rate laws of this simple
form. Note, however, that they can appear to have simple forms under
some circumstances. In the first example, if there is very little HBr present
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2. Integration of simple rate laws 4

so that k2[Br2] � [HBr], the second term in the denominator of the rate law
will be negligible compared to 1 and the reaction will appear to have over-
all order 3/2 (first order with respect to hydrogen and one-half order with
respect to bromine). In the third example, if there is no oxygen present, the
second term in the denominator disappears and the reaction appears over-
all second order (first order with respect to both hydrogen and chlorine.)

2 Integration of simple rate laws

Generally the rate law for a reaction is determined by measurements of the
concentrations of one or more species as a function of time. I will approach
the problem backwards, first showing what concentration-vs-time behav-
ior might be expected for several simple rate laws, then talking about how
to design experiments to measure rates and how to extract rate laws from
kinetic data.

2.1 First order reactions

While true first order reactions are comparatively rare, first-order rate be-
havior is extremely important because many more complicated reactions
can be “tricked” into behaving like first-order ones and first-order behav-
ior is easier to handle experimentally than any other type.

If the general reaction

aA + bB + . . . −−→ yY + zZ + . . . (15)

is first order with respect to A, and its rate depends on no other concen-
trations (it is zero order with respect to all other species), then the rate law
is

−1
a

d[A]
dt

= k[A]. (16)

Notice that k must have units of s−1; that will always be true of first-order
rate coefficients. k is a positive number that does not depend on any con-
centrations, though it does depend (usually strongly) on temperature.

2.1.1 Integration of the rate law

The rate law is a differential equation; in this case it is a separable equation,
and can be solved simply by isolating the terms corresponding to the dif-
ferent variables [A] and t on different sides of the equation and integrating
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2. Integration of simple rate laws 5

both sides:
1
a

d[A]
[A]

= −k dt (17)

1
a

∫
1

[A]
d[A] = −k

∫
dt (18)

1
a

ln[A] = −kt + C (19)

C is an as-yet-unknown constant of integration. Exponentiating both sides
we obtain

[A](t) = eaCe−akt = C′e−k′t. (20)

Most authors absorb the constant a into the first order rate coefficient k in
order to avoid writing k′. It is important to pay attention to exactly what
differential equation is being solved; sometimes those missing constants
cause errors when people aren’t careful.

We must find the value of the constant C′ by applying the initial con-
ditions. At time t = 0, the concentration of A is A0. We therefore have
C′ = A0, so that

[A](t) = A0e−k′t (21)

and the concentration of A falls exponentially with time from its initial
value.

Since a is known (it’s part of the chemical equation), the rate coefficient
can be determined by measuring [A] as a function of time.Figure 1 shows
two common plots used to demonstrate or analyze this behavior.

2.1.2 Half life and time constant

The half-life for a reaction is time time required for some reactant to reach
half its initial concentration (or more precisely, for its concentration to reach
a value halfway between its initial and final concentrations; for this case,
they’re the same.) For a first-order reaction we can find the half-life t1/2 by
substituting into Eq. (20):

[A](t1/2) =
A0

2
= A0e−k′t1/2 (22)

ln
1
2

= −k′t1/2 (23)

t1/2 =
ln 2
k′

(24)
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2. Integration of simple rate laws 6

Figure 1: Two plots showing the concentration-vs-time behavior for a sim-
ple first order reaction.
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2. Integration of simple rate laws 7

Notice that the half life for a first order reaction is independent of the initial
concentration of A; this is a very convenient property and is not true for
other reaction orders.

The time constant τ of this reaction (also called the natural lifetime, the
e-folding time, or the 1/e time) is the time required for the concentration
of A to reach 1/e(≈ 0.37) of its initial concentration. We can find it by a
similar calculation:

[A](τ) =
A0

e
= A0e−k′τ (25)

ln
1
e

= −k′τ (26)

τ =
1
k′

(27)

The 1/e time is again independent of the initial concentration of A. Both
the half-life t1/2 and the 1/e time τ have units of time: seconds, years, mi-
croseconds, or whatever. Both provide a quick-and-dirty way to estimate
the first-order rate coefficient quickly from a plot of the concentration vs.
time obtained in an experiment; just look to see how long it takes for the
concentration to drop to half its initial value (to get t1/2) or to just above
1/3 of its initial value (to get τ). Then invert that time, and multiply by
ln 2 ≈ 0.7 if you measured the half-life.

2.1.3 Analysis of first-order data

First-order reactions have an important property that makes them easier to
study than others. If you can measure any property that is linearly related
to the concentration (more precisely, affine in the concentration: Q = α[A] +
β), then you can determine the rate coefficient without having to know
either α or β; that is, the analytical method you use to measure [A] need not
be calibrated!

If A is a reactant, then you fit the Q vs. time data to an equation of the
form

Q = Ce−kt + D, (28)

and if A is a product you fit to

Q = C(1 − e−kt) + D, (29)
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2. Integration of simple rate laws 8

and in either case the value of k is independent of the slope α and offset β
in the expression Q = α[A] + β.

Many textbooks will suggest that you use the equation

− ln
(

Q − Q∞

Q0 − Q∞

)
= kt (30)

and therefore make a logarithmic plot to find k. However, this method
has the disadvantages that (1) it relies too heavily on the precision of the
single measurement Q∞ at very long time, and (2) that it requires careful
weighting of the data in the linear least-squares fit if an accurate value of k
is required. In the homework solution set for this week I demonstrate both
kinds of fits for one problem.

Examples of observables Q that are useful in analyzing first-order reac-
tions include

1. mass of reaction mixture (for reactions evolving gases)

2. capillary rise

3. optical absorption

4. optical rotation in a polarimeter (classic)

5. fluorescence

6. mass spectrometer signal on either product or reactant mass

The crucial point is that you do not have to know how your “detector” is
calibrated; you only have to know that its reading is proportional to the
concentration (possibly with some offset).

2.2 Pseudo-first-order reactions

When a reaction is known to follow a rate law of higher order than 1, con-
centrations can often be adjusted to make the kinetics appear first order
with an effective rate coefficient. Consider a reaction

2A + B −−→ C (31)

with the rate law

−1
2

d[A]
dt

= k[A][B]. (32)
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2. Integration of simple rate laws 9

This rate law is second order overall, and its rate coefficient k has units M
−1

s−1. But if we run the reaction with a very large excess of B, say B0 = 100A0,
then [B] will change very little during the reaction—it will be nearly equal
to B0 the whole time— and we can write

−1
2

d[A]
dt

≈ k′[A], (33)

where k′ = kB0. k′ is a pseudo-first-order rate coefficient with units s−1.
Now, if we do this experiment at several different values of B0 (all very
large compared to A0), extract a k′ for each with an exponential fit as de-
scribed above, and then plot k′ vs. B0, we should get a straight line with
slope k (that is, the true second-order rate coefficient). This is one of the
best ways to measure second-order coefficients.

It’s much better to make that k′ vs. B0 plot and find its slope to get k
than to evaluate k from the measured k′ at a single B0. Using only a single
measurement will get you the wrong answer if there is some competing
process that can remove A from the system (such as a slow decomposition
reaction).

2.3 Reactions second order in a single reactant

Here we have

d[A]
dt

= −k[A]2 (34)

d[A]

[A]2
= −k dt (35)∫

d[A]

[A]2
= −k

∫
dt (36)

− 1
[A]

= −kt + C (37)

Applying the initial condition [A](t = 0) = A0 we find C = −1/A0, so

1
[A]

− 1
A0

= kt (38)

The textbook analysis is to plot 1/[A] against t and extract the slope
to get k. Notice that the plot of [A] vs. time is not exponential, as it is
in the first-order case, but hyperbolic; the concentrations approach their
asymptotic values much more slowly than in the first order reaction.
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2. Integration of simple rate laws 10

Look at the half-life now. By an analysis similar to that we used before,
we find

t1/2 =
1

kA0
(39)

Now, the half-life depends on the initial concentration. In fact, it is in-
versely proportional to the initial concentration. If you double the initial
reactant concentration, the half-life will be cut in half. Similarly, if you
compare the first and second half-lives for a single reaction mixture, the
second one is twice as long as the first (whereas in the first order case, they
are the same.) This gives a quick and dirty way to estimate reaction orders
from data (I show a couple of examples in the homework.)

2.4 Mixed second order reactions

One of the most common rate laws in practice is “mixed second order”:
first order in each of two reactants. For the simple reaction

aA + bB −−→ products, (40)

if A and B are consumed simultaneously we have

−1
a

d[A]
dt

= −1
b

d[B]
dt

= k[A][B]. (41)

If A and B start with stoichiometric concentrations, aA0 = bB0, then this
looks just like the previous case, since a[A] = b[B] at all times.

Otherwise, we have two differential equations: one each in [A] and [B].
Since A and B are consumed simultaneously we can say

[B] = B0 −
b
a

(A0 − [A]) , (42)

so that

−1
a

d[A]
dt

= k[A]
(

B0 −
b
a

(A0 − [A])
)

(43)

−d[A]
dt

= k[A] (aB0 − bA0 + b[A]) (44)

= k[A] (∆0 + b[A]) (45)

This equation is separable; solving it, applying the initial condition, and
substituting back in for [B] gives

ln
(

[B]
[A]

)
= ln

(
B0

A0

)
+ k∆0t. (46)
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3. Determination of rate laws 11

So, a plot of ln([B]/[A]) against t gives a straight line with slope k∆0.
The closer A0 and B0 are to stoichiometric concentrations, the more

poorly ∆0 is known; this method is numerically unsuitable near stoichio-
metric initial concentrations. It’s usually best to run kinetic experiments
under conditions where one reactant is clearly the limiting reactant.

3 Determination of rate laws

I will first discuss two popular methods that assume a rate law of the simple
form

rate = k[A]m[B]n[C]o · · · (47)

Both usually require that a single reactant be isolated; that is, its concen-
tration must be the only one in the rate law that is changing during the
reaction. Usually reactants are isolated by flooding the system with the
other reactants.

3.1 Method of half-lives

We have already seen a few examples of this technique. If you compare the
first half-life for a reaction with the second half-life, the ratio gives you the
order according to Table 1. (I derived this table with a method exactly like
the one required for Problem 25.21 in Atkins.)

Table 1 Ratios of second to first half-lives for reactions of various orders.
The first half-life is the time require for the limiting reactant to reach half
its initial concentration; the second half-life if the time required for it to go
from half its initial concentration to one-fourth of its initial concentration.

Order 0 1/2 1 3/2 2 3
t1/2(2)/t1/2(1) 1/2 1/

√
2 1

√
2 2 4

3.2 Method of Guess-and-Try

Here you do what you have been doing in the homework: take a guess
at the reaction order (perhaps with the half-life method as a guide), and
then make some sort of plot that should be a straight line if your guess was
right. We have already worked out what plots you would make for three
common rate laws, and several more are given in the table from Laidler’s
book on the next page.
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3. Determination of rate laws 12

There are a couple of problems with this method:

1. The rate law might not have a simple form at all.

2. You might get tired before guessing the right form, and decide that
one of the ones you have already done seems to fit the data “okay”,
not realizing that another rate law (that you didn’t try) fits much bet-
ter.

If you use this method on a reaction you are studying, it is a good idea
to check the result with one of the more detailed methods I describe in the
next section. Also, it is very important to collect your data for long enough.
Following the reaction out through at least two half-lives is necessary. It is
very hard to distinguish an order 3/2 reaction from a first or second order
one by looking at a plot that only takes the reaction halfway to completion.

3.3 Differential methods

The term “differential method” indicates that a derivative (a reaction rate)
is being measured directly. To measure a rate, you measure concentrations
at several times whose separation is small compared to the reaction half-
life, then evaluate the derivative (the slope) d[A]/dt over that small region.
If you make this measurement right at the beginning of the reaction, when
the concentrations are the ones you put in the beaker, you are using the ini-
tial rates method; if you make rate measurements at several times while the
reaction is going on, you are using the single-run differential method (these
are Laidler’s names.) The best kind of kinetic study uses these methods
together.

3.3.1 Initial rates

To do an initial rates study you start the reaction several times with differ-
ent starting concentrations. The concentrations are chosen so that several
(at least two, but preferably three or more) runs are available in which the
concentration of one reactant varies while the others stay the same. If you
have n reactants and you want to use m concentrations for each then you
will have to start the reaction n(m − 1) + 1 times.

Then, for each set of data that has one reactant changing and the others
constant, you make a plot of the log of the initial rate (on the y axis) against
the log of the initial concentration (on the x axis). The slope of this line
gives you the order of the reaction with respect to that reactant. If the plot
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3. Determination of rate laws 13

is not linear, then the reaction has no order with respect to that reactant
(the rate law is not the simple product-of-powers form). This case is quite
difficult to discover with other methods.

Note that in initial rates studies it is not necessary to flood the system
with the other reactants; you do the measurements before any of the con-
centrations have changed anyway. Figure 2 (taken from Laidler) shows
how the data look for a typical initial rate study on the order with respect
to one reactant.

Figure 2: Figure from Laidler, Chemical Kinetics 3rd edition, showing treat-
ment of initial rate data.

The initial rates method is the best general method for the determi-
nation of reaction orders. Its disadvantages are that (1) it can be time-
consuming and expensive, since a rather large amount of data must be col-
lected, and (2) it requires that the mixing and analytical methods be fast on
the timescale of the reaction.
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3. Determination of rate laws 14

3.3.2 The single-run differential method

In this method, rates are taken from a single plot of concentration vs. time,
where other concentrations than the one being studied are held constant
(typically by flooding). At each of several times during the reaction, you
measure the slope of the concentration-versus-time curve, and then make a
plot of log of rate against log of concentration to obtain the order. The next
page shows such an analysis on a reaction that turned out to be second
order.

3.3.3 Combined differential methods

It is sometimes (when the rate law involves only one reactant, or when you
can flood the others) possible to combine data from the initial rates and
single run methods onto a single plot. If you are doing an initial rates study,
you have to start the reaction a bunch of times anyway, and if it doesn’t take
too long you might as well follow the concentrations for a while. Then you
can make a plot of ln v vs. ln c that includes all the data.

If the single-run data lie along the line given by the initial rates, then
the rate law is simple. If the single-run slopes are larger than the initial rate
slope (as in the example plot below), then the reaction is slowing down
more than expected as it progresses; it is product inhibited. If the single-run
slopes are smaller than the initial rate slope, the reaction is not slowing
down as much as expected; products are speeding it up somehow, and we
say that it is autocatalytic.
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4. Elementary Reactions and Mechanisms 15

4 Elementary Reactions and Mechanisms

If a chemical equation describes an individual molecular event, as for instance

O + CH4 −−→ OH + CH3, (48)

then we can write down the rate law from the stoichiometry:

−d[O]
dt

= −d[CH4]
dt

=
d[OH]

dt
=

d[CH3]
dt

= k[O][CH4], (49)

where k is an elementary rate constant. This example is a bimolecular re-
action; the other possibilities are unimolecular and termolecular, both of
which are rarer. Most chemical reactions are not elementary as written.
One of the main goals of most kinetic studies is to determine the sequence
of elementary reactions, or mechanism, which makes up an overall reaction.

The “laboratory” reaction

2ICl + H2 −−→ I2 + 2HCl (50)

might have the observed rate law

1
2

d[HCl]
dt

= k[ICl][H2]. (51)

This rate law suggests that the kinetics are dominated by a bimolecular re-
action between ICl and H2. One possibility for the mechanism is

ICl + H2
k1−−→ HI + HCl (slow) (52)

HI + ICl
k2−−→ HCl + I2 (fast) (53)

We will shortly see how to analyze the behavior of this mechanism quan-
titatively. Note that adding together Eq. (52) and Eq. (53) gives the overall
reaction.

The mechanism lists the elementary reactions making up a chemical
process. It can be used to predict the detailed concentration vs. time behav-
ior and therefore the observed rate law. A mechanism (proposed) cannot
be proven correct, though it can be proven wrong by disagreement with
observed behavior.
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Figure 3: Behavior of a reversible first order reaction for the case B0 = 0
and k1 = 2k2.

4.1 Simple example: reversible unimolecular transformation

The mechanism

A
k1−−→ B (54)

B
k2−−→ A, (55)

which can also be written

A
k1−↽−−⇀−
k2

B, (56)

gives the set of “elementary rate laws”

d[A]
dt

= −k1[A] + k2[B] (57)

d[B]
dt

= k1[A] − k2[B] (58)

This is a system of two coupled ODEs. Once the initial conditions are
specified, its solution describes the complete time dependence. Figure 3
shows a graphical representation of the concentration vs. time profiles of
both components when B0 = 0. In this case, the system of equations can
be easily solved analytically, and I will now show how to do that. In more
complicated cases I will leave out the detailed solutions.

We can solve the system by using mass balance to uncouple the two
equations: [B] = B0 + (A0 − [A]) from stoichiometry, so that
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4. Elementary Reactions and Mechanisms 17

d[A]
dt

= −k1[A] + k2(B0 + A0 − [A]). (59)

Eq. (59) is now a separable differential equation in [A] only. Its solution,
with [A](t = 0) = A0, is

[A](t) =
1

k1 + k2

{
(k1A0 − k2B0)e

−(k1+k2)t + k2(A0 + B0)
}

(60)

The rate law in this case looks like

−d[A]
dt

= (k1 + k2)[A] − k2(B0 + A0) (61)

= k′[A] + C, (62)

and the reaction order is not defined.
At equilibrium, the forward and reverse rates are the same, so

k1[A]eq = k2[B]eq (63)

[B]eq

[A]eq
=

k1

k2
(64)

= Keq (65)

Many exact solutions of this type are given by G. Szabo, in Comprehen-
sive Chemical Kinetics, ed. by Bamford and Tipper. (v.2?)
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5. Exact and approximate analytic solutions to sets of rate equations 18

5 Exact and approximate analytic solutions to sets of
rate equations

Any kinetic system composed entirely of first-order (or pseudo-first-order!)
steps has an exact analytic solution. It may be found by the linear algebraic
methods described in Sec. 2.5 in Steinfeld, Francisco, and Hase. Moder-
ately complicated systems can also be handled with Laplace transforms,
described in Sec. 2.4 of the same text. These techniques work only for linear
(1st-order) systems. Let’s consider qualitatively a few simple cases, where
the higher-powered solution techniques are unnecessary.

5.1 Consecutive first-order reactions

A
k1−−→ B

k2−−→ C (66)

An example of this sort of system is the electronic quenching of excited
bromine atoms by CO2,

Br∗1
2
+ CO2 −−→ CO∗

2(001) + Br 3
2

(67)

CO∗
2 + CO2 −−→ 2CO2, (68)

under conditions of excess CO2 so that it is pseudo first order. One way to
monitor the reaction progress is to measure IR luminescence of Br∗ or CO∗

2.
The differential equation describing [A] is the usual one corresponding

to first-order decay, so that A decays exponentially with τ = 1/k1. If you
substitute the exponential decay into the equation for d[B]/dt, you get a
“first order linear” (not separable) differential equation. It can be solved by
standard techniques. [B] grows, then decays:

[B] =
k1A0

k2 − k1

(
e−k1t − e−k2t

)
(69)

The maximum concentration of B depends on the relative sizes of k1 and
k2. Let’s look at the two extreme cases, illustrated in the upper and lower
panels of Figure 4.

5.1.1 Consecutive 1st-order, k1 � k2

In this case, then at short times (t � 0), the second exponential term in
Eq. (69) is near 1, the equation looks like B ≈ A0(1 − e−k1t), and B grows
in with time constant 1/k1 as though no conversion to C was occuring. At
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Figure 4: Temporal behavior of consecutive, irreversible first-order reac-
tions. The upper panel shows the case k1 = 5k2; the lower panel shows the
case k2 = 5k1.

long times, the first of the two exponential terms goes toward zero, and
we have [B] � A0e−k2t, so that B is decaying toward C with time constant
1/k2. The system essentially converts all the A to B, and then, on a slower
timescale, converts the B to C. The maximum concentration of B will be
nearly the initial concentration of A.

We can get [C] by mass balance: [C] = A0 − [A] − [B].

5.1.2 Consecutive 1st-order, k1 � k2

In this case, a B molecule decays to C almost as soon as it is formed; only
very small concentrations of B ever appear. Once a small “steady-state”
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Figure 5: Temporal behavior of competing, irreversible first-order reac-
tions. In this figure k1 = 2k2.

concentration of B has built up, it looks like C is appearing with the same
rate that A is disappearing, so C appears with roughly an exponential rise
that has τ ∼ 1/k1. We will see that this simple system, with its short-
lived intermediate B, is an example of systems for which the steady state
approximation is useful.

5.2 Competitive (parallel) first order reactions

In this case, the mechanism is

A
k1−−→ B (70)

A
k2−−→ C (71)

The rate equations are

d[A]
dt

= −(k1 + k2)[A] (72)

d[B]
dt

= k1[A] (73)

d[C]
dt

= k2[A] (74)

The first of the three is an ordinary first-order decay, giving [A] =
A0e−(k1+k2)t. Substituting that result into the second and third equations
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gives separable equations for both B and C, which have nearly the same
solutions:

[B] =
k1A0

k1 + k2
(1 − e−(k1+k2)t) (75)

[C] =
k2A0

k1 + k2
(1 − e−(k1+k2)t) (76)

Note that the temporal behavior of both B and C are the same; their rise-
times are determined by the sum of the two elementary rate coefficients.
Their concentrations are determined by the individual rate constants, such
that [B]/[C] = k1/k2 always. Such systems are convenient to study ex-
perimentally; measure τA to get k1 + k2, then simply measure [B]

[C] at any
convenient time (typically t → ∞) to get the ratio k1/k2. Those two mea-
surements are enough to determine the individual ks. This approach is the
basis of the very popular “relative rates method” of experimental kinetics.

5.2.1 Kinetic vs. thermodynamic control

If the reactions are reversible,

A
k1−↽−−⇀−

k−1

B (77)

A
k2−↽−−⇀−

k−2

C, (78)

then the issue of thermodynamic or kinetic control of products appears.
Assuming no direct interconversion of B and C,

[B]eq

[C]eq
=

[B]eq

[A]eq
· [A]eq

[C]eq
=

k1

k−1

k−2

k2
= KBC. (79)

If k1k−2 � k−1k2 so that KBC � 1, then at equilibrium there will be
much more C than B and we say that C is the “thermodynamically favored”
product.
On the other hand, if k1 � k−1 and k2 � k−2, both elementary reactions
will “act irreversible” - their forward rates will be much greater than their
reverse ones - until most of the A is gone. During that time the ratio
[B]/[C] ≈ k1/k2. If k1 � k2, mostly B will appear. B is then called the
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“kinetically favored” product. These conditions on the rate coefficients are
not mutually exclusive, and the effect is not at all rare. If

k1 = 100 s−1 k−1 = 10−7

k2 = 10−2 k−2 = 10−12

then Table 2 shows the resulting concentrations. This is a not-too-extreme
case of kinetic control.

Table 2 Kinetic control
time [A](%) [B](%) [C](%)
0 100 0 0
10 s 0 99 1
3 months 0 98 2
1900 years 0 1 99
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5.2.2 Relative Rate Experiments

Consider elementary reaction of B with two compounds A1 and A2, to give
products P1 and P2.

A1 + B
k1−−→ P1 (80)

A2 + B
k2−−→ P2 (81)

If B is added to a mixture of A1 and A2, whose concentrations are �
[B]0, then

d[P1]
dt

= k1[A1]0[B] (82)

d[P2]
dt

= k2[A2]0[B] (83)

d[P1]
d[P2]

=
k1[A1]0
k2[A2]0

(84)

So, after a long time

[P1]∞
[P2]∞

=
k1[A1]0
k2[A2]0

(85)

If either k1 or k2 is known from other measurements, this technique
allows determination of the other without a concentration-vs.-time exper-
iment; just let B react to completion with a mixture of A1 and A2, then
analyze the products when the reaction is over. This relative rate technique
has been used extensively to measure reaction rates of radicals.

Example: Generate phenyl radicals (C6H5·) by pyrolysis of a precursor,
in the presence of both a hydrocarbon RH and CCl4. After the reaction,
measure the ratio [C6H5Cl]/[C6H6]. That ratio times [RH]0

[CCl4]0
gives the ratio

of rate constants kCCl4 /kRH. Careful work requires several starting ratios;
then from Eq. (85) plotting the final product ratio vs. the initial reactant
ratio yields k1/k2 as the slope, and a zero intercept.

Equivalently, the loss rates for A1 and A2 can be observed, if one is
confident that no other processes remove them from the system. Then

d[A1]
dt

= k1[A1][B] (86)

d[A2]
dt

= k2[A2][B]. (87)
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so

d[A1]
d[A2]

=
k1

k2

[A1]
[A2]

(88)

k2
d[A1]
[A1]

= k1
d[A2]
[A2]

(89)

k2 ln [A1] = k1 ln [A2] + C (90)

When [A1] = [A1]0, [A2] = [A2]0, so C = k2 ln [A1]0 − k1 ln[A2]0

k2 ln
(

[A1]
[A1]0

)
= k1 ln

(
[A2]
[A2]0

)
(91)

k1

k2
=

ln
(

[A1]
[A1]0

)
ln
(

[A2]
[A2]0

) (92)

so measurement of [A1] and [A2] at any time will give k1/k2.
The advantage of relative rate techniques is that slow but quantitative

analytical techniques (gas chromatography, wet-chemical analysis, etc) can
be used to study even fast reactions.

6 Approximations

What to do if a mechanism is too complicated to usefully compare its pre-
dictions with data?

In particular, mechanisms give concentration vs. time for all species.
Usually we are only interested in reactants or products or both. So we
seek a method to eliminate the concentrations of intermediates in our rate
expressions.

Example:

A
k1−↽−−⇀−

k−1

B (93)

B + C
k2−−→ D (94)

Net reaction A + C → D.
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d[A]
dt

= −k1[A] + k−1[B] (95)

d[B]
dt

= k1[A] − (k−1 + k2[C])[B] (96)

d[C]
dt

= −k2[B][C] (97)

d[D]
dt

= k2[B][C] (98)

If B is a very reactive species (perhaps an organic free radical), we might
assume that its concentration remains small throughout the reaction. Then
the absolute slope of its concentration will be small compared to other time
dependences in the system, and we write

d[B]
dt

≈ 0. (99)

This is called the steady-state or Bodenstein approximation.
We then use that assumption to eliminate [B] from the rate expressions

for the product D.

d[B]
dt

SSA≈ 0 = k1[A] − (k−1 + k2[C])[B] (100)

[B]
SSA≈ k1[A]

k−1 + k2[C]
(101)

d[D]
dt

SSA≈ k1k2[A][C]
k−1 + k2[C]

(102)

Now if k−1 � k2[C],

d[D]
dt

SSA≈ k1k2

k−1
[A][C] apparent 2nd order (103)

while if k2[C] � k−1,

d[D]
dt

SSA≈ k1[A] apparent 1st order (104)
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6.1 Validity of SSA

It is sufficient that the sum of all effective rate coefficients “out of” the in-
termediate be much greater than the sum “into” the intermediate. In our
example, this means

(k−1 + k2[C]) � k1. (105)

(It’s generally safe to take “�” to mean “greater by a factor of 50 or more”;
smaller ratios are often acceptable.)

In addition, there must be a “build-up time” during which [B] climbs to
its (small) steady-state value, and d[B]

dt ≈ 0 must be incorrect. This period is
over when

(k−1 + k2[C])t � 5. (106)
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6.2 Other Simplifying Approximations

Once again, consider the mechanism

A
k1−↽−−⇀−

k−1

B (107)

B
k2−−→ C (108)

and let us look for an expression for d[C]
dt . We have the set of rate equations

d[A]
dt

= −k1[A] + k−1[B] (109)

d[B]
dt

= k1[A] − (k−1 + k2)[B] (110)

d[C]
dt

= k2[B] (111)

I want to consider two main cases, illustrated in Figure 6 and summa-
rized in Table 3.

Table 3 Relations among simplifying approximations.

Case Requirements Long-time rate coefficient
SSA (k−1 + k2) � k1 k1k2/(k−1 + k2)
REA (k1 + k−1) � k2 k1k2/(k1 + k−1)

SS-EQ k−1 � k1 and k−1 � k2 k1k2/k−1

6.2.1 Rapid equilibrium case: (k1 + k−1) � k2

The rate equations for A and B now look like the simple system A −↽−−⇀− B,
whose solution was worked out in Section 4.1. After a time ≈ 1/(k1 + k−1),
the A −↽−−⇀− B reaction will reach approximate equilibrium so that [B] ≈
k1

k−1
[A]. A and B will act like a single species that is slowly decaying toward

C, and
d[C]
dt

REA≈ k1k2

k−1
[A] (112)

This is the “rapid equilibrium approximation.”
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Figure 6: The steady-state and equilibrium approximations for the A −↽⇀−
B −→ C mechanism, for two different sets of rate coefficients. In the left
panel k−1 = k2 = 10k1; in the right panel k1 = k−1 = 10k2.

6.2.2 Steady state case: (k−1 + k2) � k1

This is just the requirement for the steady-state approximation. Applying
it to this case gives

d[B]
dt

= −k1[A] − (k−1 + k2)[B]
SSA≈ 0 (113)

so

[B]
SSA≈ k1[A]

(k−1 + k2)
(114)

d[C]
dt

SSA≈
(

k1k2

k−1 + k2

)
[A] (115)

6.2.3 Equilibrium-steady-state case

If, in the steady-state case, k−1 � k2, or, in the rapid equilibrium case,
k−1 � k1, then these two approximations reduce to a common result, which
Pyun (J. Chem. Ed. 48, 194 (1971)) calls the “equilibrium-steady-state so-
lution”. This simplest approximation requires that k−1 be the fastest rate
coefficient in the system.

After the time required for the establishment of either the steady state
or the rapid equilibrium condition, C begins appearing (in this first-order
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example) with a simple exponential behavior. The effective rate coefficient
for this appearance is given in Table 3.

6.3 Rate determining steps

In some cases, the overall reaction rate is dominated by one of the elemen-
tary steps, and that step is called the “rate-determining” or “rate-controlling”
step.

In the steady-state approximation, if k2 � k−1, then the long-time rate
coefficient reduces simply to k1. In that case the formation of B from A is
limiting the overall rate, and we say that the first step is rate-determining.

In the rapid equilibrium approximation, if k1 � k−1, then the A—B
equilibrium lies heavily in the direction of B, and the long-time rate coeffi-
cient becomes simply k2. In this case the second step is the rate controlling
one.

If the combined SSA-EQ approximation holds, then C appears with an
effective rate coefficient that is the product of the rate coefficient for the sec-
ond step and the equilibrium constant for the first step. In this case, the sec-
ond step is again the rate controlling one, but the apparent rate coefficient
(if one tries to model the mechanism with a simple A −→ C elementary
step) is modified by the equilibrium constant for the initial equilibrium.

Notice that a single rate-controlling step does not always exist. For ex-
ample, in a sequence of consecutive first-order transformations, if all the
steps have the same rate coefficient then no one of them dominates the
rate. (In other words, if you changed any one of them slightly, the overall
rate of production of product would change.)

These various approximations - SSA, rapid equilibrium, rate-controlling
step, etc. - are often more valuable for the chemical insight they provide
than for mathematical power. In many cases they can be used to focus at-
tention on the particular ports of a mechanism which are most important
in determining the rate.

Whenever one or more assumptions about the values of rate coefficients
are made, it is worthwhile to check the range of validity of the assumptions
with numerical work.
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6.4 Examples

6.4.1 Ligand substitution

The nucleophilic substitution reaction

Ni(CO)4 + PPh3 −−−−→ Ni(CO)3PPh3 + CO (116)

has the proposed mechanism (J. P. Day et al., JACS (90), 6927 (1968))

Ni(CO)4
k1−↽−−−−⇀−

k−1

Ni(CO)3 + CO (117)

Ni(CO)3 + PPh3
k2−−−−→ Ni(CO)3PPh3 (118)

Applying the steady-state approximation to the unsaturated intermedi-
ate Ni(CO)3 gives

d
dt

[Ni(CO)3] = k1[Ni(CO)4] − (k−1[CO] + k2[PPh3])[Ni(CO)3] (119)

[Ni(CO)3]
SSA≈ k1[Ni(CO)4]

k−1[CO] + k2[PPh3]
(120)

d
dt

[Ni(CO)3PPh3] = k2[Ni(CO)3][PPh3] (121)

SSA≈ k2[PPh3]
k1[Ni(CO)4]

k−1[CO] + k2[PPh3]
(122)

Under conditions of high ligand (PPH3) concentration, the rate law will
reduce to

d
dt

[Ni(CO)3PPh3] ≈ k1[Ni(CO)4], (123)

that is, first order in the carbonyl concentration only. This is a common
kinetic behavior seen for metal carbonyl nucleophilic substitutions.

6.4.2 Dinitrogen pentoxide decomposition

The reaction
2N2O5 → 4NO2 + O2 (124)

follows an observed first-order rate law. The reaction between N2O5 and
NO also looks first order but is much faster. NO3, a blue gas, also appears as
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Figure 7: Data on dinitrogen pentoxide decomposition (from Johnston, Gas
Phase Reaction Rate Theory).
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an intermediate. A page from Johnston showing some data is reproduced
in Figure 7.

First-order kinetics suggests a unimolecular reaction as an important
step. Try this:

N2O5
k1−↽−−−−⇀−

k−1

NO2 + NO3 (125)

NO2 + NO3
k2−−−−→ NO + NO2 + O2 (126)

NO + NO3
k3−−−−→ 2NO2 (127)

We shall try to find an expression for d[NO2]
dt .

d[NO2]
dt

= k1[N2O5] − k−1[NO2][NO3] + 2k3[NO][NO3] (128)

d[NO3]
dt

= k1[N2O5] − (k−1 + k2)[NO2][NO3] − k3[NO][NO3] (129)

Apply SSA to NO3:

d[NO3]
dt

SSA≈ 0 (130)

[NO3]
SSA≈ k1[N2O5]

(k−1 + k2)[NO2] + k3[NO]
(131)

Substitute into d[NO2]
dt expression:

d[NO2]
dt

SSA≈ k1[N2O5]
{

1 − k1[NO2] + −2k3[NO]
(k−1 + k2)[NO2] + k3[NO]

}
(132)

d[NO2]
dt

SSA≈ k1[N2O5]
{

k2[NO2] + 3k3[NO]
(k−1 + k2)[NO2] + k3[NO]

}
(133)

This is still pretty ugly. Since NO is consumed quickly on the timescale
of this reaction, try applying SSA to NO as well.

d[NO]
dt

= k2[NO2][NO3] − k3[NO][NO3]
SSA≈ 0 (134)

[NO]
SSA≈ k2

k3
[NO2] (135)
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so

d[NO2]
dt

SSA≈ k1[N2O5]
{

k2[NO2] + 3k2[NO2]
(k−1 + 2k2)[NO2]

}
(136)

d[NO2]
dt

SSA≈ 4k1k2

k−1 + 2k2
[N2O5] (137)

So with these two approximations we have found a first-order rate law,
as observed.

The most common approach in steady-state treatments is to eliminate
the concentrations of presumed intermediates, in order to find a rate law
in terms of reactant or product concentrations only. The formation of “ef-
fective” or “observed” rate coefficients in terms of elementary ones usually
becomes clear, but it is not always obvious that the SSA should hold at all.

6.4.3 Oxidation of aqueous azide

This example shows both the use of the steady-state treatment for an un-
stable intermediate and the effect of rapid equilibria that precede a rate-
determining step.

A simplified mechanism for the oxidation of azide ion by aqueous Br2
is

Br2 + N−
3

fast−−−−→ BrN3 + Br− (138)

BrN3 + Br−
K1−↽−−−−⇀− Br2N−

3 (139)

BrN3 + N−
3

k1−−−−→ Br− + N6 (140)

N6
k3−−−−→ 3N2 (141)

The reaction was followed under conditions of excess N−
3 and Br− by

observing the appearance of N2 gas (T. S. Vivekanadam et al., Int. J. Chem.
Kin. 13, 199 (1981).) The product appeared with an apparent first-order
behavior that dependended linearly on [N−

3 ]. The intermediate N6 is an
obvious candidate for the steady state approximation:

[N6]
SSA≈ k1

k3
[BrN3][N

−
3 ] (142)

d[N2]
dt

= 3k3[N6] (143)

SSA≈ 3k1[BrN3][N
−
3 ] (144)
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The first reaction is “fast”, so it is reasonable to regard the initially
added bromine as converted completely to BrN3 immediately. The BrN3
can either be complexed by Br− in step 139, or react to form product in step
140. The equilibrium gives us

[Br2N−
3 ]

REA≈ K1[BrN3][Br−] (145)

When rapid equilibria are present, it is often useful to define a quantity
whose value does not change so long as no reactions other than the equilib-
rium reactions occur. In this case we can define a quantity that is the total
concentration of oxidized bromine, and examine its kinetics.

M = [BrN3] + [Br2N−
3 ] (146)

REA≈ [BrN3] + K1[BrN3][Br−] (147)
REA≈ [BrN3](1 + K1[Br−]) (148)

[BrN3]
REA≈ M

1 + K1[Br−]
(149)

Since M is only destroyed in step Eq. (140),

dM
dt

= −k1[BrN3][N
−
3 ] (150)

REA≈ −k1[N
−
3 ]

M
1 + K1[Br−]

(151)

Note that dM
dt is just proportional to the rate of appearance of product,

and that it should be expected to follow pseudo-first-order kinetics under
conditions of constant [N−

3 ] and [Br]. The effective first-order rate coeffi-
cient is

keff = [N−
3 ]

k1

1 + K1[Br−]
. (152)

The appearance of several terms in the denominator of a rate expression is
a common effect of equilibria that precede a rate-determining step.

Notice that bromide acts to inhibit the reaction by tying up the oxi-
dized bromine (the oxidizing agent) in the unreactive complex Br2N−

3 . The
standard experimental analysis of this sort of competitive equilibrium is to
measure keff at several values of [Br−], and make a plot of [N−

3 ]/keff against
[Br−]. The intercept of such a plot is 1/k1, and its slope is K1/k1.
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In fact, the complex can add another bromide ion to form Br3N2−
3 , and

the Br2N−
3 can react with azide to produce N6 with a smaller rate coeffi-

cient than k1. This additional component to the equilibrium and additional
pathway to products do not change the basic pseudo-first-order nature of
the reaction, but they make the expression for keff more complicated.

GCM July 19, 2002 notes-5



7. Experimental Techniques 36

7 Experimental Techniques

7.1 Elementary considerations

Several questions must be answered before an experimental approach can
be selected.

• Over what time does the reaction occur?

• Are the reactants stable or unstable?

• What range of temperature is interesting?

All these questions are relevant to the choice of experimental technique
independent of the particular detection method employed.

7.2 Stable reactants, slow to medium time scales

7.2.1 Batch mixing

This is kinetics on classical stir-in-a-pot reactions. It works for τ � 10 s. You
can analyze the concentrations by removing samples at intervals and titrat-
ing, using GC, whatever. A method for stopping reaction in your sample
(freezing, neutralization, etc) is handy. Or, you can monitor the reaction in
situ - optical absorption, polarimetry, ion-selective electrodes, conductivity,
etc. all work.

7.2.2 Flow Experiments

For faster reactions, say τ � 0.1 s, you can let the reactants come together
continuously in some sort of mixing chamber, then allow them to react
while flowing along a tube. At each point along the tube, the concentra-
tions are steady, so signals can be averaged to get good signal to noise; ex-
periments at different distances along the flow tube yield concentrations at
different times since the reaction began. One disadvantage is that it usually
requires lots of reactants.

Discharge flow experiments for gas phase reactions with unstable reac-
tants use a steady electric discharge to produce one or both reactants before
they enter the main reaction tube. This is a very popular method for study-
ing reactions of radical and ionic species. Spectroscopic detection along the
length of the tube, or mass spectrometry at the end of the flow tube, using a
moveable injector to vary the flow distance, are the most popular detection
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Figure 8: Simple flow apparatus.

techniques. Gas phase flow experiments can have time resolution down to
∼ 0.1 ms, though at that speed they consume prodigous amounts of gases.
Good references are C.J. Howard, J. Phys. Chem. 83, 3 (1979), and F. Kauf-
man, J.Phys. Chem. 88, 4909 (1984).

Oser et al, 24th Symp. (International) on Combustion, The Combustion
Institute, 1992) studied OH + CH3 reactions by generating OH and CH3 in
separate discharges:

H2
µwave−−−−−→ 2H (153)

H + NO2 −−→ OH + NO fast, (154)

F2
µwave−−−−−→ 2F (155)

F + CH4 −−→ CH3 + HF fast, (156)

OH + CH3 −−→ H2O + CH2 (plus other channels) (157)

They measured the rate coefficient of the last reaction by detecting OH at
different distances along the flow tube with fluorescence.

7.2.3 Stopped-flow technique

For faster reactions, 10−3 s or slower, the stopped-flow technique works for
solution samples. In this method, solutions of reactants are mixed rapidly
in a special chamber and flowed through a detection cell (optical detection
is most popular). So long as the reactants are flowing steadily, no change
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in the composition of the mixture in the detection chamber appears. When
the flow is stopped suddenly, the composition begins changing and this
change is monitored in time. See Figure 9.

Stopped flow is popular among enzyme kineticists, especially for study-
ing enzyme reactions in the initial stages before the steady state concentra-
tions of enzyme-substrate complex have formed. The term for work during
this buildup period in the enzyme community is “transient state kinetics”,
in contrast to “steady state kinetics” when the Michaelis-Menten analysis
works.

Figure 9: Schematic of stopped-flow apparatus

The hydrodynamics of most solvents limits the stopped-flow technique
to timescales of a millisecond or longer; faster reactions will already be
partially underway by the time the mixing is complete, so it is hard to
get meaningful data on well-mixed solutions. For faster reactions of sta-
ble species, it is necessary to produce one reactant in situ, or to use near-
equilibrium techniques.

7.3 Near-equilibrium methods for fast reactions

Two kinds of near-equilibrium techniques are important: relaxation and
nmr. Both are good on the microsecond to millisecond timescale.
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sample

Figure 10: Schematic of T-jump apparatus

7.3.1 Relaxation (T-jump and p-jump, mostly)

Let reaction come to equilibrium, with concentrations Ae, Be, Ze for A +
B −↽−−⇀− Z. Then “disturb” the equilibrium by changing T, P, etc. suddenly
so that the equilibrium concentrations should be different, and watch the
relaxation to a new equilibrium value.

Relaxation example: A + B
k1−↽−−⇀−

k−1

Z

k1AeBe = k−1Ze (158)
d[A]
dt

= −k1[A][B] + k−1[Z] (159)

Write

[A] = Ae − δ, [B] = Be − δ, [Z] = Ze + δ (160)
d[A]
dt

= −dδ

dt
= −k1(Ae − δ)(Be − δ) + k−1(Ze + δ) (161)

−dδ

dt
= −k1(AeBe − (Ae + Be)δ + δ2) + k−1Ze + k−1δ (162)

−dδ

dt
= δ(k1(Ae + Be) + k−1 − k1δ)−k1AeBe + k−1Ze︸ ︷︷ ︸

=0

(163)

If δ � Ae + Be (a “small” disturbance), then

dδ

dt
≈ −(k1(Ae + Be) + k−1)δ, (164)
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and all components relax toward their equilibrium concentrations with first-
order kinetics, τ = 1

k1(Ae+Be)+k−1
. Together with long-time measurements of

the equilibrium concentrations, both k1 and k−1 can be obtained.
The most common ways to disturb the equilibrium are to change T or

P rapidly. To change T, the solution can be heated with an electric current.
Figure 10 shows a basic circuit. The energy stored in a capacitor of capaci-
tance C at voltage V is 1

2 CV2. When the switch is closed, the energy stored
on the capacitor heats the solution resistively, so ∆T = 1

2 C−1
V CV2, where CV

is the heat capacity of the solution.
To change P for a pressure-jump experiment, the usual technique is to

burst a diaphragm holding back a high-pressure gas. For slow reactions,
concentration-jump also works: add an aliquot of product to shift equation
back toward reactants, etc.

Manfred Eigen won the 1967 Nobel Prize in Chemistry for development
of the relaxation method of studying fast reactions. (It was shared with the
developers of the flash photolysis method to be described shortly.)

7.3.2 NMR Lineshape Analysis (Espenson sec. 11.5)

Chemical shifts in nmr spectra are determined by “chemical environments”
of the nuclei at resonance. Consider (CH3)2NCHO. It has a hindered rota-
tion about the C-N bond. If that rotation is “frozen”, the two methyl groups
are in different environments, and the spectrum (of either 1H or 13C) will
show a pair of lines, one for each methyl group. However, if the rotation
is very fast compared to the time over which the absorption experiments,
each methyl group will see an “average” environment that is part -H and
part -O, and so they will have exactly the same chemical shift and appear
as a single nmr line. In between these two extremes, the lines show a con-
tinuous change of behavior. An analysis of the lineshape can therefore be
used to determine the rate of exchange. Figure 11 shows a nice set of data
recently obtained by Professors Matchett and Zhang.

The “experimental timescale” is given roughly by 1/∆ν, where ∆ν is the
difference in asborption frequencies in the absence of exchange. Typically
the timescales range from 100 µs to 1 s.

Generally these experiments are done at varying temperatures, to change
the rates. A rough guide is that the two lines will just become distinct at a
temperature where k ∼ π√

2
(∆ν) (for Keq = 0.5.) Most new nmr spectrome-

ters contain canned software to do these lineshape analyses.
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Figure 11: NMR lineshapes obtained by Profs. Matchett and Zhang. The
two resonance lines correspond to two protons at the end of a substituted
ethylene; they are mixed by rotation about the C-C double bond.

Several different kinds of reactions can be studied with nmr. They in-
clude solvent exchange, as in

CH3CH2OHa + Hb
2O −↽−−⇀− CH3CH2OHb + HaOHb (165)

Here the methyl and ethyl protons are slightly split by the hydroxyl pro-
ton, because the OH proton can have its moment aligned along or against
the magnetic field. However, when an exchange reaction occurs, the new
proton can go on in either direction. If many exchanges occur, the CH3CH2
protons see only an average OH-proton indirect coupling.

Electron transfer and metal-ligand equilibria can also be studied effec-
tively this way.

In these experiments, as in the relaxation (T-jump, P-jump, etc.) meth-
ods for studying equilibrium rates, the “relaxation constant” k′ = k1 + k−1
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is measured. The individual rates can be obtained if the equilibrium con-
stant k1/k−1 is also known.

References on lineshape analysis include E.L. King, J. Chem. Ed. 56,
580 (1979), and H. Günther, NMR Spectroscopy - An Introduction, Wiley, NY,
1972.

7.4 Flash Photolysis

Flash photolysis is the main technique for medium-to-fast reactions with
unstable reactants, and is nearly the only technique used for the very fastest
reactions. It uses photochemistry of a “precursor” P to produce reactant A:

P hν−−→ A (+ other stuff) (166)

A + B −−→ products (167)

The photolysis step needs to be fast compared to subsequent reaction steps.
Flashlamps give light pulses lasting 1–20 µs; lasers can produce pulses of
many lengths, but the most common ones nowadays range from 20 ns, ade-
quate for bimolecular gas phase reactions at moderate pressure or bimolec-
ular solution reactions (that do not have solvent as one reactant), down to
about 50 fs, which is needed for the fastest unimolecular reactions in solu-
tion. The detection method also needs to be fast with respect to the overall
kinetics; optical methods (transient absorption, laser-induced fluorescence,
pulsed polarimetry) are the most popular approaches. In most experiments
the flash and subsequent analysis are done repeatedly, either on the same
sample if product buildup is not a problem, or on a series of fresh samples
produced by a slow flow of reactants through the detection region.

Norrish and Porter shared the Nobel Prize in 1967 with Eigen, largely
for their development of flash photolysis. The prize to Ahmed Zewail last
year was for applications of flash photolysis at very short time scales.

A gas phase example is in Bersohn et al, J. Chem. Phys. 101, 5818 (1994):

SO2
193nm, 10ns−−−−−−−−−→ SO + O(3P) (168)

O(3P) + C2H2 −−→ HCCHO∗ (169)

HCCHO∗ −−→ H + HCCO (170)

HCCHO∗ −−→ CH2 + CO (171)

Bersohn et al. monitored the H and CO products with laser induced fluo-
rescence.
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7.5 Shock Tube Experiments

In a shock tube experiment, a low-pressure gas of reactants is suddenly
heated by the passage of a strong shock wave, produced by rupture of a
diaphragm that was holding back a high pressure “driver” gas. The tem-
perature can change by more than 1000 K in fractions of a millisecond, and
optical techniques are used to follow the subsequent chemistry. This tech-
nique is good for gas phase reactions at high temperature (700-2500 K), and
is nearly the only technique for gas phase reactions above ≈ 1400 K. Many
of the rate coefficients needed in complicated models of hydrocarbon com-
bustion have been measured this way.

Figure 12: Shock tube apparatus.

There are only about a dozen shock-tube laboratories in the world. The
main disadvantages of the technique are

• The high-temperature chemistry is often very complicated, and it can
be difficult to sort out different elementary reactions.

• It is hard to do repetitive signal averaging since each repetition of the
experiment takes at least an hour or so. Experimenters are therefore
limited to detecting species that are easy to see.

There was a good review of shock tube techniques and results by J.V. Michael,
in the 1992 Ann. Rev. Phys. Chem.
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8 Construction of candidate mechanisms from rate laws

8.1 Rate controlling steps in sequential mechanisms

The heuristic procedures I will describe below for constructing a mecha-
nism from a carefully determined rate law depend on particular elemen-
tary steps being rate-controlling under some conditions. I therefore need to
say a little more about how to think about rate controlling steps. Intermedi-
ates are stable chemical species at free energy minima; transition states are
unstable and will immediately react without further perturbation.

Figure 13: Schematic free energy diagram for sequential 1st-order system
with 4 intermediates, A → X1 → X2 → X3 → X4 → P

In a sequential mechanism, to decide on an RCS you must divide the re-
action path into sections separated by successively lower (more stable) in-
termediates. Condense the mechanism to include only those intermediates.
Figure 13 shows the free-energy curve for a reaction that is a complicated
sequence of first-order steps.
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In Figure 13 we have
A −−→ X2 −−→ P. (172)

The other steps will be fast compared to those. Of the remaining steps, the
one with the largest free energy barrier between the beginning and end of
the section will be the RCS.

In Figure 13, the largest barrier is from X2 to ‡4, so the second step in
the condensed scheme will be the RCS. Intermediate X2 will build up; other
intermediates will remain at low concentrations.

For bimolecular reactions, this simple scheme must be modified to in-
clude concentrations, producing “effective first-order” rate coefficients. See
J.R. Murdoch, J. Chem. Educ. 58, 32 (1981).

8.2 Mechanism construction rules

A carefully determined rate law can be interpreted to obtain the atomic
composition and charge of the important transition states (highest point in
each section of the free-energy diagram), and often some information about
reactions prior to the RCS. It never (without studies specifically on the el-
ementary reactions making up the mechanism) tells about fast reactions
which follow the RCS.

Espenson gives a set of guidelines for interpretation of rate laws which
I’ll describe. These depend on accuracy of the steady-state and equilibrium
approximations in appropriate parts of the mechanism. They are not fool-
proof but are sensible and useful.

1. If the rate law is written in terms of the predominant species in the
reaction medium, the composition and charge of the transition state
for the RCS is the “algebraic value” of the concentration terms in the
observed rate law. An undetermined number of solvent molecules
may also be present in the transition state.

In our example from Section 6.4.2,

2N2O5 −−→ 4NO2 + O2, (173)

with rate law
d[N2O5]

dt
= k[N2O5], (174)

the transition state for the slow step simply has the composition N2O5.

In the aqueous redox reaction

Tl3+ + Hg2+
2 −−→ Tl+ + 2Hg2+, (175)
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rate = k
[Tl3+][Hg2+

2 ]

[Hg2+]
. (176)

We “subtract out” the denominator, to obtain a transition state com-
position of TlHg, and a transition state charge of 3+.

For orders of 1
2 , use only half the atoms:

2(MnIIIMG)+ + S2O2−
4 −−→ 2(MnIIMG) + 2SO2, (177)

where MG is the protein myoglobin, has the rate law

rate = k[(MnIIIMG)+][S2O2−
4 ]

1
2 , (178)

and the TS is thought to have the composition Mn MG SO2 with no
charge.

2. A sum of positive terms in the rate indicates independent parallel
pathways to the same product. The composition and charge of the
transition state along each pathway is found as above.

3I− + H2O2 + 2H+ −−→ I−3 + 2H2O (179)

d[I−3 ]
dt

= ka[I
−][H2O2] + kb[I

−][H2O2][H
+] (180)

This acid-catalyzed reaction would be studied by monitoring the for-
mation of I−3 in various pH buffered solutions. ka could be determined
by extrapolation to zero [H+]. There are two pathways, plain and cat-
alyzed, with compositions in the TS of (H2O2I)− and H3O2I.

We can see how this example comes about in a simple case:

A + B
k1−↽−−⇀−

k−1

C (181)

C + A
k2−−→ D (182)

C
k3−−→ D (183)

Applying SSA to C,

0
SSA≈ d[C]

dt
= k1[A][B] − (k−1 + k3 + k2[A])[C] (184)
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so

[C]
SSA≈ k1[A][B]

k−1 + k3 + k2[A]
(185)

Now

d[D]
dt

= k2[A][C] + k3[C] (186)

=
k1k2[A]2[B]

k−1 + k3 + k2[A]
+

k1k3[A][B]
k−1 + k3 + k2[A]

(187)

In the small [A] limit (k2[A] � k−1 + k3), giving

rate =
(

k1k2

k−1 + k3

)
[A]2[B] +

(
k1k3

k−1 + k3

)
[A][B] (188)

and we correctly interpret that there are two important transition
states with compositions A2B and AB.

In the large [A] limit, k2[A] � k−1 + k3, so

rate = k1[A][B] +
k1k3

k2
[B] (189)

We can manipulate this expression to show that the first term domi-
nates:

k2 · rate = k1k2[A][B] + k1k3[B] (190)

= k1[B](k2[A] + k3) (191)

≈ k1[B]k2[A] (from large [A] assumption) (192)

rate = k1[A][B] (193)

In this limit the first step has become rate controlling and the k3 step
is unimportant. The relevant T.S. is the AB collision complex.

3. A sum of n terms in the denominator implies a succession of at least
n steps; all but the last of them must be reversible.

2Fe2+ + Tl3+ → 2Fe3+ + Tl+ (194)

−d[Tl3+]
dt

=
k[Fe2+]2[Tl3+]

[Fe2+] + k′[Fe3+]
(195)
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At low product concentration ([Fe2+] � k′[Fe3+]), we have rate =
k[Fe2+][Tl3+]. At high product concentration,

rate =
k
k′

[Fe2+]2[Tl3+]

[Fe3+]
. (196)

With 2 terms in the denominator, we expect two successive transition
states. Their compositions (but not order of occurrence) are obtained
from the limiting cases where one or the other term dominates. In
this example they have compositions (FeTl)5+ and (FeTl)4+.

4. Species appearing as single terms in the denominator of a rate expres-
sion are produced in steps prior to the RCS.

In the last example we postulate that under high concentrations of
Fe3+, it is a product in the first of the two steps. The two reactants
have total charge +5, so try this mechanism:

Fe2+ + Tl3+ k1−↽−−⇀−
k−1

Fe3+ + Tl2+ (197)

Tl2+ + Fe2+ k2−−→ Fe3+ + Tl+ (198)

The second step has TS composition (FeTl)4+, as required. Apply
SSA to Tl2+:

d[Tl2+]
dt

= k1[Fe2+][Tl3+] − [Tl2+](k−1[Fe3+] + k2[Fe2+]) (199)

so

[Tl2+]
SSA≈ k1[Fe2+][Tl3+]

k−1[Fe3+] + k2[Fe3+]
=

k[Fe2+][Tl3+]

[Fe3+] + k1[Fe2+]
(200)

rate = k2[Tl2+][Fe2+] =
k1k2[Fe2+]2[Tl3+]

k−1[Fe3+] + k2[Fe2+]
(201)

rate =
k[Fe2+]2[Tl3+]

k′[Fe3+] + [Fe2+]
(202)

where k = k1 and k′ = k−1/k2.

So this mechanism agrees with the observed rate law at both low and
high concentrations of Fe3+. At high concentrations, the first step be-
comes a rapid prior equilibrium. Large concentrations of Fe3+ drive
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the concentration of Tl2+ down and reduce the rate of formation of
product.

8.3 Application of “mechanism rules” to a simple inorganic ex-
ample

Vanadium ions can be oxidized by Hg2+:

2V3+ + 2Hg2+ −−→ 2V4+ + Hg2+
2 (203)

The observed rate law is

−d[V3+]
dt

=
k[V3+]2[Hg2+]

k′[V4+] + [V3+]
. (204)

Rule 3 tells us to expect at least 2 steps. Rule 1 gives the composition of the
two transition states as (VHg)4+ and (VHg)5+. In the succession of steps
required by the rules, all but the last must be reversible.

Since the two reactants can themselves produce one of the two required
transition states ((VHg)5+), it’s natural to bring them together as one step:

V3+ + Hg2+ k1−↽−−⇀−
k−1

V4+ + Hg+ (205)

The Hg+ product of that reaction can react with another V3+ to give the
second required transition state. This reaction need not be reversible (but
could be). A single, rapid, association reaction between two mercury atoms
can complete the mechanism.

Hg+ + V3+ k2−−→ V4+ + Hg0 (206)

Hg0 + Hg2+ k3−−→ Hg2+
2 (207)

Now, let us check to make sure this mechanism gives the correct rate
law with reasonable assumptions. The intermediates are Hg+ and Hg0.
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Applying the SSA to Hg+, we find

d[Hg+]
dt

= k1[V
3+][Hg2+] − k−1[V

4+][Hg+] − k2[V
3+][Hg+] (208)

[Hg+]
SSA≈ k1[V

3+][Hg2+]

k−1[V
4+] + k2[V

3+]
(209)

−d[V3+]
dt

SSA≈ k1[V
3+][Hg2+] − k−1[V

4+][Hg+] + k2[V
3+][Hg+] (210)

= k1[V
3+][Hg2+] + [Hg+](k2[V

3+] − k−1[V
4+]) (211)

= k1[V
3+][Hg2+]

+

(
k1[V

3+][Hg2+]

k−1[V
4+] + k2[V

3+]

)
(k2[V

3+] − k−1[V
4+])

(212)

= k1[V
3+][Hg2+]


1 +

(
k2[V

3+] − k−1[V
4+]
)

k−1[V
4+] + k2[V

3+]


 (213)

= k1[V
3+][Hg2+]

(
2k2[V

3+]

k−1[V
4+] + k2[V

3+]

)
(214)

=
2k1[V

3+]2[Hg2+]
k−1
k2

[V4+] + [V3+]
(215)

which is the observed rate law. Note that the rapid, post-RCS reaction of
Hg0 does not enter the rate law. That is the general case: fast reactions
that follow the rate controlling step do not appear in the rate law. An-
other example of that principle was the decomposition rate of N6 in the
bromine-azide reaction; its rate constant does not appear in any of the rate
expressions once the steady state approximation has been applied to N6.
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9 Kinetic-molecular theory of gases

The “kinetic theory of gases” makes the following assumptions about gases:

1. Gases are composed of particles in constant, random motion

2. The particles are small compared to the distances between and the
size of the container

3. The particles do not interact except that they have elastic (translational-
energy-conserving) collisions with each other and the container walls

4. The particles move according to classical mechanics.

(Atkins, section 1.3, leaves out the last assumption.)

9.1 Pressure of an ideal gas

Consider a gas of N identical particles in a rectangular container. We want
to calculate from kinetic theory the pressure the gas exerts on the walls.

Consider a single particle, particle i, with components of its velocity vxi,
vyi, vzi. Upon colliding elastically with a wall parallel to the yz plane, the
x component of its velocity changes sign. The change in momentum of the
particle is therefore 2mvxi, where m is the particle mass.

Now consider how many molecules will hit the wall in time ∆t. All
molecules within vx∆t of the wall, and that are moving toward the wall
rather than away from it, will hit the wall in time ∆t. Half the molecules are
moving toward the wall, so the number that will hit the wall is 1

2 NAvx∆t/V,
where A is the area of the wall. The total momentum change at the wall is
therefore

1
2 NAvx∆t(2mvx)/V = NAmv2

x∆t/V. Not all the molecules have the
same x component of velocity, so I should use the average squared speed
in that expression: ∆p = NAm〈v2

x〉∆t/V. The force is the rate of change of
momentum, F = dp/dt; the force on the wall is therefore the momentum
change ∆p divided by ∆t, or NAm〈v2

x〉/V. The pressure is the force per
unit area, so it is that force divided by the area of the wall: P = Nm〈v2

x〉/V.
There is nothing special about the x-direction; we should expect the

average speeds of the molecules in all directions to be the same. If I call the
average squared speed (in three dimensions) c2, I have c2 = v2

x + v2
y + v2

z ,

and since all three directions are equivalent this reduces to c2 = 3v2
x so we
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have

P =
1
3

Nmc2

V
(216)

This gives the pressure of the gas in terms of microscopic properties of
the molecules (their masses and average squared speed).

9.2 Average speed, translational energy, and temperature

I have used c2 as the average of the square of the speed for the gas molecules.
Then the average translational energy must be 〈εtr〉 = 1

2 mc2. For the whole
sample of N particles we therefore have Etr = 1

2 Nmc2. It is important to
notice that even though the molecules have a wide distribution of speeds
(more on that later), the translational energy of the whole sample is very
well defined if N is large. Substituting into Eq. (216) gives

pV =
2
3

N〈εtr〉 =
2
3

Etr. (217)

Let me assert that temperature, T, is a monotonic function of Etr. Then
if T is constant, Etr is constant, so that P is proportional to 1/V. This is a
first-principles derivation of Boyle’s Law.

What is the relation between T and Etr? Let us compare with the ideal
gas law:

PV = nRT = NkT =
2
3

Etr (218)

Etr =
3
2

NkT =
3
2

nRT (219)

that is, T is linear in Etr, and the proportionality constant is 3
2 R times the

number of moles of molecules.
The average squared speed is c2, so the “root-mean-square speed”, c,

comes from

〈εtr〉 =
1
2

mc2 =
3
2

kT (220)

c2 =
3kT
m

(221)

c =
(

c2
) 1

2
=
(

3kT
m

) 1
2

=
(

3RT
M

) 1
2

(222)
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Notice in the last equation, I have written the formula both in terms of k and
the molecular mass, and then in terms of the gas constant R and the molar
mass (which must be in kg, not in g!) Using the last form in problems can
often save annoying conversions from amu to kg and lets you use the gas
constant R = 8.314 J K−1 mol−1 rather than Boltzmann’s constant.

9.3 The distribution of speeds

The molecules do not all move with the same speed. To describe the distri-
bution of speeds, we need to use a probability density function, just as in
quantum mechanics (where the probability density function, ψ2, described
the distribution of position). Remarkably, we can find the distribution of
speeds assuming only that all directions in space are equivalent, and that
the different velocity components for a molecule are independent: what a
molecule’s speed is in the x direction says nothing about its speed in the y
or z directions.

9.3.1 One-dimensional velocity distribution

First, let’s seek the one-dimensional distribution of speeds, f (vx), such that
the fraction of molecules with x-components of speed between a and b is

P(a ≤ vx ≤ b) =
∫ b

a
f (vx) dvx (223)

Because all directions in space are equivalent, the function of f (vx) must
be the same one that describes the probability distributions in vy and vz as
well. You can think of this one-dimensional function of vx as giving the
probability that a molecule will have its x component of velocity between
vx and vx + dvx.

The probability density must be normalized, so that∫ ∞

−∞
f (vx) dvx = 1 (224)

Now, what is the probability that a particular molecule will have its x
component of velocity between vx and vx + dvx, its y component of veloc-
ity between vy and vy + dvy , and its z component of velocity between vZ
and vZ + dvz? Because the speeds in the various directions are assumed
to be independent, that must be the product of the three one-dimensional
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probabilities:
dNvxvyvz

N
= f (vx) f (vy) f (vz) dvx dvy dvz (225)

This is a three-dimensional function, of velocity. But, by the assumption of
equivalence of directions, it cannot depend on the actual direction of the
velocity; it can only depend on speed. Therefore,

f (vx) f (vy) f (vz) = φ(v) (226)

a function of speed only (v2 = v2
x + v2

y + v2
z). Now, what kind of function

satisfies this requirement, that a product of functions is equal to a single
function of the sum of the arguments? There’s only one function that does
that: the exponential, because eaebec = ea+b+c. So the candidate function is

f (vx) = Ae−
1
2 bv2

x , (227)

a Gaussian! I have inserted the − 1
2 for later convenience (this causes no

loss of generality). A and b are yet to be determined, but if we choose
this distribution function, we can be assured that the requirements of our
assumptions will be satisfied.

To find A, we normalize: the particle must have some x component of
velocity, between −∞ and ∞. So∫ ∞

−∞
Ae−

1
2 bv2

x dvx = 1 (228)

We can do this using the standard integral

∫ ∞

−∞
e−ax2

dx =
√

π

a
, (229)

where a > 0, so that

A
(

2π

b

) 1
2

= 1 (230)

A =
(

b
2π

) 1
2

(231)

Notice that b must be positive for this normalization to work; otherwise the
integral is infinite and our function is not an acceptable probability density.
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Now we need to find b. We have c2 = 3〈v2
x〉 = 3kT

m , so that 〈v2
x〉 = kT

m .
We can also calculate that average from the probability density function,
using the usual formula for the average of a function:

〈v2
x〉 =

∫ ∞

−∞
v2

x f (vx) dvx (232)

=
(

b
2π

) 1
2
∫ ∞

−∞
v2

xe−
1
2 bv2

x dvx (233)

We need the standard integral

∫ ∞

−∞
x2ne−ax2

dx =
(2n)! π

1
2

22nn!an+1/2 , (234)

which with n = 1 and a = b/2 gives us

〈v2
x〉 =

(
b

2π

) 1
2 2! π

1
2

22(b/2)3/2 (235)

=
1
b

(236)

so we now have

b = (〈v2
x〉)−1 (237)

=
(

kT
m

)−1

(238)

=
m
kT

(239)

so that finally

f (vx) =
( m

2πkT

) 1
2

exp

(
−mv2

x

2kT

)
. (240)

This expression gives us the one-dimensional distribution of velocity. Ex-
amples are plotted in Figure 14.

Any particular molecule could have a velocity component (or projec-
tion) along the x axis anywhere between −∞ and ∞; this distribution func-
tion shows us that the most likely velocity component is zero, and that the
probability density falls off with increasing |vx| in a Gaussian way. Note
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9. Kinetic-molecular theory of gases 56

that the Gaussian will be wider for larger T and for smaller m. Also note
that the average speed along the x-axis is zero: there is no net tendency
for the molecules to be moving either left or right. (That is why we had to
evaluate b using 〈v2

x〉 rather than 〈vx〉; the latter quantity is zero no matter
what value b has.)
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Figure 14: The one-dimensional velocity distribution, showing variations
with molecular mass and with temperature. The area under each curve is
1.

Notice that the one-dimensional distribution can be written

f (vx) =
( m

2πkT

) 1
2

exp
(
− εtr

kT

)
. (241)

The exponential term is the ratio of two terms, each with dimensions of en-
ergy: the “one-dimensional translational energy” of the molecule, εtr, and
the “characteristic energy” kT. It is relatively easy for molecules to have
translational energies less than or similar to kT, while it is quite improb-
able that they will have energies much greater than kT. This is our first
example of the extremely important Boltzmann distribution.

9.3.2 Three-dimensional speed distribution

Now we want to go on to find the distribution of molecular speeds in three
dimensions. Note that while the velocity component vx in a single dimen-
sion can have any value between −∞ and ∞, the speed of a molecule is a
necessarily positive quantity, because v2 = v2

x + v2
y + v2

z . We will therefore
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expect to find a probability density function F(v) that is nonzero only for
positive v. (Atkins (pp. 26–27) calls this function f (v); I will call it F(v) to
make a clearer distinction between it and the one-dimensional distribution
of velocity components, f (vx).)

Eq. (225) gave the probability that a molecule has its x-component of
velocity between vx and vx + dvx, y-component of velocity between vy and
vy + dvy, and its z-component of velocity between vz and vz + dvz, as the
product of the three independent probabilities. (Think of the probability of
three people simultaneously flipping coins all getting heads: it’s 1

2 × 1
2 × 1

2 .)
That is,

dNvxvyvz

N
=
( m

2πkT

) 3
2

exp

(
−m(v2

x + v2
y + v2

z)
2kT

)
dvx dvy dvz (242)

(Notice that the exponent on the normalization factor is now 3
2 .) If you

think of the function
dNvxvyvz

N as living in a three-dimensional “velocity space”
whose axes are vx, vy, and vz, then the dvx dvy dvz part of Eq. (242) describes
the volume of a small rectangular box, which is located a distance v from
the origin. Since we are looking for a distribution in speed only, and we
don’t care what direction the molecule is moving, we must add up all the
probabilities like that one that correspond to the same total speed, v. All the
little boxes that correspond to the same speed form a thin spherical shell of
thickness dv a distance v from the origin. The total volume of such a shell
is 4πv2 dv, so to get our 3D speed distribution we must replace dvx dvy dvz

with 4πv2 dv, and replace v2
x + v2

y + v2
z with v2. (You can reach this conclu-

sion more rigorously by changing Eq. (242) to spherical polar coordinates,
then integrating over the angular coordinates θ and φ.) So our final distri-
bution of molecular speeds is

F(v) =
( m

2πkT

) 3
2

4πv2 exp

(
−mv2

2kT

)
(243)

Eq. (243) is called the Maxwell distribution of speeds.
I think of this distribution in three parts: there’s a normalization part, a

4πv2 part that counts all the possible velocities that correspond to the same
speed, and there is an exponential “Boltzmann factor” that compares the
kinetic energy of the molecule to kT, the average energy available at tem-
perature T.
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What do these curves look like? The normalization part does not de-
pend on v; the v2 part is a parabola; the Boltzmann part is a Gaussian cen-
tered at zero. So at low speeds the curve looks like a rising parabola, then
as v2 increases the curve turns over and dives back into the baseline as the
Gaussian becomes small. Figure 15 shows examples corresponding to the
1D distributions we saw before.
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Figure 15: The Maxwell distribution of speeds. The area under each of the
curves is 1.

10 Testing the Maxwell distribution

I know of two good methods for experimentally checking the Maxwell dis-
tribution of speeds: time-of-flight methods, including the use of slotted-
disk “velocity selectors”, as described briefly in Atkins on p. 29, and Doppler
spectroscopy.

In a velocity selector experiment, molecules leave a source through a
small hole, and then pass through a series of disks with slots in them. The
disks are arranged on a rotating shaft and the slots are offset, so that for a
particular speed of rotation only molecules of a particular speed can make
it through all the slots. Which speed makes it through is controlled by the
rotation rate of the shaft. These experiments were first done by Eldridge
in 1927 (J. A. Eldridge, Phys. Rev. 30, 931 (1927).) A thorough analysis of
slotted-disk velocity selectors by C. J. B. van den Meijdenberg appears in
Atomic and Molecular Beam Methods, G. Scoles, ed., (Oxford, 1988).
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In Doppler spectroscopy, the absorption spectrum of gas molecules is
measured with very high resolution. Nowadays such spectroscopy is al-
ways done with lasers since they can provide the required resolution eas-
ily. A molecule moving toward a laser source will “see” a frequency that
is higher than the frequency of the laser because of the Doppler effect. The
shift is proportional to vx/c, where vx is the component of the molecule’s
velocity along the laser beam direction and c is the speed of light. The ab-
sorption spectrum that appears therefore has lines that are broadened by
the motion of the molecules, and if the line shape is measured carefully, the
distribution f (vx) can be determined directly.
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10.1 Applications of the Maxwell distribution

10.1.1 Average speed 〈v〉
We use the usual approach to averaging things:

〈v〉 =
∫ ∞

0
vF(v) dv (244)

=
( m

2πkT

) 3
2

4π

∫ ∞

0
v3 exp

(
−mv2

2kT

)
dv (245)

Use the standard integral∫ ∞

0
x2n+1e−ax2

dx =
n!

2a2n+1 (246)

with n = 1 and a = m
2kT to give

〈v〉 =
( m

2πkT

) 3
2

4π
1!

2
( m

2kT

)2 (247)

=
(

8kT
πm

) 1
2

(248)

The average speed 〈v〉 differs from the root-mean-square speed
√

〈v2〉
because it contains the numerical factor

√
8/π =

√
2.546 rather than

√
3.

Atkins (section 1.3) gives 〈v〉 the symbol c̄.

10.1.2 Most probable speed vmp

The most probable speed is the speed at which F(v) reaches a maximum.
We find it by differentiating F(v), setting the derivative equal to 0, and
solving for vmp:

dF(v)
dv

=
( m

2πkT

) 3
2

4π

[
2v + v2

(−mv
kT

)]
exp

(
−mv2

2kT

)
(249)

0 =
( m

2πkT

) 3
2

4π

[
2vmp + v2

mp

(−mvmp

kT

)]
exp

(
−mv2

mp

2kT

)
(250)

GCM July 19, 2002 notes-9



10. Testing the Maxwell distribution 61

Lots of stuff divides out, leaving

0 =
[

2vmp + v2
mp

(−mvmp

kT

)]
(251)

0 = 2 − mv2
mp

kT
(252)

vmp =
(

2kT
m

) 1
2

(253)

The most probable speed has
√

2 as the numerical factor multiplying
(

kT
m

) 1
2
;

it is the smallest of the three measures of speed we have considered.

10.2 Translational energy distribution

Let’s consider the Maxwell distribution in terms of translational energy
rather than speed. We need to make a change of variable. However, we
must be careful: we have to make sure that probabilities calculated from the
distributions written in terms of the two different variables match up. In
other words, if the energy distribution is G(εtr), we must have G(εtr) dεtr =
F(v) dv. Therefore, we must be careful to change variables in the accompa-
nying differential dv as well as in F(v) itself.

We want to change from v to εtr. We have εtr = 1
2 mv2, so v =

(
2εtr
m

) 1
2
.

Then, dεtr = mv dv = m
(

2εtr
m

) 1
2

dv and dv =
(

1
2mεtr

)
dεtr =

( 1
2m

) 1
2 ε

− 1
2

tr dεtr.

In the Maxwell distribution F(v) dv, we replace v with
(

2εtr
m

) 1
2

and dv with( 1
2m

) 1
2 ε

− 1
2

tr dεtr to get

G(εtr) dεtr =
( m

2πkT

) 3
2

4π

(
2εtr

m

)
exp

(
− εtr

kT

)( 1
2m

) 1
2

ε
− 1

2
tr dεtr (254)

= 2π

(
1

πkT

) 3
2

ε
1
2
tr exp

(
− εtr

kT

)
dεtr (255)

All the dependence on mass has canceled; the translational energy distribu-
tion is the same for all molecules at the same temperature. Figure 16 shows
this distribution for temperatures of 300 and 700 K.

The translational energy distribution rises very steeply from the origin;
it has infinite slope at the origin, while the speed distribution has zero slope
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Figure 16: Translational energy distributions for gases. The distribution is
independent of mass.

there. If you draw a vertical line at any energy, the area under the distri-
bution to the right of that line gives the fraction of molecules with transla-
tional energy equal to or greater than that amount. In a simple theory of
chemical kinetics, it is only those molecules than can surmount an “activa-
tion barrier” and react; this distribution therefore plays an important role
in kinetics.

10.3 Hard-sphere collision rates

Let’s begin thinking about molecules colliding with each other. Clearly
that can be a complicated field; most of the richness of chemical reactions
occurs in some sequence of bimolecular collisions, and if a single simple
theory could describe everything about those collisions chemistry wouldn’t
be nearly so interesting. But, for starters, let’s use a simple theory: think of
molecules as little tiny marbles. The “hard-sphere” model can teach us a
remarkable amount about molecular collisions.

I’ll start out by thinking about one molecule as moving with speed vrel
through a forest of other, stationary, molecules. All the molecules are hard
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spheres with diameter d. As our one molecule moves along, if its trajectory
takes its center within a distance d of the center of any other molecule,
the two will hit. (See Figure 17.) In a time t, our molecule carves out a
“collision cylinder” of volume πd2vrelt; any other molecules whose centers
are in that cylinder will collide with it. The number of such molecules is just
the volume of the cylinder times the number density of the gas, N = N/V.
So the number of collisions one molecule makes per second, z, is

z = πd2vrelN . (256)

Figure 17: The collision cylinder; cf. Figure 1.20 in Atkins.

If we rewrite N with the ideal gas law we find

N =
N
V

=
nNA

V
=

PNA

RT
=

P
kT

(257)

so that in terms of the pressure the collision rate is

z = πd2vrel
P
kT

(258)

The effective “target area” of the molecule, πd2, is often called the col-
lision cross section and given the symbol σ. This idea of an effective size
can be usefully extended to many kinds of events other than hard-sphere
collisions. Events that are less likely than simply bouncing—for example,
chemical reaction—will have smaller cross sections.

Of course, all the molecules are moving, and not all with the same
speed. When you include all the molecules’ motions, the appropriate value
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for vrel is just the average speed, but calculated with the reduced mass of the
colliding pair:

vrel =
(

8kT
πµ

) 1
2

(259)

where, as usual, µ = m1m2/(m1 + m2) and m1 and m2 are the masses of the
colliding molecules. (Once again, you can express µ in kg/mol and use R
in the numerator rather than k.)

If two different kinds of molecules are colliding, they might have dif-
ferent sizes as well as different masses; in that case, you use the average
diameter d = (d1 + d2)/2 in Eq. (258).

The formulas I have given so far describe the number of collisions a sin-
gle molecule makes with other molecules (either the same kind or different)
in a gas. In a gas that contains molecule types A and B, the number of A–B
collisions per second per unit volume is

ZAB = zABNA (260)

ZAB = σAB

(
8kT

πµAB

) 1
2
(

PA

kT

)(
PB

kT

)
. (261)

The number of B-B collisions per second per unit volume is calculated
similarly, but we must divide by 2 to avoid counting the same collision
twice:

ZBB =
1
2

zBBNB (262)

ZBB =
1
2

σBB

(
8kT

πµBB

) 1
2
(

PB

kT

)2

(263)

where µBB = mB/2, σBB = πd2
B, and PB is the partial pressure of B.

10.3.1 Mean free path

We have seen how to calculate the number of collisions a particular molecule
makes with other molecules per second, and also how to calculate the av-
erage speed of the molecule. With those two results it is easy to find the
average distance a molecule travels between collisions, the mean free path,
λ:

λ = 〈v〉/z =
kT√
2σP

(264)

At one atmosphere and 300 K, for nitrogen and oxygen λ ∼ 160 nm.
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11 Real gases

11.1 p − V isotherms and the critical point

If you put some gas into a piston-and-cylinder apparatus and slowly push
the piston in, holding the apparatus at a constant temperature, the pressure
increases—you feel more and more resistance—as you reduce the volume.
At some point, the pressure suddenly stops increasing, and you can move
the piston in quite far without increasing your pushing force at all. Finally,
there is a sudden change, and you find that pushing the piston in any far-
ther requires a very high force. See Figure 18 for an illustration.

Figure 18: The P-V isotherm for a pure gas below the critical temperature.

What is happening? At first, all the material is gas; during that time,
it behaves approximately according to the ideal gas law, and the pressure
(thus the force pushing against the piston) goes up as the inverse of the
volume. Then at some point—when the pressure has reached the vapor
pressure of the liquid at the experimental temperature—the gas begins to
condense, and both liquid and vapor exist in the cylinder. The pressure
remains at exactly this pressure until all the gas has been liquefied. At that
point, the cylinder contains only liquid, and compressing this liquid further
requires very high pressures.

What happens if you raise the temperature and repeat the experiment?
You find that the “flat” section of the trace, where the liquification occurs,
appears at higher pressure; you would have expected that, since you know
that the vapor pressure increases with temperature. But here’s something
you might not have expected: the liquification sets in at a smaller total
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volume than it did before. The point at which you have completely liqui-
fied the sample appears at slightly higher volume than before (because liq-
uids expand with increasing temperature). So the total volume range over
which you have liquid and gas together goes down at higher temperature.

As you raise the temperature more, the total volume range over which
you have both liquid and gas in the cylinder gets smaller and smaller, until
finally you find that above a certain temperature you never see both liq-
uid and gas in the cylinder! You compress and compress, and the density
goes higher and higher until it equals the liquid density, but you never
see the phase change! The temperature at which the liquid-vapor phase
change disappears is called the critical temperature Tc. Look at Figure 19 to
see the qualitative behavior of the isotherms. Atkins gives an accurate set
of isotherms for CO2 in Figure 1.23 on page 31.

Figure 19: Isotherms of a pure substance. Successively higher lines occur
at higher temperatures.

It is obvious from this description that the ideal gas law does not apply
to everything; if it did, the pressure would keep following that 1/V curve
forever. But even in the portion of the curve where only gas exists, the
ideal gas law is not followed exactly. At intermediate and high densities,
intermolecular forces become important, and the pressure deviates from
the ideal gas prediction. Sometimes these deviations are large: factors of
two or three (at several hundred bar pressure) are common. One way to
think about such behavior is to try to devise “improved” gas laws that give
more accurate descriptions of the p − V − T behavior. There are two prices
to be paid: one, the equations relating p, V, and T will be more complicated,
and two, the same equation will not work for all gases. We will need to
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have parameters that can be changed to match the gas in question.

11.2 The van der Waals equation

One of the first, and still the most widely known, equations for real gases is
the van der Waals equation, developed in 1873. It applies two corrections to
the ideal gas law. First, it recognizes that the molecules themselves occupy
some volume, so that the volume a single molecule has to fly around in is
not the total volume of the container, but the volume of the container minus
the volume occupied by all the other molecules. Second, it recognizes that
the molecules have some attractive forces between them, that these attrac-
tive forces will diminish as the molecules get farther apart, and that their
net effect will be to reduce the pressure. The van der Waals equation of state
is

p =
nRT

V − nb
− a

( n
V

)2
(265)

The numbers a and b are different for each gas; a, which must have units
(pressure)(volume/mole)2, accounts for the attractive forces, and b, with
units volume/mole, accounts for the volume occupied by the molecules.
The attractive term −a

( n
V

)2, which reduces the pressure, gets smaller as
the density decreases, as you expect.

Table 1.6 in the Data section of Atkins gives van der Waals constants a
and b for about twenty gases. They can also be estimated from the critical
temperature and pressure:

a =
27R2T2

c

64pc
, (266)

b =
RTc

8pc
. (267)

b, as you might guess, is similar in magnitude to the volume of one mole
of the liquid substance. For example, b for water is 30 cm3/mol, while the
molar volume of liquid water is 18 cm3/mol. b for benzene is 115 cm3/mol;
the molar volume of liquid benzene is 89 cm3/mol.

You usually see the van der Waals equation written in terms of the mo-
lar volume Vm = V/n:

p =
RT

Vm − b
− a

V2
m

(268)

Vm is the volume occupied by one mole of gas; the higher Vm, the lower the
density and the less important intermolecular forces will be. In the limit of
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low densities (that is, large molar volumes), the gas behavior approaches
that of an ideal gas. This is easy to see in the van der Waals equation: as
Vm gets large, it dominates over b in the denominator of the first term, and
makes the second term become small; the equation then reduces to the ideal
gas law p = RT/Vm.

11.2.1 Critical behavior in the van der Waals equation

To what extent does the van der Waals equation describe condensation and
critical behavior? The subcritical isotherms in Figure 19 have sharp corners
at the onset and completion of condensation; no smooth polynomial func-
tion can have corners like that, because polynomial functions have con-
tinuous derivatives. So we cannot expect the van der Waals equation to
reproduce the isotherms exactly. But it does show critical behavior.

Figure 20 shows isotherms calculated from the van der Waals equation
using the constants for CO2 (a = 3.640 atm L2 mol−2, b = 0.04267 L mol−1.)
At temperatures below the critical temperature Tc, the curves show “loops”
(oscillations) in the region that corresponds to condensation. There is a
technique, called the “Maxwell construction”, for replacing these oscilla-
tions with flat lines, to generate isotherms that look more like the real thing.
(Atkins describes this trick on page 36.) As temperature increases, the loops
diminish in amplitude, until finally they disappear; at one particular tem-
perature, the curve has a slope of zero exactly at one molar volume, and
negative slope everywhere else. This gives an isotherm that looks like the
critical isotherm; it occurs at a temperature of Tvdw

c = 8a
37bR , which with the

van der Waals constants for CO2 comes out to be 307.9 K. The experimental
critical temperature Tc is 304.1282 K. At temperatures above Tc the van der
Waals isotherms qualitatively resemble the experimental ones.

11.2.2 Accuracy of the van der Waals equation

To quote Levine’s physical chemistry book: “The van der Waals equation
is a major improvement over the ideal-gas equation but is unsatisfactory
at very high pressures and its overall accuracy is mediocre.” With it you
can estimate properties of dense gases with accuracies much better than
the ideal gas law, but you should not expect few-percent accuracy.

There are several other equations of state commonly used for dense
gases. Some use two adjustable parameters, just as the van der Waals equa-
tion does; some use more parameters in hopes of higher accuracy at the
cost of more complication; and one, the virial equation of state, replaces the
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Figure 20: Isotherms for CO2 from the van der Waals equation. From the
bottom, the curves represent isotherms at 246.3, 292.5, 307.9, and 338.7 K,
which represent, respectively, 0.8, 0.95, 1.0, and 1.1 times Tvdw

c . The dashed
line gives the ideal gas isotherm at 307.9 K.

constants for each gas with functions of temperature, giving an effectively
infinite number of adjustable paramters. We will consider two of these.

11.3 The Redlich-Kwong equation

A two-parameter equation that is more accurate than the van der Waals
equation was developed by Redlich and Kwong (Chem. Rev. 44, 233 (1949)).
This equation treats the molecular excluded volume in the same way the
van der Waals equation does, but uses a different approach to the effect of
the attractive interactions. The Redlich-Kwong equation is

p =
RT

Vm − b
− a

Vm(Vm + b)T1/2 (269)

The Redlich-Kwong a and b are not the same as the corresponding pa-
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rameters in the van der Waals equation (even the units of a are different.)
The equations to estimate them from critical data are

a =
R2T5/2

c

9pc(21/3 − 1)
(270)

b =
(21/3 − 1)RTc

3pc
(271)

Like the van der Waals equation (and for the same reasons), the Redlich-
Kwong equation shows oscillations in the condensation region of a P − V
isotherm. Its accuracy in the gas and supercritical regions is much bet-
ter than the van der Waals equation, and it even describes compression of
some liquids fairly well. It is very widely used, especially in engineering.

Atkins, in Table 1.7, shows several other equations of state. Many more
(hundreds!) have been developed for particular pressure and tempera-
ture ranges for particular sets of gases. This game of find-a-better-analytic-
equation-of-state is a classic example of empirical model-building: trying
to model complicated observed behavior with a simple equation of a few
adjustable parameters, relying on underlying physical understanding of
the important processes seasoned with curve-fitting against real data.

11.4 The virial equation

The granddaddy of real-gas equations of state is the virial equation of state,
which is a Taylor series expansion of the deviations from ideal gas behavior
in the variable 1/Vm. The expansion is made separately at each tempera-
ture. The virial equation is most often written as

pVm = RT

(
1 +

B(T)
Vm

+
C(T)

V2
m

+ · · ·
)

(272)

The function B(T) is called the second virial coefficient, C(T) is the third
virial coefficient, and so on. Notice that if all the virial coefficients are zero,
the virial equation turns into the ideal gas equation. The temperature-
dependent coefficients therefore tell us something about the interactions
between the molecules. B(T) describes the interactions betwen pairs of
molecules; C(T) describes “three-body” interactions, and so on.

B(T) has been measured (at dozens of temperatures) for hundreds of
gases; C(T) is known for a few dozen gases; only a few D(T) values have
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been measured. At low to medium pressures, B(T) alone is sufficient for
accuracies better than one percent in most cases.

At low temperature and low density, the attractive interactions between
the molecules are more important than the repulsions, so that the pressure
in a sample of gas is less than the ideal gas law predicts; B(T) is therefore
negative at low temperatures, and drops steeply at very low T. At high
temperature, the molecules are moving fast enough that they do not really
feel the weak attractive forces, and they act more or less like hard spheres;
B(T) therefore reaches a value roughly like the liquid density at high T and
decreases very slowly at very high T.

It is possible, through statistical mechanics, to calculate the virial coeffi-
cients if the intermolecular potential is known. For spherical particles (not
necessarily hard spheres: this works for realistic potentials) the formula is

B(T) = −2πNA

∫ ∞

0

(
exp

(−v(r)
kT

)
− 1
)

r2 dr (273)

where v(r) is the intermolecular potential function. For realistic v(r) this
integration usually has to be done numerically, but there are good tech-
niques for doing so and the calculation is not very hard. (I’ve done it many
times, and have computer programs available for the job.) This makes a
nice test of a model potential function, since B(T) can be determined ex-
perimentally to within a few percent. (Actually, Eq. (273) is approximate:
it is the prediction of classical mechanics, which is usually very good at
room temperature and above but is inaccurate at low temperature. There
are quantum corrections, also not hard to calculate, which must be used at
low temperatures. See Hirschfelder, Curtiss, and Bird, Molecular Theory of
Gases and Liquids, for details.)
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12 First Law of thermodynamics

We already calculated the average kinetic energy of the particles in an ideal
gas: 〈εtr〉 = 3

2 kT. If the particles have no other kinds of energy (they cannot
rotate, for example), then we can regard the sum of all the particles’ kinetic
energies as the total energy of the gas. We can do any thing at all to this
sample of gas, but if in the end, we have the same number of particles and
we bring them back to the same temperature, the total energy will be the
same. This total energy, which is generally called the internal energy of the
gas, is a state function: it depends only on the present condition of the gas
sample and not on its previous history.

The internal energy is an extensive property: if we divide the sample ex-
actly in half (by putting a partition in the container, for example), each half
has exactly half the internal energy the original sample had. The volume
of the gas is another extensive property. The pressure and temperature,
though, are not extensive: if we divide the sample of gas in half, each half
has the same pressure and temperature as the original sample. We say that
pressure and temperature are intensive properties. Internal energy, pres-
sure, temperature, and volume are all state functions.

How might we increase the internal energy of the gas? Obviously, we
must increase its temperature (or the number of gas molecules.) All the
myriad ways of increasing the sample’s temperature fall into two great cat-
egories: we can either heat the gas, or we can do work on the gas.

Heating the gas is easy: we place the gas into a container whose walls
conduct heat, then we place that container in contact with some object
whose temperature is higher than that of the gas (for instance, a beaker
of hot water), and we wait. After a while, the gas and its container will
have warmed up, and the formerly warm object will have cooled off, until
the two temperatures are the same. At that point, there will be no more
heat flow.

Doing work on the gas is also simple: we put the gas into a container
whose walls do not conduct heat, but whose volume is adjustable (for ex-
ample, a piston-and-cylinder with vacuum-jacket walls). Then we com-
press the gas. The work we do in this process is just the force applied times
the distance over which the force operates; when the pressure is p, if the
piston has face area A and we push it through a small distance dx, the work
we do is dw = pA dx. Adding those small amounts of work up over some
finite change in volume gives the total work done on the gas. Compressing
the gas in this way increases its temperature.

The first law of thermodynamics, which is essentially a statement of
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conservation of energy, says that the change in total energy of any closed
system (ideal gas or otherwise) during any process is equal to the sum of
the heat flow into the system, q, and the work done on the system, w:

∆E = q + w (274)

Calling the system closed means that no molecules can enter or leave.
In most problems of interest to chemists (though not to chemical engi-

neers, who deal all the time with stuff flowing through pipes) the sample
has no important external energy (overall kinetic or potential energy), so the
total energy E can be replaced with the internal energy U to give

∆U = q + w (275)

Contrary to popular usage, heat in thermodynamics is not something
that a sample contains; instead, heat is a process, an energy transfer be-
tween two things because of a temperature difference. It makes no sense
in thermodynamics to ask “How much heat does 3.4 g of iron contain at
343 K and one bar pressure?” Heat is not a state function. Even so, the old
caloric theory, which regarded heat as a fluid that moved from one object
to another, is so deeply ingrained into our language that it was impossible
for me to avoid saying “a container whose walls conduct heat” above. The
idea of heat-as-fluid also persists in terms like “heat capacity” and “heat
flow”.

(Incidentally, an early serious attack on the caloric theory was made
in 1798 by Count Rumford, an expatriate American who lived in Mas-
sachusetts but supported England in the American Revolution and moved
to Europe after the war. He was in charge of the Bavarian Army, and recog-
nized that enormous “amounts of heat” were produced during the boring
of cannons; this production of heat contradicted the prevailing idea of con-
servation of heat. In fact he measured that a cannon borer, driven by one
horse for 2.5 hours, produced enough heat to raise 27 pounds of water from
ice-cold to the boiling point.)

12.1 Example: work against constant force

As an example of a simple calculation using the first law, consider the fol-
lowing problem:

A sample of ideal gas at a pressure of 2 atmospheres and at room tem-
perature is contained in a syringe. The cross-sectional area of the plunger
is 4 cm2, and the external pressure is 1 bar. The mass of the plunger is 10 g.
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We let the plunger rise slowly (it rises because of the higher pressure in-
side). We let it rise by 2 cm, then stop it. The gas inside is now cooled; as it
warms back up to room temperature, how much heat flows from the room
into the gas?

Solving this problem requires two insights: first, that since the gas ends
at the same temperature as it began, its internal energy is unchanged (∆U =
0), and second, that the force against which it is pushing is constant, so that
we can calculate the work the gas does with the formula w = F∆x.

The force against which the plunger must work is the force of the exter-
nal atmosphere plus the weight of the plunger, that is,

Fext = pextA + mg, (276)

where pext is the external atmospheric pressure, A is the area of the plunger
face, m is the mass of the plunger, and g is the acceleration of gravity. Plug-
ging in the values and changing units appropriately, we find Fext = 40.1 N,
so that w = F∆x = (40.1 N)(−0.02 m) = −0.802 J. I have used the con-
vention that work done on the system is positive, while work done by the
system on the surroundings is negative; this convention is the most com-
mon one and is adopted by Atkins.

Since ∆U = 0, we have q = −w, and 0.802 J of energy flows as heat
between the room and the gas to bring it back to room temperature.
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12.2 General pV work

In the piston-and-cylinder apparatus, the work done against external pres-
sure pext is

dw = −pextA dx = −pext dV (277)

where dV is the change in volume. We can regard any expansion against an
external pressure, independent of the shape of the container, as a collection
of small pistons, and the overall work done in any expansion is still

dw = −pext dV. (278)

If the volume change is positive (the system gets bigger), the work is
negative; this agrees with our convention that work done on the system is
positive.

12.2.1 Expansion against constant external pressure

We have examined this case already: if the external pressure is constant,
then we have

w = −
∫ V2

V1

pextdV = −pext

∫ V2

V1

dV = −pext(V2 − V1) = −pext∆V. (279)

Figure 21: Work done in expansion of the system. If the system moves in a
cyclic way, eventually returning to point A, the work done is given by the
area enclosed within the cycle on the diagram.

We did not know, or care, what the pressure of the gas was; it is only
the external pressure, against which the system expands, that matters. That
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is still true even if the external pressure changes during the expansion, so
long as we know what it is; that is,

w = −
∫ V2

V1

pext(V)dV, (280)

and the work is the area under the curve pext(V) on a p − V diagram. No-
tice (Figure 21) that the work depends on what “path” we follow on the
diagram. If we move along path ABC, the work done on the surroundings
is larger than if we move along path ADC.

In fact, we can think about recompressing the sample somehow, bring-
ing it back to point A. If we expand along route ABC, we do work wABC
on the surroundings; then to move back along route CDA, we must do
work wCDA on the system. The net work we extract from the system (think
“steam engine”) is the area between the two curves.

12.2.2 Reversible processes

It is useful to describe a sort of process in thermodynamics that corresponds
to “frictionless” processes in mechanics. The appropriate sort is one that is
nearly at equilibrium all the way through. Of course, a system truly at
equilibrium (internally and with its surroundings) does not change with
time; that is essentially the definition of equilibrium. But, a system very
slightly displaced from equilibrium will move; if you change the displace-
ment very slightly in the other direction, the motion will reverse direction.
Such a process, held nearly at equilibrium all the way through, is called a
reversible process in thermodynamics.

As an example, consider our piston and cylinder apparatus expanding
against external pressure. If we adjust the external pressure to be exactly
equal to the internal pressure, the piston will not move at all. If we then
very slightly reduce the external pressure, the piston will move slowly out-
ward; we can stop it, and in fact reverse it, by a very small increase in the
external pressure. If we let the piston move outward very slowly, by contin-
uously adjusting the external pressure to be very slightly below the internal
pressure, then we are carrying out a reversible expansion of the system.

A true reversible expansion is not a practical thing to do, because it
takes forever to make a finite change in the volume. Therefore, real devices
do not act reversibly. Reversible processes nevertheless play an important
role in thermodynamics for several reasons. First, some devices do act very
nearly like reversible ones (for instance, many electrochemical processes
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occur nearly at equilibrium.) Second, and more important, it is often possi-
ble to calculate changes in a system’s state functions during some process
easily if we assume the process occurs reversibly; since state functions do
not depend on paths, we can substitute a reversible change for the real one
and get the same answer with less effort. We cannot, of course, use this
trick for calculating q or w, since those are not state functions.

Reversible isothermal expansion of an ideal gas If we allow an ideal gas
to expand reversibly, then we know that pext = p during the entire expan-
sion; we can therefore replace the external pressure pext with the system
pressure p in the expression for the work. Let us say we allow our system
to expand reversibly from state 1, (p1, V1, T) to state 2, (p2, V2, T). How
much work is done?

We don’t know yet. Many different paths could carry the system from
state 1 to state 2, and before we can calculate the work we must specify a
path. We can do that by specifying T at each point on the path; since V is
the independent variable, and n is held constant, the specification of T at
each point suffices to uniquely identify a path.

In the reversible isothermal expansion, we keep the temperature of the
gas constant throughout the expansion (perhaps by immersing the cylinder
into a large constant-temperature bath.) Then we have

w = −
∫ V2

V1

pext(V)dV (281)

Since the expansion is reversible we replace pext with p:

= −
∫ V2

V1

p(V)dV (282)

= −
∫ V2

V1

nRT
V

dV (283)

= −nRT
∫ V2

V1

dV
V

(284)

= −nRT [ln V]V2
V1

(285)

= −nRT ln
(

V2

V1

)
(286)
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12.3 Enthalpy

For any process at constant volume, if we consider no work other than pV
work, then w = 0, so that

∆U = U2 − U1 = qV (287)

(where the subscript V indicates constant volume.)
If, instead, we carry out a process at constant pressure, then

∆U = U2 − U1 = qp + wp = qp − p(V2 − V1), (288)

so that
(U2 + pV2) − (U1 + pV1) = qp (289)

This equation suggests that it might be useful to define a new state function
H:

H = U + pV (290)

H is called the enthalpy. It is clearly a state function since U, p, and V are
all state functions. Now we have

H2 − H1 = ∆H = qp (291)

The change in enthalpy of a system that undergoes a process at constant
pressure is just the heat that enters the system during the process. H, like
U and V, is extensive.

12.4 Heat capacities

How does the system temperature change for a given amount of heating?
If an amount of heat q enters the system, the temperature changes and we
define the heat capacity C from

dq = C dT (292)

or

C =
dq
dT

(293)

Since other things may happen to the system as it is heated (for instance,
it might expand, or its pressure might rise, or it might undergo some chem-
ical reaction), we can expect different temperature changes under different
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conditions. It is conventional to define two kinds of heat capacities, CV for
the heat capacity when the volume is held constant, and Cp for the heat
capacity at constant pressure. Then we have

CV =
dqV

dT
=
(

∂U
∂T

)
V

(294)

Cp =
dqp

dT
=
(

∂H
∂T

)
p

(295)

Cp ≥ CV for a given system because some of the heat entering a sys-
tem at constant pressure can leave in the form of work done on the sur-
roundings. At constant volume it is not possible to do expansion work on
the surroundings, so all the heat that enters serves to increase the system’s
temperature.

Heat capacity is extensive; if you double the amount of material in your
system, you will have to add twice as much heat to get its temperature to
change by the same amount. It also applies to entire systems; the system,
for example, might be an entire combustion calorimeter, including the sam-
ple, the oxygen gas, the steel bomb enclosing the sample and gas, the water
surrounding the bomb, and the thermometer.

It is traditional to define intensive heat capacities for pure substances in
two ways. One, the specific heat (or, more recently, specific heat capacity),
is the amount of heat required to raise 1 g or 1 kg of a specified substance
by 1 K (typically at constant pressure). The other is the molar heat capacity,
CV,m or Cp,m, which is the heat capacity per mole of substance.

12.4.1 Heat capacities for ideal gases

Let us find the relation between CV and Cp for an ideal gas. Begin with

Differentiating with respect to T at constant p gives

(
∂H
∂T

)
p

=
(

∂U
∂T

)
p
+ p

(
∂V
∂T

)
p

(296)

and from the ideal gas law we can evaluate the last term to give

(
∂H
∂T

)
p

=
(

∂U
∂T

)
p
+ p

nR
p

(297)
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For an ideal gas, U and H are both functions of T alone; neither depends
on V or p (since the product pV is constant). Therefore for an ideal gas

CV =
(

∂U
∂T

)
V

=
(

∂U
∂T

)
p

=
dU
dT

(298)

We therefore have (
∂H
∂T

)
p

= CV + p
nR
p

(299)

Cp = CV + nR (300)

Thermodynamics does not give us theoretical tools to predict heat ca-
pacities; they are quantities that must be measured for each substance. Heat
capacities for most substances change with temperature; an exception is
that for a monatomic ideal gas, for which we calculated from the kinetic
theory of gases that U = 3

2 nRT. We therefore have for a monatomic ideal
gas that

CV =
(

∂U
∂T

)
V

=
3
2

nR. (301)

The heat capacity at constant pressure is therefore

Cp = CV + nR =
5
2

nR. (302)

The heat capacity ratio Cp/CV is traditionally called γ; it plays an important
role in the study of gas dynamics. For a monatomic gas the heat capacity
ratio is

γ =
Cp

CV
=

5
2 nR
3
2 nR

=
5
3

. (303)

This value is observable experimentally and is accurately 1.667 for noble
gases at low densities.
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12.4.2 Reversible adiabatic expansion of an ideal gas

We now have the tools to analyze a reversible adiabatic expansion of a gas.
We did the reversible isothermal expansion before; the adiabatic expansion
is a little harder because the temperature of the gas changes as the expan-
sion goes on.

Adiabatic means no heat flows: q = 0, so ∆U = w. We can find two
different expressions for dw:

dw = −p dV = −nRT
V

dv (304)

dw = dU = CVdT (305)

Equating those two and dividing by T separates the variables:

CV
dT
T

= −nR
dV
V

(306)

Integrate both sides:

∫ T2

T1

CV
dT
T

= −nR
∫ V2

V1

dV
V

(307)

If we assume that CV is independent of temperature (true for a monatomic
ideal gas, an excellent approximation for many diatomic gases at ordinary
temperatures), we can integrate both sides to get

CV ln
(

T2

T1

)
= −nR ln

(
V2

V1

)
. (308)

Now we know how the temperature will change during the expansion.
Notice that for an adiabatic expansion (V2 > V1), the gas cools. Given the
initial temperature and volume, and the final volume, you can now find the
final temperature; since CV is constant you then have simply ∆U = CV∆T,
and since q = 0 the work done by the gas is just −∆U.

Application: supersonic expansions A common laboratory technique in
spectroscopy and collision experiments is to use a reversible, adiabatic ex-
pansion from high to low pressure to cool a gas. Let me show an example
calculation.
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We know for an ideal gas that Cp = CV + nR. We can therefore substi-
tute for nR in Eq. (308) to get

CV ln
(

T2

T1

)
= −(Cp − CV) ln

(
V2

V1

)
(309)

and writing Cp/CV = γ gives

ln
(

T2

T1

)
= (1 − γ) ln

(
V2

V1

)
(310)

It is more convenient in the laboratory to think about the ratio of initial and
final pressures in the expansion than the ratio of volumes. For ideal gases,

V2

V1
=

T2

p2

p1

T1
(311)

and substituting for the ratio of volumes gives

ln
(

T2

T1

)
= (1 − γ) ln

(
T2p1

T1p2

)
. (312)

Using a ln b = ln(ba) and exponentiating both sides gives

T2

T1
=
(

T2p1

T1p2

)1−γ

=
(

T1p2

T2p1

)γ−1

, (313)

and we can gather terms to get

(
T2

T1

)γ

=
(

p2

p1

)γ−1

(314)

(
T2

T1

)
=
(

p2

p1

) γ−1
γ

. (315)

In a typical application in the laboratory, a monatomic gas (most often
helium or argon: γ = 5/3) expands from a pressure of about 2 bar and a
temperature of 300 K to a pressure of 10−2 mbar. We then have

T2

T1
=

(
10−2

2000

) 2/3
5/3

= (5 × 10−6)2/5 = 0.0076, (316)
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so that the final temperature is 2.3 K! This experiment can be carried out in
an apparatus that uses a medium-size diffusion pump (20 cm throat) and
a vacuum chamber perhaps a foot in diameter. One of the most impor-
tant applications is in spectroscopy of medium-sized molecules; at room
temperature their spectra are hopelessly complicated, but at 2 K only a few
rotational levels are populated and it is much easier to figure out what is
going on.

12.5 Standard enthalpy changes

12.5.1 Hess’s law and enthalpies of formation

Well before the First Law was known, Hess formulated the Law of Constant
Heat Summation: ∆U or ∆H for any chemical reaction is is independent of
the path, and in particular, independent of any intermediate reactions that
may occur. (Hess made a real discovery: the heat evolved in most processes
was not independent of path, but for chemical reactions carried out at con-
stant pressure, it was!) This means that if you can find any set of reactions
which can combine (on paper, even if not in the lab) to transform your re-
actants to your products, and the ∆H has been measured under some con-
ditions for each, you can figure out ∆H for the reaction you are interested
in. The use of Hess’s Law is usually covered in general chemistry.

Because of Hess’s Law, it is useful to tabulate “standard enthalpies” for
specific reactions of many substances; if the reactions are chosen carefully, it
will then be possible to calculate enthalpy changes for many other reactions
involving those substances. The most widely tablulated standard enthalpy
is the standard enthalpy of formation, which gives the enthalpy change for
the reaction that forms one mole of the substance in question from the con-
stituent elements in their “standard states” (that is, the most stable pure
form at the temperature in question.) The enthalpy of formation of any
pure element in its standard state at a specified temperature is defined to
be zero.

To make such reaction enthalpies truly standard, it is necessary to spec-
ify both the pressure and the temperature under which the reaction occurs.
The temperature is generally specified explicitly; most enthalpies of forma-
tion are given at 298.15 K, but values are sometimes availble at other tem-
peratures. For many years the standard pressure was 1 atm, but recently
the standard has been changing to 1 bar.

So, for example, the standard enthalpy of formation of cyclopropane at
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298.15 K is the heat absorbed by the chemical system when the reaction

3C(s) + 3H2(g) −−→ C3H6(g) (317)

is carried out at 1 bar pressure and 298.15 K. The symbol for this quan-
tity is ∆fH

−◦
298.15. The ∆ indicates a change in a state function. (It is impor-

tant, when looking at tables of thermodynamic functions, to always keep
in mind what kind of change the tables refer to!) The subscript f indicates
what kind of change: in this case, it is a formation reaction. H, of course,
tells you what quantity is being monitored during the change: the enthalpy.
The superscript −◦ indicates “standard state”, which is some agreed-upon
set of conditions which taken together with the temperature is sufficient to
fix the state of the system. For systems whose chemical composition is oth-
erwise specified (as here: we are considering one mole of cyclopropene be-
ing formed from its elements), the only condition implied by the standard-
state symbol is the standard pressure. Finally, the temperature is listed as a
subscript. The older practice (now discouraged) was to attach the subscript
f to the H rather than to the ∆.

Example Let us evaluate the enthalpy change in the isomerization of cy-
clopropane to propene at 298 K and 1 bar pressure. We can construct the
reaction from two formation reactions, as follows:

C3H6(g)(cyclopropane) −−→ 3C(s) + 3H2(g) (318)

3C(s) + 3H2(g) −−→ C3H6(g)(propene) (319)
C3H6(g)(cyclopropane) −−→ C3H6(g)(propene) (320)

Eq. (319) is the formation reaction for propene; the corresponding en-
thalpy change is the enthalpy of formation (also called heat of formation)
of propene, 20.41 kJ/mol. Eq. (318) is the reverse of the formation reaction
of cyclopropene; the enthalpy of formation of cyclopropene is 53.3 kJ/mol,
so the enthalpy change in Eq. (318) is −53.3 kJ/mol. The overall enthalpy
change is the sum of those two, or −32.9 kJ/mol. The negative sign indi-
cates that heat is released when cyclopropane isomerizes to propene under
those conditions; the reaction is exothermic.

12.5.2 Reactions at nonstandard temperatures

What happens if you want the enthalpy change for a reaction at some tem-
perature other than 298.15 K? You must think of your reaction as occuring
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in a series of steps, calculate the enthalpy change for each, then sum them
up to get the overall enthalpy change. For example, if we wanted to know
the enthalpy change for the isomerization of cyclopropane to propene at
350 K and 1 bar pressure, the following series of steps would be useful:

1. Cool cyclopropane from 350 K to 298.15 K under constant pressure of
1 bar. The enthalpy change for this process is

∆H =
∫ 298.15

350
Cc

p dT (321)

where Cc
p is the constant-pressure heat capacity of cyclopropane.

2. Convert cyclopropane to propene at 298.15 K at 1 bar; the enthalpy
change for that process we already worked out to be ∆rH

−◦ = −32.9
kJ/mol.

3. Heat propene from 298.15 to 350 K. The enthalpy change for that
process is

∆H =
∫ 350

298.15
Cp

p dT (322)

where in this case Cp
p is the heat capacity of propene.

To carry out this program we need to know the two heat capacities as
functions of temperature. The NIST WebBook gives the data shown in Ta-
ble 4; it is plotted in Figure 22.

When I look at the heat capacity data on a plot, it seems like a linear
fit will be perfectly reasonable; such a fit is shown, for both compounds.
With slopes and intercepts from those fits it is possible to carry out the
integrations corresponding to the heating and cooling stages. Note that it
is really the difference between the two heat capacities we need:

∆H =
∫ 298.15

350
Cc

p dT + ∆rH
−◦
298.15 +

∫ 350

298.15
Cp

p dT (323)

= ∆rH
−◦
298.15 +

∫ 350

298.15
Cp

p − Cc
p dT (324)

= ∆rH
−◦
298.15 +

∫ 350

298.15
∆Cp dT (325)
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Table 4 Heat capacity data for cyclopropane and propene, from the NIST
Chemistry WebBook (webbook.nist.gov/chemistry).

T/K Cp (propene )/ J/mol T/K Cp (cyclopropane)/ J/mol
298.15 63.79 298.15 55.6
299.33 64.73 300.48 56.48
300. 64.71 313.9 59.29
320. 67.89 316.7 59.27

323.15 67.88 325.1 60.90
333.86 70.04 332.8 62.17
340. 71.03 333.70 63.18

348.15 71.78 338.9 64.27
360. 74.13 339.6 63.26

368.46 70.17

280 300 320 340 360 380
T/K

55

60

65

70

75

C
p/

kJ
/m

ol

cyclopropane
propene

Figure 22: Heat capacity data from Table 4. Lines are fitted through both
sets; for cyclopropane, the slope is 0.200 J/mol K and the intercept is −4.16
J/mol, while for propene the slope is 0.158 J/mol K and the intercept is
17.19 J/mol.
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Writing Cc
p = a + bT, Cp

p = c + dT, I have ∆Cp = (c − a) + (d − b)T, so
that

∆H = ∆rH
−◦
298.15 +

∫ 350

298.15
∆Cp dT (326)

= ∆rH
−◦
298.15 +

∫ 350

298.15
(c − a) + (d − b)T dT (327)

= ∆rH
−◦
298.15 +

[
(c − a)T + (d − b)T2

]350

298.15
(328)

= ∆rH
−◦
298.15 +

[
(17.19 − (−4.16))T + (.158 − .200)T2

]350

298.15
(329)

= −32.9 kJ/mol − 304 J/mol (330)

= −33.2 kJ/mol (331)

You should be able to see how to take into account other kinds of pro-
cesses that relate your reaction conditions of interest to the standard condi-
tions. If you want to carry out the reaction at some pressure other than one
bar, you can evaluate the enthalpy changes for an isothermal, reversible
compression or expansion before and after the reaction. If there is a phase
change in reactants or products at a temperature intermediate between
your reaction temperature and the known reaction enthalpy, you must in-
clude the enthalpy for that phase change (using ∆fusH or ∆vapH) in your
thermodynamic path. The whole game is to be able to identify some path
that will get you from your reactants at the desired conditions to products
at the desired conditions, and for which you are able to evaluate the en-
thalpy changes for each step. Because H is a state function, it does not
matter whether the path you choose is related to the actual experimental
path at all.

12.6 Other kinds of standard enthalpy changes

Many processes other than “formation from elements” also have standard
enthalpy changes that can be looked up. You have already met the stan-
dard enthalpy changes for phase changes, ∆fusH and ∆vapH; for sublima-
tion there is also a ∆subH. In all cases, these values give the amount of heat
absorbed by one mole of the substance while it undergoing a phase change
at constant temperature and pressure (typically, though by no means al-
ways, the transition temperature at 1 bar pressure).

One of the most important standard enthalpy changes is that for com-
bustion, not for any theoretical reason but because enthalpies of combus-
tion ∆subH−◦ are relatively easy to measure for many substances. In fact,
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it is nearly impossible to carry out many “formation” reactions cleanly.
Therefore, most enthalpies of formation that appear in tables have in fact
been determined by measuring the heats of combustion of the reactants
and products and using Hess’s Law to calculate the heats of formation.
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13 Mathematical interlude

13.1 Properties of partial derivatives

For many kinds of thermodynamic calculations, it is useful to be able to
manipulate partial derivatives easily. In this section I will give, without
proof, several formulas that can be used in such manipulations. Most of
these are listed in the section called Further Information I near the back of
Atkins.

13.1.1 Chain rule

The chain rule works for partial derivatives just as with ordinary deriva-
tives, so long as the same variable is held constant for all the terms:(

∂ f
∂z

)
x

=
(

∂ f
∂y

)
x

(
∂y
∂z

)
x

(332)

For example, (
∂p
∂V

)
T

=
(

∂p
∂Vm

)
T

(
∂Vm

∂V

)
T

=
1
n

(
∂p

∂Vm

)
T

. (333)

13.1.2 Inversion rule

Just as for regular derivatives, you can switch the “differentiator” and the
“differentiatee” if you invert the derivative (this is the great insight of the
Leibniz notation for derivatives:)(

∂y
∂x

)
z

=
1(

∂x
∂y

)
z

(334)

This property is often very handy when you work with real gases. The van
der Waals equation is difficult to write in the form Vm = f (p, T), but you
sometimes need derivatives of Vm with respect to the other variables. Let
us calculate the isothermal compressibility of a van der Waals gas:

κT = − 1
V

(
∂V
∂p

)
T

(335)

= − 1
V

1(
∂p
∂V

)
T

(336)
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The van der Waals equation is most conveniently written in terms of Vm, so
apply the chain rule:

= − 1
V

1(
∂p

∂Vm

)
T

(
∂Vm
∂V

)
T

(337)

= − 1
V

1(
∂p

∂Vm

)
T

1
n

(338)

= − 1
Vm

1(
∂p

∂Vm

)
T

(339)

The remaining partial derivative can be evaluated easily from the van der
Waals equation; evaluating it and rearranging gives

κT =
V2

m(Vm − b)2

RTV3
m − 2a(Vm − b)2 (340)

13.1.3 Shifting the constant quantity

If you need to change which of several variables is held constant during a
partial differentiation, you must add a correction term:(

∂ f
∂x

)
z

=
(

∂ f
∂x

)
y
+
(

∂ f
∂y

)
x

(
∂y
∂x

)
z

(341)

13.1.4 Permutation rule

This rule is a version of the chain rule that lets the constant quantities shift.
Note the “permutation” that occurs among the numerator, denominator,
and subscript, and also note the (surprising, at first) minus sign.(

∂x
∂y

)
z

= −
(

∂x
∂z

)
y

(
∂z
∂y

)
x

(342)

Real gases have nonzero Joule-Thompson coefficients, µ:

µ =
(

∂T
∂p

)
H

. (343)

A quantity that is easier to measure than µ is the isothermal Joule-Thompson
coefficient,

µT =
(

∂H
∂p

)
T

. (344)
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We can find a relation between these two with the permutation rule.

µ =
(

∂T
∂p

)
H

(345)

= −
(

∂T
∂H

)
p

(
∂H
∂p

)
T

(346)

= −

(
∂H
∂p

)
T(

∂H
∂T

)
p

(347)

= −µT

Cp
(348)

13.2 Exact and inexact differentials

The existence of equations of state means that it is only necessary to specify
two of the three variables p, V, T for a system containing a single substance.
Therefore, thermodynamic functions for one-component systems can be re-
garded as functions of only two variables (rather than three), and which
two to choose is purely a matter of convenience. Usually U is thought of as
a function of T and V and H as a function of T and p; some formulas take
on somewhat simpler forms if those choices are made, but there is nothing
magic about them.

If we want to know a change in U during some process, we can write
the total differential of U as

dU =
(

∂U
∂T

)
V

dT +
(

∂U
∂V

)
T

dV (349)

All sorts of quantities in thermodynamics have total differentials that can
be written in that way. Carrying out integrations of such quantities, to find
overall changes during some process, usually requires knowing how T and
V change while the process is going on (in the language of multivariable
calculus, you must be able to carry out a “line integral” in the T, V plane.)
For some special differentials, called exact differentials, it does not matter
what path in the T, V space is used; the integral is the same in any case.
These are the differentials of state functions. How can we tell whether a
particular differential is exact or not?

There’s a rule, called the Euler criterion, for deciding whether a partic-
ular differential is exact. If you have a differential

dz = f (x, y)dx + g(x, y)dy, (350)
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then the differential dz is exact if and only if(
∂ f (x, y)

∂y

)
x

=
(

∂g(x, y)
∂x

)
y

. (351)

Here’s a trivial example. Consider the internal energy change during
an expansion of an ideal gas. We can rewrite Eq. (349) as

dU = CVdT +
(

∂U
∂V

)
T

dV (352)

For an ideal gas,
(

∂U
∂V

)
T

= 0, so

dU = CVdT + 0 dV (353)

In terms of the form needed for the Euler criterion, we have x = T, y = V,
f (x, y) = CV , and g(x, y) = 0. Then the Euler criterion says that dU is exact
if and only if (

∂CV

∂V

)
T

=
(

∂0
∂T

)
V

(354)

On the left, we have(
∂CV

∂V

)
T

=
(

∂

∂V

(
∂U
∂T

)
V

)
T

(355)

The order of partial differentiation does not matter, so

(
∂CV

∂V

)
T

=
(

∂

∂T

(
∂U
∂V

)
T

)
V

(356)

But we know that
(

∂U
∂V

)
T

= 0 for an ideal gas. Since both sides are equal to

0, we find that dU is an exact differential (which we knew all along.)

14 Prelude to the Second Law: the quantities dq and
dq/T

Let us consider the differential dq for a reversible process in an ideal gas.
We have

dq = dU − dw = CV dT − p dV (357)
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For this to be exact, we would have to have(
∂p
∂T

)
V

=
(

∂CV

∂V

)
T

. (358)

For an ideal gas,
(

∂p
∂T

)
V

= nR
V . As above, for an ideal gas, the right hand

side is equal to 0. Therefore dq is not an exact differential, because nR
V �= 0.

If we consider, still for the reversible process, dq
T , we find

dq
T

=
CV

T
dT − p

T
dV (359)

and the Euler criterion is(
∂(CV/T)

∂V

)
T

=
(

∂(p/T)
∂T

)
V

(360)

1
T

(
∂CV

∂V

)
T

=
(

∂(nR/V)
∂T

)
V

(361)

0 = 0 (362)

so that dq/T is exact. We have shown this only for reversible processes in
ideal gases, but it holds true in general: dq/T is the differential of a state
function, called the entropy, for all processes in all substances. The Second
Law of thermodynamics, which states what processes can happen without
the expenditure of work from the surroundings, is most simply stated in
terms of the entropy.

GCM July 19, 2002 notes-14



15. The Second Law 94

15 The Second Law

15.1 Statements of the Second Law

We now come to one of the most interesting topics in all of science. Like all
scientific “laws”, the Second Law of thermodynamics is an abstraction from
experience: it is a succinct statement of a large collection of experimental
observations. It is not something that can be “proven”, but is a rule that
Nature has appeared to follow any time anyone has looked carefully.

In this section I want to state the second law and show tht it implies
the existence of a state function that does not change along any reversible
adiabatic path. We will name this state function “entropy”; it underlies
every discussion of chemical equilibrium. My development in this section
follows that given in Physical Chemistry by Berry, Rice, and Ross (Wiley,
1980).

Many different but equivalent statements of the Second Law have been
given. Let me list a few:

1. (Clausius) It is impossible to devise a continuously cycling engine
that produces no effect other than the transfer of heat from a colder
to a hotter body.

2. (Kelvin) It is impossible to devise a continuously cycling engine that
produces no effect other than the extraction of heat from a reservoir
at one temperature and the performance of an equivalent amount of
work.

3. (Caratheodory) In the neighborhood of every equilibrium state of a
closed system there are states that cannot be reached from the first
state along any adiabatic path.

Notice the importance given to cyclic processes: those that return the
system to its original state. This emphasis arose historically from the study
of mechanical engines. An engine is useless unless it is cyclic; if the pistons
can only move up and down once in the cylinders before the engine must
be thrown away, it isn’t much good. A useful engine gets energy from
somewhere, converts some of it (but not all of it, as we shall see), to work,
the remainder to heat, and returns to its original state to start again. The
motivation for the work that led up to the Second Law was to find out
what controlled how much of the available energy could be converted to
work.
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It is easy to come up with processes that move heat from a colder to a
hotter body. For example, we can put some gas in a cylinder and let it come
to thermal equilibrium with an object at temperature T1. If we then pull the
piston out, so that the gas expands isothermally, as we have seen it will
extract heat from the object. Now, we remove the cylinder from the object,
isolate it thermally, and compress the gas. Since the cylinder is isolated,
the compression is adiabatic, and the gas temperature will rise; by doing
enough work on the gas, we can make its temperature rise to temperature
T3. Now we bring the gas into thermal contact with another object whose
temperature is T2, such that T3 > T2 > T1. Heat will flow from the gas
into the second body. We have now moved heat from the first object to the
second, even though the second was at a higher temperature. However, the
gas in the cylinder is no longer in the same state it was before; its volume
is smaller, and its temperature higher, than at the beginning. This process
does not violate the Second Law.

15.2 Existence of the entropy

Figure 23: A cycle in the T, V plane. Section 1 → 2 is a reversible adiabat;
section 2 → 3 is a reversible isotherm.

Figure 23 shows the T, V diagram for a one-component, closed system.
The path from point 1 to point 2 is a reversible, adiabatic path. The path
from point 2 to point 3 is a reversible, isothermal path. I now ask the ques-
tion: can we find any reversible, adiabatic path from point 3 back to point
1?

Let me assume we can. We know, because the system returns to point
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1, that ∆U = 0 for the whole cycle. Therefore, w = −q for the whole cycle.
The path 1 → 2 is a reversible adiabat; adiabatic means q1→2 = 0. The

path 2 → 3 is a reversible isothermal expansion; such an expansion requires
q2→3 > 0. Finally, the path 3 → 1 is a reversible adiabat with q3→1 = 0.
Therefore, overall, q > 0, and since q = −w, we have w < 0. This cycle
therefore converts heat drawn from a reservoir at temperature T2 (the tem-
perature of points 2 and 3, and the temperature of the only section of the
cycle where any heat is transferred) into an equivalent amount of work.
It therefore violates Kelvin’s statement of the Second Law. There is no re-
versible adiabat connecting points 2 and 3.

This argument holds for any substance and any isothermal path 2 → 3,
so we find that through point 1 there is only one reversible adiabatic path. In
other words, reversible adiabats cannot cross on a T, V diagram.

Because the reversible adiabats cannot cross, we can describe any re-
versible adiabatic curve with a function T(V), or equivalently, f (T, V) =
constant. Let me name such a function S(T, V); I will call it the entropy,
and it will be constant along any reversible adiabatic curve. Therefore
dS(T, V) = 0 along any reversible adiabat through (T, V).

I have not given any detailed formula for S(T, V) yet; I still need to
find a formula. But the existence of such a function is guaranteed by the
uniqueness of the reversible adiabats.

To proceed further, I consider what happens when we “step off” one of
the reversible adiabats; that is, I consider the change in S brought about by
a reversible heat flow. I must have

dS(T, V) = Θ(T, V) dqrev (363)

where Θ(T, V) is some as-yet-unknown function of T and V. For reversible
adiabatic processes, dqrev = 0 and this expression reduces to dS(T, V) = 0
as it must.

dqrev depends on the path of the reversible heat transfer; on the other
hand, because the reversible adiabats are unique, S(T, V) must be a state
function so dS(T, V) must be an exact differential. The function Θ(T, V)
therefore plays a special role; in differential equations it is called an inte-
grating factor.

Consider two samples of material contained in an adiabatic can, both
at temperature T but with different volumes V1 and V2. If a small amount
of heat dqrev is transferred reversibly between them, then dq1 = −dq2. Be-
cause there is no heat flow from the overall surroundings, the entropy of
the overall system does not change, and dS = dS1 + dS2 = 0. Then from
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Eq. (363) we have

[Θ1(T, V1) − Θ2(T, V2)]dq1 = 0. (364)

Since this is true no matter what V1 and V2 are, and dq1 �= 0, we conclude
that

Θ1(T, V1) = Θ2(T, V2) = Θ(T), (365)

that is, the function Θ(T, V) does not depend on the volume but only on
the temperature, and can be written simply Θ(T). Furthermore, none of
the arguments we have made so far have dependended on the properties
of any substance; Θ(T) must be universal, that is, the same function Θ(T)
must apply to all substances. If we can figure out what it is for any sub-
stance, we will have the formula for every substance. Let’s use the easiest
substance to work with, the ideal gas.

For the ideal gas we have

pV = nRT (366)(
∂U
∂V

)
T

= 0. (367)

The First Law gives us for a reversible change

dU = dq + dw = dq − pdV (368)

but for the ideal gas we have

dU =
(

∂U
∂T

)
V

dT +
(

∂U
∂V

)
T

dV (369)

= CV dT (370)

(because
(

∂U
∂V

)
T

= 0 for an ideal gas.) Then

dq = CV dT +
nRT

V
dV (371)

Substituting into Eq. (363) I find

dS = Θ(T)dq = Θ(T)CV(T) dT + Θ(T)
nRT
V

dV (372)
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We know from the uniqueness of reversible adiabats that S(T, V) is a state
function, so dS must be an exact differential. The Euler criterion then tells
us [

∂

∂V
(Θ(T)CV(T))

]
T

=
[

∂

∂T

(
Θ(T)nRT

V

)]
V

(373)

For the ideal gas,[
∂

∂V
(Θ(T)CV(T))

]
T

= Θ(T)
(

∂CV

∂V

)
T

= 0 (374)

because CV is a function of temperature but not volume for an ideal gas.
Therefore, [

∂

∂T

(
Θ(T)nRT

V

)]
V

=
nR
V

∂

∂T
[TΘ(T)]V = 0, (375)

and since nR
V �= 0 we conclude that

∂

∂T
[TΘ(T)]V = 0, (376)

or that TΘ(T) is a constant. Any old constant will do; for reasons of conve-
nience and consistency we choose to make TΘ(T) = 1, or Θ(T) = 1/T, so
that

dS =
dqrev

T
. (377)

For any change,

∆S =
∫ T2

T1

dqrev

T
. (378)

The formula for dS involves the heat transfer in a reversible process. If
the process you are interested in is not reversible (which is most processes),
then to calculate ∆S you must fine some reversible path that gets you from
the same initial to the same final state, evaluate ∆S for each leg of that
path, and add them all together. A simple example of such a calculation is
Exercise 4.11 in your homework, which asks you to calculate the entropy
change when two volumes of water at different temperatures are mixed
together.
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16 Examples of entropy calculations

16.1 Reversible isothermal expansion of ideal gas

In an isothermal change, T is constant, and for an ideal gas then U is also
constant so dqrev = −dw = pdV; then

dS =
dqrev

T
(379)

∆S =
∫

dqrev

T
=
∫

p
T

dV (380)

=
∫ V2

V1

nR
V

dV (381)

= nR ln
(

V2

V1

)
. (382)

Notice that the entropy change is positive for an isothermal expansion,
negative for a compression.

This procedure is typical of entropy calculations for reversible processes;
you must figure out an expression for dqrev, then integrate it over the pro-
cess.

16.2 Irreversible heat transfer

Say 100 g of water at 80 ◦C is mixed in a Dewar flask with 100 g of water
at 20 ◦C. You can show (and you do, in your homework, for a more com-
plicated case) that the final temperature will be 50 ◦C. What is the total
entropy change?

This mixing is irreversible; the two temperatures are not the same when
the samples come into contact, so an infinitesimal change in the tempera-
ture of one sample will not reverse the direction of the heat transfer. To find
the overall entropy change, we must find a reversible path between the two
states.

A simple reversible path is this:

1. Cool sample A reversibly from 80 to 50 ◦C.

2. Heat sample B reversibly from 20 to 50 ◦C.

3. Add the two samples together; no heat flows in this process, so ∆S =
0.
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We must calculate the entropy changes for the heating of sample A and
the cooling of sample B, and add them together.

For the heating process, we have

dS =
dqrev

T
= Cp

dT
T

(383)

∆SA =
∫ Tf

TA

Cp
dT
T

(384)

= Cp ln
( Tf

TA

)
(385)

Similarly, for sample B we find

∆SB = Cp ln
(Tf

TB

)
(386)

so the total entropy change in the sample is

∆S = Cp

[
ln
( Tf

TA

)
+ ln

(Tf

TB

)]
. (387)

Since the heating and cooling steps were carried out reversibly, the change
in entropy in the surroundings (which supplied the heat to warm sample
B, and received the heat from the cooling of sample A) were exactly oppo-
site those in the samples, so the overall change in entropy of the universe
for this reversible path is zero. That is another possible definition of “re-
versible”.

16.3 Entropy changes in the surroundings

If we can regard the surroundings of any thermodynamic process as exist-
ing at constant temperature and pressure, then

dHsurr = dqsurr, (388)

and since the enthalpy is a state function, changes in it are independent
of whether the heat transfer occurs reversibly or not; therefore, when the
surroundings are at constant T and P,

∆Ssurr =
∆Hsurr

T
. (389)
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Similarly, if the surroundings are at constant T and V, then

∆Ssurr =
∆Usurr

T
. (390)

So under those conditions it is easy to calculate entropy changes in the
surroundings. This idea is extremely powerful in considerations of chem-
ical equilibrium, and is the motivation for the introduction of the familiar
Gibbs and Helmholz energies.

16.4 Irreversible processes: the Clausius inequality

Consider again our water-mixing problem. We found that for the sample,

∆S = Cp

[
ln
( Tf

TA

)
+ ln

(Tf

TB

)]
, (391)

while along the reversible path the entropy changes in the surroundings
exactly cancelled those of the system so that the total entropy change was
zero. What about along the original, irreversible path? If we just dump
both samples into a Dewar flask together, then no heat flows into the sur-
roundings, so the entropy change in the surroundings is zero. The entropy
change in the system is the same as before (entropy is a state function.)
Examine the sign of the entropy change in the system:

∆S = Cp

[
ln
( Tf

TA

)
+ ln

(Tf

TB

)]
(392)

= Cp

[
ln
( Tf

TA

Tf

TB

)]
(393)

(394)

The entropy change in the system will be positive if the argument of the
logarithm is greater than 1. Examine that argument:

Tf

TA

Tf

TB
=

(
TA+TB

2

)2

TATB
(395)

=
T2

A + 2TATB + T2
B

4TATB
(396)

=
1
2

+
T2

A + T2
B

4TATB
(397)

=
1
2

+
1
4

(
TA

TB
+

TB

TA

)
(398)

GCM July 19, 2002 notes-16



16. Examples of entropy calculations 102

Under what conditions will that argument be greater than 1? We need

1
2

+
1
4

(
TA

TB
+

TB

TA

)
> 1 (399)

TA

TB
+

TB

TA
> 2 (400)(

TA

TB

)2

+ 1 > 2
TA

TB
(401)(

TA

TB
− 1
)2

> 0 (402)

which will be true for any TA �= TB. In other words, the entropy change of
this isolated system is greater than zero for the irreversible process. That
is true in general, not just for irreversible heat transfers, and is known as
the inequality of Clausius: for any spontaneous process in an isolated sys-
tem, ∆S > 0. That inequality will drive all the rest of our discussions of
equilibrium.
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17 Gibbs and Helmholtz energies

In any isolated system, for any spontaneous (that is, natural) process, ∆S >
0. It is useful to regard the entire universe—system plus surroundings—as
an isolated system. This outlook lets us, as Atkins puts it, “concentrate on
the system” while making reliable predictions about what processes will be
spontaneous.

If we divide the universe into system and surroundings, then we must
have, for any small spontaneous change,

dSsys + dSsurr > 0. (403)

If the system is at constant temperature and pressure, then the heat that
flows into the surroundings is −dqp = −dH, (where dH is the enthalpy
change in the system). The entropy change in the surroundings is

dSsurr = −dH
T

(404)

leading to

dSsys −
dH
T

> 0. (405)

If we multiply both sides by −T, (a negative quantity, so we must reverse
the inequality), we find

dH − TdS < 0. (406)

(I have dropped the “sys” subscript.) We have found a requirement on
changes in state functions of the system that specifies whether a process is
spontaneous or not on the basis of entropy changes in the universe, under
the assumption that the system (and universe) are at constant temperature
and pressure.

An analogous argument, for the case of a system at constant tempera-
ture and volume, is the same except that the heat flow into the surround-
ings is given by −dqV = −dU. Following the argument exactly as before
gives us the criterion for spontaneous processes at constant temperature
and volume

dU − TdS < 0. (407)

Those two inequalities, which are criteria for spontaneous change in
systems at constant temperature or constant volume, suggest the defini-
tions of two new state functions:

G = H − TS (408)

A = U − TS (409)
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These are called the Gibbs and Helmholtz energies (or “free energies”).
With them the spontaneity criteria become

dG < 0 (410)

dA < 0 (411)

Atkins has a good discussion at the bottom of page 114 that is worth
reading. Often you will hear a statement something like “There is a tradeoff
between changes in energy and entropy; systems want to be at low energy
and high entropy, and whichever one “wins” determines the direction of
spontaneous change.” That is a misleading statement. Spontaneous change
is determined entirely by changes in overall entropy of the universe. Under
conditions of constant temperature and pressure, the Gibbs function will
decrease if a system undergoes a change that increases the universe’s en-
tropy. That is why the Gibbs function is useful. Similarly, if the system is at
constant T and V, its Helmholtz function will decrease if the entropy of the
universe increases. Both are useful because they let you predict entropy
changes in the universe on the basis of more-easily-calculable changes in
the system itself.

17.1 Aside: reversibility and maxima

From the Clausius inequality we can draw some conclusions that will be
useful shortly. You know that for any change in the system, dS = dqrev

T , and
you know that dS + dSsurr ≥ 0 (where the equality holds only for reversible
processes). We already saw that entropy changes in the surroundings at
constant T do not depend on whether the process is carried out reversibly
or irreversibly, so dSsurr = −dq

T . Then we have

dqrev

T
+

−dq
T

≥ 0, (412)

whence

dqrev ≥ dq, (413)

or

dS ≥ dq
T

, (414)

where all variables without subscripts apply to the system. In fact, Eq. (414)
is sometimes called the Clausius inequality.
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Atkins uses Eq. (414) to show by straightforward arguments (pages
114–117) that ∆A for a process gives the maximum amount of work that
can be extracted from the process, and ∆G for a process gives the maxi-
mum amount of non-expansion work that can be extracted from the pro-
cess. Along the way, in those arguments, he shows that any system does
the maximum amount of work when it works reversibly. I shall not prove
those things, but shall go on with similar arguments to move toward de-
scriptions of equilibrium.

18 Alphabet soup: Maxwell relations and thermody-
namic equations of state

We now move into Chapter 5 of Atkins and begin finding formulas that we
can use to make predictions about chemistry.

The First Law gives
dU = dq + dw. (415)

Restrict the discussion for a moment to reversible processes doing only ex-
pansion (pV) work. Then dq = dqrev = T dS and dw = −p dV so we have

dU = T dS − p dV (416)

Because U is a state function, dU is independent of whether the change is
carried out reversibly or not. Therefore, this equation holds for any pro-
cess doing only pV work. Atkins (but nobody else I know of) calls it the
fundamental equation.

dU is an exact differential. We could have regarded U as a function of S
and V and written immediately

dU =
(

∂U
∂S

)
V

dS +
(

∂U
∂V

)
S

dV. (417)

Comparing Eq. (416) and Eq. (417) gives(
∂U
∂S

)
V

= T (418)(
∂U
∂V

)
S

= −p (419)

Also, because dU is an exact differential, the Euler criterion holds so that(
∂T
∂V

)
S

= −
(

∂p
∂S

)
T

(420)
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Eq. (420) is one of four Maxwell relations that provide routes between things
one is interested in (like, how the internal energy changes with volume)
and things one can measure (like heat capacities, changes of temperature
with pressure, and so on.) The other three are derived in exactly the same
way, by applying the Euler criterion to the differentials of H, G, and A. In
Table 5 I list the results; you should be able to derive any expression in the
later columns from the equation in the first.

Table 5 The Gibbs equations (first column), the resulting thermodynamic
identities (second and third), and the corresponding Maxwell relations (last
column).

dU = T dS − p dV
(

∂U
∂S

)
V

= T
(

∂U
∂V

)
S

= −p
(

∂T
∂V

)
S

= −
(

∂p
∂S

)
V

dH = T dS + V dp
(

∂H
∂S

)
p

= T
(

∂H
∂p

)
S

= V
(

∂T
∂p

)
S

=
(

∂V
∂S

)
p

dA = −S dT − p dV
(

∂A
∂T

)
V

= −S
(

∂A
∂V

)
T

= −p
(

∂S
∂V

)
T

=
(

∂p
∂T

)
V

dG = −S dT + V dp
(

∂G
∂T

)
p

= −S
(

∂G
∂p

)
T

= V
(

∂S
∂p

)
T

= −
(

∂V
∂T

)
p

18.1 Application: internal pressure of a van der Waals gas

That ferocious-looking table can be used to answer real questions. The first
I will show is one that a student has already asked me about: “How do we

know that
(

∂U
∂V

)
T

= a
V2

m
for a van der Waals gas?”

The trick is to change things you don’t know how to evaluate into things
you do by looking for substitutions. Here we go:

We don’t have
(

∂U
∂V

)
T

in our table anywhere. But we do have
(

∂U
∂V

)
S
.

Recall that we have a formula that lets you change the subscript on a partial
derivative, by adding a fixup term. Looking up that formula (several pages
back) gets us (

∂U
∂V

)
T

=
(

∂U
∂V

)
S

+
(

∂U
∂S

)
V

(
∂S
∂V

)
T

. (421)
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In our table, we find simple expressions for two of those things:(
∂U
∂V

)
S

= −p (422)(
∂U
∂S

)
V

= T (423)

giving

(
∂U
∂V

)
T

= −p + T
(

∂S
∂V

)
T

. (424)

The remaining partial derivative has an S in it, which does not appear in
our van der Waals equation of state, but there is a substitution for it in the
table, giving us (

∂U
∂V

)
T

= −p + T
(

∂p
∂T

)
V

. (425)

So far nothing we have done has made any approximations or assumed any
properties of a particular substance. Now we assume that the substance is
a van der Waals gas, and we can evaluate that last term directly from the
van der Waals equation. We have

p =
RT

Vm − b
− a

V2
m

(426)

so that (
∂p
∂T

)
V

=
R

Vm − b
(427)

Substituting that into Eq. (425) gives(
∂U
∂V

)
T

= −p +
RT

Vm − b
=

a

V2
m

(428)

after a simple substitution from the van der Waals equation.
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19 The chemical potential

Our development so far has been for pure substances of constant composi-
tion. To make thermodynamics useful in chemistry we need to extend it to
account for variable composition in a system, since chemically reacting sys-
tems are by definition changing in composition. We can therefore no longer
regard our state functions G, S, and so on a functions of two variables only,
but must add additional variables to account for composition changes. In
chemistry, the Gibbs energy is the most valuable energy function, so I will
concentrate on its dependence on composition.

We had, for systems of constant composition,

dG = −S dT + V dp (429)

That equation is a friendlier-looking version of

dG =
(

∂G
∂T

)
p

dT +
(

∂G
∂p

)
T

dp. (430)

To add variables, we just add terms. If we want to evaluate a small change
in G when the pressure, temperature, or number of moles of substance k
changes, we write

dG =
(

∂G
∂T

)
p,nk

dT +
(

∂G
∂p

)
T,nk

dp +
(

∂G
∂nk

)
T,p

dnk (431)

If we have many different components, with numbers of moles of each one
written as ni, i = 1, 2, 3 . . . k, then we write

dG =
(

∂G
∂T

)
p,ni

dT +
(

∂G
∂p

)
T,ni

dp +
(

∂G
∂n1

)
T,p,ni �=1

dn1

+
(

∂G
∂n2

)
T,p,ni �=2

dn2 + · · · +
(

∂G
∂nk

)
T,p,ni �=k

dnk (432)

which I can write as

dG =
(

∂G
∂T

)
p,ni

dT +
(

∂G
∂p

)
T,ni

dp +
k

∑
i=1

(
∂G
∂ni

)
T,p,nj �=i

dni (433)

We define the chemical potential of species i in a one-phase system (not
necessarily at constant composition: this holds for different chemical species
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in a solution, for example) as

µi ≡
(

∂G
∂ni

)
T,p,nj �=i

(434)

The chemical potential tells how the Gibbs energy of a system changes
when a substance is added to it.

Our Gibbs equation now returns to a friendlier-looking form:

dG = −S dT + V dp +
k

∑
i=1

µi dni (435)

According to Levine: “(Eq. (435)) is the key equation in chemical ther-
modynamics.” It applies to a closed system, internally at thermal and me-
chanical (but not chemical) equilibrium, where only pV work is considered.

If you go through all the thermodynamic energy functions U, H, A, and
G, you will find by simple substitutions that their Gibbs equations are all
extended to the variable-composition case by adding a term

+
k

∑
i=1

µi dni

to them. The same chemical potentials can be used for all four.

19.1 Chemical potential of a pure substance

If there is only one component, then we have

µ =
(

∂G
∂n

)
T,p

=
(

∂nGm

∂n

)
T,p

= Gm, (436)

that is, for a pure substance the chemical potential is simply the molar
Gibbs energy.

19.1.1 Variation of chemical potential with pressure of ideal gas

We have for a one-component system

dG = −S dT + V dp
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If we consider an isothermal change of pressure of an ideal gas, we find

∆G =
∫ p2

p1

V dp (437)

=
∫ p2

p1

nRT
p

dp (438)

= nRT ln
(

p2

p1

)
(439)

Now if we define one particular pressure (traditionally one atmosphere,
nowadays one bar) as the “standard pressure”, then we can say

G(p) = G−◦ + nRT ln
(

p
p−◦

)
(440)

Differentiating with respect to n, we find

µ(p) = µ−◦ + RT ln
(

p
p−◦

)
(441)

This tells us, for a pure perfect gas, how the chemical potential varies with
pressure.
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19.2 Multiple phases

In many problems more than one phase is present. For example, in the
preparation of a Grignard reagent the organohalogen compound is typi-
cally present in solution, in contact with solid Mg. In the melting of ice
both solid and liquid water are present, and so on. It is easy to extend
Eq. (435) to multiple phases; in addition to a sum over the different sub-
stances present, we also need a sum over the phases. Each substance has a
chemical potential for each phase (that is, the chemical potential of a given
substance might be different in different phases.) We write, for k substances
in m phases,

dG = −S dT + V dp +
m

∑
α=1

k

∑
i=1

µα
i dnα

i (442)

where the superscript α denotes the phase.

20 Conditions for material equilibrium

In Section 17 we saw that the criterion for spontaneous (that is, natural, or
possible) change at constant T and p is downhill in G, that is, dG < 0. At
equilibrium, then, when neither direction is downhill, we expect dG = 0;
at constant T and p, Eq. (442) then reads

m

∑
α=1

k

∑
i=1

µα
i dnα

i = 0. (443)

If we consider a system at constant T and V, then the equilibrium con-
dition is dA = 0; because the chemical potential terms are the same for dA
as for dG, the condition for equilibrium is still given by Eq. (443). In fact,
Eq. (443) is a general condition for material equilibrium; it is true for any
closed system in material equilibrium, not matter what the conditions are.
If the system is at constant T and p, Eq. (443) corresponds to dG = 0; if it is
at constant T and V, it corresponds to dA = 0; under other conditions it cor-
responds to neither, but it still is the requirement for material equilibrium
to be achieved.

In general, material will “flow” from a form with high chemical poten-
tial to one with low chemical potential. The “flow” may correspond to a
chemical reaction or to a phase change (evaporation, dissolving, etc.) At
equilibrium, there is no change in composition that is “downhill”; chang-
ing a tiny amount of A into a tiny amount of B generates no net decrease in
the overall chemical potential.
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20.1 Phase equilibrium

Consider the simplest sort of phase equilibrium, the partitioning of a single
pure substance between two phases (for instance, the evaporation of water
in a closed flask). Eq. (443) says that at equilibrium, the sum

µl dnl + µg dng = 0, (444)

where the subscript l indicates liquid and g indicates gas. Because the sys-
tem is closed, and only the two phases are present, we must have dnl =
−dng. Substituting for dnl and rearranging I find

(µg − µl) dng = 0 (445)

or, dividing by dng,
µg = µl. (446)

In other words, equilibrium is reached when the chemical potentials of the
water in the liquid and the gas are equal. That is the general case: in a
closed system, at material equilibrium every substance has the same chem-
ical potential in all the phases in which it appears.

20.2 Reaction equilibrium

When a chemical reaction occurs in a closed system, the change dnA in the
number of moles of A is proportional to its stoichiometric coefficient νA in
the balanced chemical equation (νA is positive if A is a product, negative if
it is a reactant). The proportionality constant, commonly called the “extent
of reaction”, is often written ξ. For instance, in the reaction

C3H6O3 + 3O2 −−→ 3CO2 + 3H2O (447)

if ξ = 0.1 mol then 0.1 mol of C3H6O3 and 0.3 mol of oxygen have been con-
sumed and 0.3 mol each of carbon dioxide and water have been produced.

In a closed system at equilibrium, we just saw that the chemical poten-
tial of any species is the same in any phase in which it appears. Therefore,
we can simplify our study of reaction equilibrium by assuming phase equi-
librium also holds. Then we have

0 =
m

∑
α=1

k

∑
i=1

µα
i dnα

i (448)

=
k

∑
i=1

m

∑
α=1

µα
i dnα

i (449)
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Since the chemical potential of substance i is the same in all phases α, I can
drop the superscript on µi and move it through the sum over phases:

0 =
k

∑
i=1

µi

m

∑
α=1

dnα
i (450)

=
k

∑
i=1

µi dni (451)

where the last line follows because the sum of the changes in the amount
of substance i in all phases is just the total change in the amount of that
substance.

Now we consider the change in numbers of moles of each substance
brought about by a small increase in the extent of reaction dξ. For each
substance we have dni = νi dξ. Then the equilibrium condition becomes

0 = dξ
k

∑
i=1

µiνi (452)

or, dividing by dξ,
k

∑
i=1

µiνi = 0. (453)

This is the general condition for chemical equilibrium in a closed system.
So far I have given several “rules of equilibrium”, which can be written

compactly in terms of chemical potentials. They are not useful, though,
unless we can find ways to calculate the chemical potentials or to convert
the rules into equations relating more easily measureable quantities. I want
next to examine chemical equilibria in ideal gas mixtures, giving a concrete
example of the power of the chemical potential idea.

21 Reaction equilibrium in ideal gases

We saw earlier that for a pure ideal gas at pressure p, the chemical potential
µ = µ−◦ + RT ln(p/p−◦ ), where µ−◦ is the chemical potential at pressure p−◦ .
For an ideal gas mixture, we regard each mixture component as indepen-
dent, so that the same equation holds, but with p interpreted as the partial
pressure of each gas. Then

µi(T) = µ−◦
i (T) + RT ln

(
pi

p−◦

)
(454)
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The equilibrium condition, Eq. (453), becomes

k

∑
i=1

νi

[
µ−◦

i (T) + RT ln
(

pi

p−◦

)]
= 0 (455)

Collecting the standard-state chemical potentials on the left, I have

k

∑
i=1

νiµ
−◦
i (T) = −RT

k

∑
i=1

νi ln
(

pi

p−◦

)
(456)

In an ideal gas mixture, where there are no interactions between the
different gas species, the individual gases act as though they were pure.
Therefore, the chemical potentials on the left side are the chemical poten-
tials of the pure gases, that is, they are the molar Gibbs energies of the
different gases. The sum on the left side is therefore the standard molar
Gibbs energy of the reaction:

k

∑
i=1

νiµ
−◦
i (T) =

k

∑
i=1

νiG
−◦
i,m(T) = ∆rG

−◦
T (457)

Now we have

∆rG
−◦
T = −RT

k

∑
i=1

νi ln
(

pi

p−◦

)
(458)

A multiplier in front of a logarithm becomes an exponent inside the loga-
rithm, and a sum of logs is the log of a product, so this is

∆rG
−◦
T = −RT ln

k

∏
i=1

(
pi

p−◦

)νi

(459)

This is a very familiar equation, though you might not recognize it yet!
Take, as an example, the ideal gas reaction

aA + bB −−→ cC + dD (460)

Now νa = −a, νc = c, and so on, and we have

∆rG
−◦
T = −RT ln

(
(pC/p−◦ )c(pD/p−◦ )d

(pA/p−◦ )a(pB/p−◦ )b

)
. (461)

You should recognize the standard pressure equilibrium constant,

K−◦
p =

(
(pC/p−◦ )c(pD/p−◦ )d

(pA/p−◦ )a(pB/p−◦ )b

)
, (462)
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where all the species pressures are equilibrium values. In the more general
notation,

K−◦
p =

k

∏
i=1

(
pi

p−◦

)νi

(463)

Our equilibrium condition is now

∆rG
−◦
T = −RT ln K−◦

p (T) (464)

and we have derived the existence of a standard equilibrium constant that
depends only on T.
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First, an Erratum: beginning with Eq. (456), I dropped a very important
minus sign that should be in front of every RT term from there to here.
Eq. (464) should read

∆rG
−◦
T = −RT ln K−◦

p (T)

21.1 Temperature dependence of ideal gas equilibrium

Eq. (464) is the fundamental connection between tabulated thermodynamic
data and the practical calculation of equilibrium constants for ideal gases.
In real gases and solutions we cook up “adjusted” variables—fugacities
and activities—to make the formulas look similar, but here in the clean,
comfortable world of ideal gases we need no such complex cuisine.

Solving Eq. (464) for ln K−◦
p (T) and differentiating both sides with re-

spect to T gives us

d ln K−◦
p (T)

dT
=

∆rG
−◦

RT2 − 1
RT

d(∆rG
−◦ )

dT
(465)

Since the overall reaction Gibbs energy is

∆rG
−◦ = ∑

i
νiG

−◦
m,i (466)

we have
d(∆rG

−◦ )
dT

=
d

dT ∑
i

νiG
−◦
m,i = ∑

i
νi

dG−◦
m,i

dT
(467)

Our thermodynamic relations table gives
(

∂G
∂T

)
p

= −S, and the −◦ sym-

bol restricts us to constant p so that the total derivatives with respect to T
are the same as partial derivatives; we therefore have

dG−◦
m,i

dT
= −S−◦

m,i (468)

and
d(∆rG

−◦ )
dT

= −∑
i

S−◦
m,i = ∆rS

−◦ (469)
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Substituting that result into Eq. (465) gives

d ln K−◦
p (T)

dT
=

∆rG
−◦

RT2 +
∆rS

−◦

RT
(470)

=
∆rG

−◦ + T∆rS
−◦

RT2 (471)

d ln K−◦
p (T)

dT
=

∆rH
−◦

RT2 (472)

which is the ideal gas version of the van’t Hoff equation. It is one of the most
important relations in practical thermodynamics; it describes the tempera-
ture dependence of equilibrium constants.

To experimentally evaluate ∆rH
−◦ of a reaction, you measure the par-

tial pressures of the reactants and products at several different tempera-
tures, from those calculate the equilibrium constants, and then fit them to
Eq. (472). The most common sort of fit is the old make-it-a-straight-line-
dammit variety; because

d(1/T)
dT

= − 1

T2 , (473)

Eq. (472) can equally well be written

d ln K−◦
p (T)

d(1/T)
= −∆rH

−◦

R
. (474)

So if you plot ln K−◦
p (T) against 1/T, the slope of the plot at any T gives

∆rH
−◦ at that T. If, as is usually the case over modest temperature ranges,

∆rH
−◦ is roughly constant with T, then the plot will give a straight line.
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21.2 Examples

I want to give several explicit examples of ideal gas equilibrium calcula-
tions. I will use the reaction

N2O4 −↽⇀− 2NO2 (475)

as my test case.

21.2.1 Evaluating thermodynamic quantities from tables

First of all, let’s find ∆rG
−◦
298 and K−◦

p,298 for the reaction. In Table 2.6 in the
back of Atkins, we find the values given in Table 6, all for 298 K:

Table 6 Thermodynamic values at 298 K for nitrogen dioxide and dinitro-
gen tetroxide, from the Appendix of Atkins.

∆fG
−◦ / kJ mol−1 ∆fH

−◦ / kJ mol−1 C−◦
p,m/ J mol−1 K−1

NO2 51.31 33.18 37.20
N2O4 97.89 9.16 77.28

We can calculate ∆rG
−◦
298 immediately:

∆rG
−◦
298 = 2∆fG

−◦ (NO2) − ∆fG
−◦ (N2O4) (476)

= 2(51.31 kJ mol−1) − 97.89 kJ mol−1 (477)

= 4.73 kJ mol−1 (478)

Now it is a short step to the equilibrium constant:

K−◦
p,298 = e−

∆rG−◦
298

RT (479)

= e−1.91 (480)

= 0.148 (481)

Now, what if we need the equilibrium constant at a different tempera-
ture, say 375 K? We have several options, and the best choice depends on
the available data, the temperature range, the molecules at hand, and the
required precision.
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Constant ∆H In the crudest approximation, we might assume that the en-
thalpy of reaction, ∆rH

−◦ , is constant over the temperature range of interest.
This is not a bad approximation if the temperature range is small. With this
approximation, the van’t Hoff equation can be integrated directly to get the
change in the equilibrium constant. The van’t Hoff equation is

d ln K−◦
p

dT
=

∆rH
−◦

RT2 (482)

If we assume ∆rH
−◦ is independent of T, then this equation can be inte-

grated to give

d ln K−◦
p =

∆rH
−◦

RT2 dT (483)

ln K−◦
p (T2) − ln K−◦

p (T1) =
∫ T2

T1

∆rH
−◦

RT2 dT (484)

=
∆rH

−◦

R

∫ T2

T1

dT

T2 (485)

= −∆rH
−◦

R

(
1
T2

− 1
T1

)
(486)

ln K−◦
p (T2) = ln K−◦

p (T1) −
∆rH

−◦

R

(
1
T2

− 1
T1

)
(487)

We already have ln K−◦
p (298) = −1.91; to find the equilibrium constant

at 375 K we need ∆rH
−◦ . From Table 6 we have

∆rH
−◦
298 = 2∆fH

−◦ (NO2) − ∆fH
−◦ (N2O4) (488)

= 2(33.18 kJ mol−1) − 9.16 kJ mol−1 (489)

= 57.20 kJ mol−1, (490)

giving us

ln K−◦
p (375 K) = −1.91 − 57.20 × 103 J mol−1

8.314 J K−1 mol−1

(
1

375 K
− 1

298 K

)
(491)

= −1.91 + 4.74 (492)

= 2.83 (493)

so that
K−◦

p (375 K) = e2.83 = 16.95. (494)
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Constant ∆Cp If the temperature range is wider, it may not be adequate
to assume that ∆rH

−◦ is constant over the whole range. At the next level of
approximation, we can assume instead that the heat capacities of the reac-
tants and products are constant. For example, for ordinary diatomic gases,
Cp,m = 7

2 R quite accurately from about 100 K to 2000 K. In our example
problem, this assumption is not so good because there are low-frequency
vibrations in N2O4 that are not all in v = 0 over our temperature range.
Nonetheless, let’s try it.

We want to calculate ∆rH
−◦ (T), so we follow the procedure outlined in

Section 12.5.2. We use

∆rH
−◦ (T2) =

∫ T1

T2

Creactants
p (T) dT + ∆rH

−◦ (T1) +
∫ T2

T1

Cproducts
p (T) dT (495)

= ∆rH
−◦ (T1) +

∫ T2

T1

(Cproducts
p (T) − Creactants

p (T)) dT (496)

= ∆rH
−◦ (T1) + ∆Cp

∫ T2

T1

dT (497)

= ∆rH
−◦ (T1) + ∆Cp(T2 − T1) (498)

Now I need to use this expression in the van’t Hoff equation to find the
equilibrium constant at 375 K. Letting T1 → 298 and T2 → T, I have

d ln K−◦
p =

∆rH
−◦

RT2 dT (499)

=
∆rH

−◦ (298) + ∆Cp(T − 298)

RT2 dT (500)

ln K−◦
p (375) − ln K−◦

p (298) =
∫ 375

298

∆rH
−◦ (298) + ∆Cp(T − 298)

RT2 dT (501)

= −∆rH
−◦ (298)
R

(
1

375
− 1

298

)
+

∆Cp

R

∫ 375

298

(T − 298)

T2 dT (502)

= −∆rH
−◦ (298)
R

(
1

375
− 1

298

)
+

∆Cp

R

[
ln T +

298
T

]375

298
(503)

= 4.74 +
∆Cp

R

[
ln
(

375
298

)
+ 298

(
1

375
− 1

298

)]
(504)

Table 6 gives us

∆Cp = 2(37.20) − 77.28 = −2.88 J K−1 mol−1, (505)
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where the “per mole” in the units refers to moles of N2O4. We therefore
have

ln K−◦
p (375) = −1.91 + 4.74 + 0.071 (506)

= 2.90, (507)

so that K−◦
p (375) = 18.2.

Integration with accurate Cp It is not always reasonable to assume that
the heat capacities are constant, especially over wide temperature ranges.
In that case, we still use Eq. (496), but must find expressions for the heat
capacities of products and reactants as functions of T. The NIST WebBook
gives the following equation (and a handy Java program for generating
plots or tables of data as a function of T) for the heat capacity of N2O4:

C−◦
p,m = A + Bt + Ct2 + Dt3 + E/t2, (508)

where t = T/1000 K. Two different sets of coefficients A–E are specified,
one for the temperature range 500–1000 K, and the other for the range 1000–
6000 K. Neither of them covers our range of interest. In a pinch, we could
try interpolating between the data in that table, beginning at 500 K, and the
Cp,m given in Atkins at 298 K. Instead let’s go on to calculating equilibrium
properties from the better of the two estimates we have.

21.2.2 Equilibrium calculations

Let us calculate the mole fractions of NO2 and N2O4 in an equilibrium mix-
ture at 375 K and (1) fixed total pressure, and (2) fixed volume, with an
initial pressure of N2O4 of 10 bar and no NO2 in both cases.

I will give quantities referring to N2O4 a subscript 2 and those refer-
ring to NO2 a subscript 1. In the fixed-total-pressure version (this is what
happens if you enclose the gases in a balloon), this two-gas system can be
solved very easily. We have p1 + p2 = ptot, so

K−◦
p =

(p1/p−◦ )2

p2/p−◦
(509)

=
(p1/p−◦ )2

(ptot − p1/p−◦
(510)

(511)
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That gives a quadratic equation for p1; solving it numerically (quicker, for
me, than using the quadratic formula) gives p1 = 7.17 bar. Since the total
pressure is 10 bar, I have x1 = 0.717 and x2 = 0.293.

In the constant volume case, let me show a more systematic approach.
Let z be the extent of reaction at equilibrium. Then we can set up an “ICE
table”, as in general chemistry:

n2 n1
initial api 0

change −z 2z
equilibrium api − z 2z

pe pi − z/a 2z/a
where a = V/RT and pi is the initial pressure of N2O4. Now we can

write an expression for K−◦
p in terms of z:

K−◦
p =

(2z/ap−◦ )2

(pi − z/a)/p−◦
(512)

K−◦
p p−◦ =

(2z/a)2

pi − z/a
(513)

(514)

At this point it is useful to define a new variable y = z/a. Then we have

K−◦
p p−◦ =

4y2

pi − y
(515)

We have values for everything in that equation except y; it’s a quadratic
equation in y. You can solve it with the quadratic formula, or numerically;
I would tend to do the latter. Setting up my calculator to evaluate

f (y) =
4y2

10 − y
− 18.2, (516)

I find that y = 5 gives a positive result and y = 4 gives a negative result,
so the root must lie between those two numbers. Searching in that range,
after a minute or so I have y = 4.84368 to five places. (In the next section
I’ll show you how to get all those decimal places very fast.)

With that result I can go back to find the mole fractions. We now know
that y = z/a = 4.84368. The equilibrium mole fraction of N2O4 is then

x2 =
api − z

api − z + 2z
=

api − ay
api + ay

=
pi − y
pi + y

= 0.347, (517)
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and since this is a 2-component system we have

x1 = 1 − x2 = 0.653. (518)

(Of course we could also calculate x1 explicitly, like we did for x2.)
This ICE table approach, writing a = V/RT to convert numbers of

moles to pressure, is the general method for constant-volume problems.
In constant-pressure problems, you go from the equilibrium numbers of
moles in the ICE table to equilibrium pressures by writing expressions for
the mole fractions in terms of z, then multiplying each mole fraction by ptot.
In both cases you end up with a single-variable equation to solve for z (or
y = z/a).

Finding roots of functions of a single variable When you have a quadratic
equation, as in the problem we just did, you can find the roots using the
quadratic formula you learned in high school. There will be two roots;
only one of them will lie in the range of z that is acceptable from a limiting-
reagent standpoint. That is, only one of the two will give positive numbers
of moles for all components at equilibrium.

For many problems, you end up with equations of higher degree; in
the homework, for example, you get a fourth-degree equation. There is a
“quartic formula”, like the quadratic formula, but it’s messy, and there’s no
formula for equations of fifth degree or higher. I find it fast and comfortable
to find roots of such equations numerically.

It helps if you can get a good estimate of z ahead of time. If the equi-
librium constant is small, for example, and you started with no products in
the mixture, then you expect the overall extent of reaction to be small and
you can use the approximation so popular in weak acid-base chemistry,
neglecting z whenever it is added to a larger number.

Lacking such an estimate, the first task is to bracket the root: find two
values of z within the acceptable range that produce function values of
opposite sign. In the example above, I used the function

f (y) =
4y2

10 − y
− 18.2,

and found that y = 4 gave a negative f (y) and y = 5 a positive one; I
therefore knew that the root lay somewhere between those two numbers.
Call them the lower and upper limits.

At this point, the most natural approach to choose is bisection. Try the
value of y halfway between the two limits (4.5 in this case). The function
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will come out either positive or negative. Replace whichever limit gave a
function value of that sign with the trial value. In my case, f (y) is negative
at 4.5, so my new limits are 4.5 < y < 5. You can keep going in that way,
halving the width of the interval with each iteration.

Bisection gets you successive significant figures linearly with effort: it
takes about three iterations to get each new significant figure. It is also
foolproof; once you have a bracket, with function values of opposite signs
on the two sides, there is no way bisection can fail.

If you want high precision, it is worth going to Newton’s method. Its
disadvantage is that if you do not have a good initial guess, it can fail alto-
gether; its advantage is that if you do have a good initial guess, it converges
extremely fast, the number of significant figures doubling at each iteration.
Within two or three iterations you are at the precision limit of your calcula-
tor.

Newton’s method works like this. If you have an equation f (x) = 0,
and you have a guess at the root x0, then you get a new-and-improved
guess by calculating

x1 = x0 −
f (x0)
f ′(x0)

, (519)

where f ′ is the derivative of f (x). In my example, if I have used bisection
to get to 4.8 < y < 4.9, I might use 4.85 as my initial guess. I rewrite f (y) as

4y2 + 18.2y − 182, (520)

so I calculate my next value as

y1 = y0 −
4y2 + 18.2y − 182

8y + 18.2
. (521)

Putting in 4.85 I get back 4.843684211; putting that value in as y0 gives
4.843681409 which is all the precision my calculator has. (Of course, it’s
also far more precision than my three-sig-fig equilibrium constant justifies!)

Trapezoidal rule integrations It is also valuable to be able to do numeri-
cal integrals in a simple way. If you have a table of values of y as a function
of x, and no handy way to get new values of y at x of your own choosing,
then it’s hard to do much better than the trapezoidal rule:∫ xn

x0

f (x) dx ≈
n

∑
i=1

1
2
( f (xi) + f (xi−1))(xi − xi−1) (522)
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Figure 24 shows how this works. I set it up in a spreadsheet on the so-
lution set to this week’s homework to evaluate the change in ∆rH

−◦ with
temperature, so you can see how it gets implemented in that case.

Figure 24: The trapezoidal rule for numerical integration. The x-axis gets
broken into segments (probably at the tabulated xi), and within each seg-
ment the area is treated as a trapezoid. The area of the trapezoid is the
width times the average of the heights at the two sides.
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22 Equilibrium in real gases and solutions

22.1 Definition of activity

For ideal gases we found that

µi = µ−◦
i (T) + RT ln

(
pi

p−◦

)
(523)

and from that
∆G−◦

T = ∑
i

νiµ
−◦
i (T) = −RT ln K−◦

p (524)

In dealing with reactions in condensed phases (especially solutions) and in
real gases, it is useful to try to continue writing chemical potentials in that
way. We define the (dimensionless) activity ai of substance i such that

µi = µ−◦
i (T) + RT ln ai, (525)

where µ−◦
i (T) is the chemical potential of substance i in some specified ref-

erence state (the “standard state”). The chemical potential of substance i
itself, µi, does not depend on the choice of standard state; but since µ−◦

i (T)
clearly does, the activity ai will as well.

With this definition of activity we will, by the same procedure as before,
find that there is an equilibrium constant with the form

K−◦ = ∏
i

aνi
i . (526)

22.2 Real gas activities: the fugacity

Eq. (525) applies to real gases as well as to solutions, but to preserve a con-
cept of “effective pressure” in real gases, we define the fugacity fi of a gas i
such that

µi = µ−◦
i (T) + RT ln

(
fi

p−◦

)
, (527)

that is, ai = fi/p−◦ . The fugacity has units of pressure, and to make explicit
the deviations from ideal gas behavior we write fi = φi pi where pi is the
true partial pressure of gas i and φi is the fugacity coefficient. Fugacity coef-
ficients approach 1 at low gas density, so that the equilibrium properties of
real gases become those of ideal gases at low density. The “standard state”
for real gases is therefore not a real state, but an imaginary state where the
gases are at pressures of 1 bar but behaving ideally.
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Fugacity coefficients for pure gases can be calculated from

ln φ(p) =
∫ p

0

(
Z(p′) − 1)

p′

)
dp′ (528)

where Z is the compression factor of the gas, Z = pVm
RT . For gas mixtures, a

first approximation (called the “Lewis-Randall rule”) is to set the fugacity
coefficients for all gases in the mixture to those of the pure gases. If the
intermolecular interactions between the different gases are very different,
though, that is not a good approximation. Methods for calculating fugac-
ity coefficients for mixtures are given in Reid, Prausnitz, and Poling, The
Properties of Gases and Liquids, 4th ed. (McGraw-Hill, 1987).

With fugacity coefficients in hand, we have

K−◦ = ∏
i

(
fi

p−◦

)νi

= ∏
i

(
φi pi

p−◦

)νi

, (529)

which can be factored to give

K−◦

∏i(φi)
νi

= ∏
i

(
pi

p−◦

)νi

. (530)

A sensible way to evaluate equilibrium pressures in reacting real gas
mixtures is as follows. You calculate K−◦ in the usual way from tabulated
values of ∆fG

−◦
T , and work out initial estimates of the equilibrium pressures

by assuming all the gases are ideal. With the approximate equilibrium pres-
sures thus obtained, you find fugacity coefficients of the mixture compo-
nents, then “correct” K−◦ by dividing by the appropriate quotient of fugac-
ity coefficients of the reacting gases. After that, the equilibrium pressures
in the reacting mixture can be found again. A couple of iterations of this
procedure is usually enough to converge it, since the gas behavior is not
usually terribly far from ideal.

22.3 Ideal and ideally dilute solutions

To define useful standard states for solution equilibrium calculations, we
need to construct a solution equivalent of the ideal gas law. In an ideal gas,
there are no intermolecular interactions. The intermolecular interactions in
liquid solutions are so important that it would be foolish to ignore them.
Instead, we imagine two kinds of solutions in which the intermolecular
interactions are simplified:
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1. In an ideal solution, the interactions between species A and B are the
same as those between A and A and those between B and B.

2. In an ideally dilute solution, there are so few B (solute) molecules that
only A–A and A–B interactions exist; no B–B interactions need be
considered.

A mixture of two similar liquids often makes a nearly-ideal solution; for
example, benzene and toluene, acetone and methyl ethyl ketone, or ethanol
and isopropanol. An ideally dilute solution, on the other hand, generally
must be very dilute (more so for electrolyte solutes), but there is no require-
ment that solute and solvent be chemically similar. Glucose in water can
be an ideally dilute solution at low concentration, but is not an ideal one
under any circumstances.

22.3.1 Raoult’s Law

I will follow the convention of Atkins (and some other authors) and denote
properties of pure substances with asterisks. The chemical potential of pure
liquid A (at some specified T and p) is µ∗

A. At liquid-vapor equilibrium,
that must be equal to the chemical potential of pure vapor A, so we have
(treating vapor A as an ideal gas)

µ∗
A = µ−◦

A + RT ln
(

p∗A
p−◦

)
(531)

where µ−◦
A is the chemical potential of vapor A at the standard pressure, and

p∗A is the vapor pressure of pure A.
Now if we have a solution, with some B mixed in with the A, the chemi-

cal potential of A in the liquid changes, and its vapor pressure also changes
(since at equilibrium the chemical potentials of A in the two phases must
be the same.) We write

µA = µ−◦
A + RT ln

(
pA

p−◦

)
(532)

Eliminating µ−◦
A between those two equations gives

µA = µ∗
A + RT ln

(
pA

p∗A

)
(533)

Now if you make a mixture of benzene and toluene, and measure the
vapor pressure above the liquid, you do not get a value that is the sum of
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the vapor pressures of the two pure substances. You would not expect to,
since that would mean that if you put a very tiny amount of toluene into
a benzene sample its vapor pressure would nearly double! Instead, you
would expect that the vapor pressure above a nearly-pure benzene sample
would be nearly that of benzene, and the vapor pressure above a nearly-
pure toluene sample would be nearly that of toluene. In fact that is the
case, and Raoult’s Law is the statement that for ideal solutions, the vapor
pressure above a mixed solution will vary linearly with the composition of
the solution. More specifically,

pA = xAp∗A. (534)

Even for solutions that are not ideal, this expression gives a limiting behav-
ior for the majority component as the solution becomes very dilute. That
is, adding a small amount of solute to any solvent will change the vapor
pressure of the solvent according to Eq. (534).

Substituting Eq. (534) into Eq. (533) gives

µA = µ∗
A + RT ln xA. (535)

We will use this equation shortly to define activity coefficients for nonideal
solutions.

22.3.2 Henry’s Law

Raoult’s Law gives the vapor pressure behavior for the solvent (the major-
ity component) in the limit of high dilutions for real solutions. There is a
corresponding limiting law for the solute (the minority component): the
vapor pressure of the solute above the solution is still proportional to the
mole fraction of solute, but the proportionality constant is not simply the
vapor pressure of the pure solute. Instead, we write

pB = xBKB, (536)

where KB is called the “Henry’s Law constant” for the solute. The Henry’s
Law constant has units of pressure (it is sometimes defined in terms of the
molality instead of the mole fraction, in which case it has units of bar mol
kg−1). It depends on the solvent and on the temperature, but only very
weakly on pressure.

Henry’s Law plays an important role in environmental chemistry, since
it determines the partitioning of surface water contaminants between aque-
ous and gas phases. Henry’s Law constants for many substances in water,
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and for fewer substances in other solvents, are available in tables; the NIST
WebBook has Henry’s Law constants in water for many compounds.

Figure 7.15 in Atkins shows how Raoult’s and Henry’s Laws apply to a
real solution; Raoult’s Law works for the majority component and Henry’s
Law for the minority component at either extreme of solution composition,
while neither works particularly well in between. Figure 25 shows some
other cases.

Figure 25: Vapor pressure behavior of real solutions. From Lewis and Ran-
dall, Thermodynamics, 2nd edition; original data from J. von Zawidzki, Z.
Phys. Chem 35, 129 (1900).

GCM July 19, 2002 notes-22



22. Equilibrium in real gases and solutions 131

22.4 Activity conventions for solvents and solutes

22.4.1 Solvent activities

Eq. (533) was

µA = µ∗
A + RT ln

(
pA

p∗A

)
If the solution is ideal, then Raoult’s Law holds, pA = xAp∗A, and we have

µA = µ∗
A + RT ln xA. (537)

But even if the solution is not ideal, we can write instead

µA = µ∗
A + RT ln aA, (538)

with
aA =

pA

p∗A
, (539)

and everything still works. Now you can see that the activity aA is a sort
of “effective mole fraction”; if the solution is ideal, it is exactly the mole
fraction, but if it is not, the activity is different from the mole fraction but
can still be determined by measuring the partial pressure of A above the
solution. To emphasize the limiting mole-fraction behavior, we can write

aA = γAxA, (540)

where γA is an activity coefficient.

Example In an acetone-chloroform solution with the liquid mole fraction
of acetone was 0.2003, the mole fraction of acetone in the vapor was 0.1434
and the total vapor pressure above the solution was 262 torr. At the same
temperature, the vapor pressure of pure acetone is 344.5 torr. Let us evalu-
ate the activity coefficient of acetone in the solution.

Leaving out subscripts, we have a = p/p∗, and a = γx. The partial va-
por pressure p of acetone is the total vapor pressure times the mole fraction
of acetone in the vapor. Combining all those gives

γ =
xvaporptot

xliquidp∗
(541)

=
(.1434)(262)

(.2003)(344.5)
(542)

= 0.544 (543)
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The activity coefficient is less than one; the acetone is less likely to leave
the solution and appear in the vapor than it would be in pure acetone. The
attractive interactions between acetone and chloroform produce “negative
deviations” from Raoult’s Law.

Activities calculated in the way I just showed are called Raoult’s Law
activities, or “solvent activities”. Solvents are always treated this way, and
in mixtures of liquids with relatively large mole fractions of both compo-
nents this treatment might be used for both. This mole-fraction convention
is always used for pure materials as well; this is the reason that in ordinary
equilibrium constant expressions, we can leave out terms for the solvent or
for any pure materials (like the solid at the bottom of a saturated solution
in a solubility equilibrium problem).

In this convention, all the components of the solution are treated on an
equal footing. Usually, though, there is a clear “solvent” and one or more
“solutes” with much lower mole fractions. Next let us examine the usual
convention for that case.

22.4.2 Solute activities

The difficulty with the Raoult’s Law convention for activities when solutes
are considered is that the activity coefficients approach 1 as the mole frac-
tion approaches 1, and that is very far from typical conditions for solutes.
Were we to use that convention for solutes, we would be dealing with ac-
tivity coefficients far from 1 most of the time, which would be painful.
Instead, we model our activity coefficients on the ideally-dilute solution,
which shows Henry’s Law behavior, and write

aB =
pB

KB
(544)

Note that we use the Henry’s Law constant this time, in place of the va-
por pressure of the pure liquid. Once again we determine activity coeffi-
cients with vapor pressure measurements. The vapor pressure behavior of
a solute obeys Henry’s Law in the limit of small mole fraction, so activity
coefficients in this convention will approach 1 as the solute become more
dilute. This definition for the activity is called (big surprise) the Henry’s
Law convention.

22.5 Molality scale activities

In fact, in tables of thermodynamic functions, solution activities are usually
given in terms of the molality (moles solute/kg solvent) scale rather than
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the mole fraction scale. This change makes a difference in the absolute
values of the tabulated numbers but does not change the value of any ∆G
or ∆H that you would calculate. We write

µB = µ−◦
B + RT ln

b
b−◦

, (545)

where b indicates the molality of the solution, b−◦ is the “standard molality”
(one mol/kg), and µ−◦

B is the chemical potential of B in the “molality-scale
standard state”, which is an imaginary state in which the concentration of
B is 1 molal but it behaves as though it was at very high dilution.
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23 Electrochemistry

In an electrochemical cell, it is possible to separate the two half-reactions
that take place during a redox reaction. The electrons that leave the ox-
idized species travel through wires before arriving at the position of the
other species and reducing it.

23.1 Standard thermodynamic functions for ions

There are only a few new thermodynamic ideas associated with electro-
chemistry. The first is that enthalpies and entropies of formation of aque-
ous ions, unlike those of neutral compounds, cannot be determined in-
dividually; any ionic solution contains both positive and negative ions.
Therefore, ion thermodynamic properties are conventionally determined
by defining the standard enthalpy, entropy, and Gibbs energy of formation
of H+(aq) to be zero, and determining all the thermodynamic properties
of other ions by comparison. For example, Atkins shows how to determine
the Gibbs energy of formation of chloride ion. We measure (experimentally,
by calorimetry) the enthalpy and entropy changes in the reaction

1
2

H2(g) +
1
2

Cl2(g) −→ H+(aq) + Cl−(aq). (546)

The experimental ∆rH
−◦
298 for that reaction is -167.16 kJ mol−1; since the en-

thalpy of formation of H+(aq) is defined to be zero, and since both reactants
are elements in their standard states, that value is the enthalpy of forma-
tion of aqueous chloride ion. Now a calorimetric measurement on another
reaction involving H+(aq), Cl−(aq), and elements, that consumes or pro-
duces another ion, will yield the enthalpy of formation of that ion, and so
on. All the aqueous ion thermodynamic properties in Table 2.6 of Atkins
were determined that way.

Standard entropies of ions are determined using the same convention.
For this reason, entropy entries for ions in thermodynamic tables some-
times show negative values (which never appear for neutral compounds,
since their reference state is the pure compound at 0 K, and heat must al-
ways be added to bring them to the standard temperature). A negative
standard entropy for an aqueous ion implies that a solution of that ion has
lower entropy than a solution of H+(aq) at the same temperature and pres-
sure.
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23.2 Electrochemical cells

In an electrochemical cell, we have two electrodes (chunks of metal, often
different metals) immersed in electrolyte solutions. Both electrodes can be
in one solution, or they can be in different solutions connected by a salt
bridge, which allows ions (positive or negative) to flow from one “compart-
ment” to another without allowing the solutions to mix. At one of the elec-
trodes (the anode), electrons flow from the solution (or, sometimes, a gas or
insoluble salt in contact with the electrode) into the electrode. At the other
electrode (the cathode), electrons flow from the electrode into the material
surrounding it.

If the two electrodes are in separate compartments, some ions must flow
from one compartment to another to keep charges from building up on
the two sides. That is the purpose of the salt bridge; often, inert salts (for
example, potassium chloride) are added to the solutions and the salt bridge
for this purpose.

In the standard notation for electrochemical cells, the electrode mate-
rials are written at the ends, with the materials separating them listed in
order.. Each phase boundary is specified by a vertical line; a phase bound-
ary with no junction potential (change in electrical potential from one side
of the boundary to the other, usually produced by a salt bridge) is given a
double vertical line. The “Daniell cell”, an early battery, is written

Zn(s)|ZnSO4(aq)||CuSO4(aq)|Cu(s) (547)

and shown in Figure 26. The reaction at the cathode (a reduction) is

Cu2+(aq) + 2e− −→ Cu(s) (548)

while that at the anode is

Zn(s) −→ Zn2+(aq) (549)

Electrochemical half-reactions are nearly always written as reductions (with
the electrons as reactants, not products), so in a table you would find the
Zn reaction written the other way around. The overall reaction is

Cu2+(aq) + Zn(s) −→ Cu(s) + Zn2+(aq) (550)

That reaction is spontaneous; if you stick a piece of zinc into a solution
of copper sulfate, metallic copper will appear on the zinc rod. If you take
two beakers, fill one with zinc sulfate solution and one with copper sulfate
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solution, connect them with a salt bridge, stick a zinc rod in the first and
a copper rod in the second, and connect a high-quality voltmeter across
the two electrodes, you will read a “cell potential” of over a volt (with the
copper rod being positive with respect to the zinc.) I next want to show
how to predict those things from tabulated information.

Figure 26: The Daniell cell with salt bridge; cf. Atkins figures 10.9 and 10.10.

23.3 Cell potential and the Nernst equation

The link between electrochemical measurements and the Gibbs energy is
the formula for the amount of work required to move a charge through a
potential difference: w = q∆V. That idea, plus the role of the Gibbs energy
as the maximum non-PV work obtainable from a system, leads quickly to
the crucial formula

−νFE = ∆rG, (551)

where ν is the number of electrons transferred in the reaction from anode
to cathode, F is the Faraday constant (the charge on a mole of electrons:
96485.3 C mol−1), and E is the zero-current cell potential (also called “elec-
tromotive force” or just emf), the voltage you measure across the cell elec-
trodes if no current is flowing. (It’s unfortunate that electrochemists use E
rather than V for the cell potential, in my opinion.)

Writing the change in Gibbs energy for a reaction in terms of the standard-
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state Gibbs energy change, we have

∆rG = ∆rG
−◦ + RT ln Q, (552)

where Q is the usual ratio of product and reactant activities raised to their
stoichiometric powers. Dividing both sides by −νF, and defining

E−◦ = −∆rG
−◦

νF
, (553)

we arrive at the Nernst equation:

E = E−◦ − RT
νF

ln Q. (554)

The Nernst equation tells us how the observed potential of the cell will
change with cell composition. If the reaction reaches equilibrium, Q = K,
the cell is no longer capable of doing work so E = 0, and we have

E−◦ =
RT
νF

ln K (555)

Now, how do we find E−◦ ? Easy: we look up reduction potentials for
the two half-reactions occuring in the cell, invert the sign for the oxidation
reaction, and add the two together. Notice that if you have a system where
one half-reaction must occur twice to allow the other to occur once, it is
not necessary to multiply the first standard potential by 2; that is taken
care of by the ν term in Eq. (554). Standard reduction potentials are written
assuming a standard state with all ions at 1 molal concentration but ideally-
dilute behavior, so the equilibrium constants come out with activities on the
molality scale.

Notice that Eq. (553) indicates that if an overall reaction has E−◦ > 0,
then ∆rG

−◦ < 0 and the reaction is spontaneous as written (that is, will
proceed to the right).

Example: K for simple redox reaction Let us evaluate the equilibrium
constant for the reaction

Fe3+(aq) + Mn2+(aq) −↽⇀− Fe2+(aq) + Mn3+(aq). (556)

For this case the two half-reactions (written as reductions) are simple:

Fe3+(aq) + e− −→ Fe2+(aq) E−◦ = +0.77 V (557)

Mn3+(aq) + e− −→ Mn2+(aq) E−◦ = +1.51 V (558)

GCM July 19, 2002 notes-24



23. Electrochemistry 138

The standard cell potential is therefore 0.77 − 1.51 = −0.74 V. The equilib-
rium constant is

ln K =
νFE−◦

RT
(559)

The value of RT/F at 298 K is 0.025693 V, and ν = 1, so

ln K =
−0.74 V

0.025693 V
(560)

= −28.8 (561)

K = 3.1 × 10−13 (562)

This reaction equilibrium lies to the left as written; the reaction mixture will
be mostly reactants at equilibrium.
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24 Temperature Dependence of Rates

Most reactions go faster with increasing temperature. A common equation
used to describe the T dependence is the Arrhenius equation,

k = Ae−Ea/RT (563)

The Arrhenius equation is neither exact nor universal, but it describes
many reactions tolerably well over a modest temperature range, and it con-
tains elements of the correct physics. The parameters A and Ea should be
regarded as empirical quantities with the definitions

Ea(T) = −R
d(ln k)
d(1/T)

(564)

= RT2 d(ln k)
dT

(565)

A(T) = k(T)/ exp(−Ea(T)/RT) (566)

The necessary function k(T) can be obtained either from experiment or
from some theory. Figure 27 shows the behavior predicted by the Arrhe-
nius equation for the two common plots, k vs. T and ln(k) vs. 1/T.
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Figure 27: Two plots of rate coefficients for a reaction with A = 1010

cm3mol−1s−1 and Ea = 20 kJ/mol.

Most chemists think of the activation energy Ea as a measure of the “bar-
rier height” of the reaction. That interpretation is basically correct, though
it can be misleading when the reactions studied are composite rather than
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elementary. A sharper interpretation, for elementary reactions, is given by
Tolman’s theorem: the activation energy is the difference between the aver-
age energy of molecules in the process of reacting and the average energy of
all the molecules. There is no reason to expect, from this interpretation, that
the activation energy should be independent of temperature, but tempera-
ture dependence of Ea is difficult to detect with imprecise data over limited
temperature ranges. Figure 28 gives a schematic of this interpretation.

Figure 28: Tolman’s theorem.

The “classical” method of finding A and Ea is to plot ln(k) vs. 1/T for
a series of rate coefficients measured at different T, and get Ea and A from
the slope and intercept. Both that method and the more modem nonlinear
fit directly to the Arrhenius equation suffer from heavy correlations: The
same data can be fit equally well by many different A/Ea pairs, so it is
not possible to determine either value very precisely. These correlations
occur because the data are taken over a fairly narrow range of T, and long
extrapolations are necessary, as appears in the right panel of Figure 27.

When data of high quality are taken over a sufficiently wide temper-
ature range, usually the Arrhenius equation does not describe them accu-
rately; plots of ln k vs. 1/T are curved. In that case we speak of temperature-
dependent A and Ea, as illustrated in Figure 29.

Such behavior is possible for several reasons. Most commonly, the reac-
tion being studied is not an elementary one, and while one of the elemen-
tary steps might be the rate-limiting one at low temperature, a different
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Figure 29: “Arrhenius plot” for a reaction that does not follow simple Ar-
rhenius behavior.

one might be rate-limiting at high temperature; in that case, the slope will
change from one value to another in the intermediate temperature range.
(This sort of case is what I used to make the plot.) But Arrhenius plots are
often curved even for elementary reactions; the way the available thermal
energy is distributed among the molecules will change as T changes, and
that will produce changes in the average energies described by Tolman’s
theorem.

Data that show curvature on Arrhenius plots are most often fitted by
the equation

k(T) = ATme−Eb/RT, (567)

where the three parameters A, m, and Eb may be varied to fit the data. The
values of A, m, and Eb should be regarded simply as empirical fitting con-
stants that can be used to summarize a large quantity of kinetic data with
just a few numbers. It can be misleading to try to extract chemical infor-
mation from empirically fitted values. On the other hand, some theories of
reaction rates make physical predictions of the values of A, m, and Eb.
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24.1 Thermodynamic functions of activation

There is a large and relatively successful body of theory called “transition
state theory” or “activated complex theory” whose initial goal was the ab-
solute prediction of rate coefficients. That goal has been met in very limited
cases, but the theory has found wide use because it provides some insight
into the underlying chemistry of kinetic processes. The fundamental as-
sumption of transition state theory is there there are molecular complexes
of special types, called “transition states”, that are in the process of becom-
ing products, and these transition states are in equilibrium with reactants
at all times.

This assumption makes it reasonable to talk about a sort of equilibrium
constant for the conversion from ordinary reactants to transition states. If
the rate of appearance of products is proportional to the concentration of
transition states, then (with some work that I have left out) we get, in the
most common notation,

k =
kBT

h
e∆S‡/Re−∆H‡/RT, (568)

where ∆S‡ is the entropy of activation and ∆H‡ is the enthalpy of activation.
The enthalpy of activation is traditionally determined by an “Eyring plot”,
a plot of k/T against 1/T; the slope of such a plot is −∆H‡/R. The numer-
ical value of ∆H‡ is not usually very different (perhaps by a few times RT)
from that of Ea; the detailed relationship between the two depends of the
type of reaction. (Should you need to know, I recommend Chemical Kinetics,
by K. J. Laidler.) Keep in mind that these “thermodynamic functions of ac-
tivation” are not true equilibrium thermodynamic properties, and cannot
generally be measured with the precision of equilibrium properties such as
heats of formation.

24.2 Example

The following few pages are copied from a large 1992 compilation of data
on hundreds of reactions in the gas phase, intended for people setting up
computer models of hydrocarbon combustion. The OH + CH4 reaction has
been studied for many years, and the data available for it are more numer-
ous and of better quality than those for many other reactions; nonetheless,
you can see that there is still a fair amount of scatter.
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25 Statistical mechanics

Statistical mechanics, the last major field of physical chemistry, is the one
that connects the molecular properties of the quantum world with the ther-
modynamic properties of the macroscopic world. Its task is to permit the
calculation of macroscopic properties (pressure, equilibrium constants, boil-
ing points, and so on) from the properties of the molecules themselves. It
began with Maxwell and Boltzmann and the kinetic theory of gases, and
took great strides with the work of Gibbs and Einstein. There is a large and
busy research community now applying it to liquid and solid systems and
especially to biological problems.

Statistical mechanics has two principal postulates:

1. We can calculate the time-averaged value of any macroscopic prop-
erty of a single system by instead imagining very many similar sys-
tems (“similar” meaning with a sufficient set of macroscopic prop-
erties defined: for example, volume, temperature, and composition),
and averaging over that collection of imagined systems. Such an av-
erage is called an average over the ensemble.

2. For a macroscopic system of specified volume, temperature, and com-
position, all quantum states of equal energy have equal probability of
occuring.

With those two postulates you can get remarkably far. The quantity of
central importance in statistical mechanics is the partition function:

Z = ∑
j

e−Ej/kBT, (569)

where the sum is over all quantum states (not energy levels; each state of a
degenerate group is treated separately) of the macroscopic system, and Ej
is the total energy of each state.

If the partition function is known (a nearly impossible condition in the
general case), then all the thermodynamic properties of the system are cal-
culable. For example:

U = kBT2
(

∂(ln Z)
∂T

)
V,Ni

(570)

S = kBT
(

∂(ln Z)
∂T

)
V,Ni

+ kB ln Z (571)

A = −kBT ln Z (572)
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The actual calculation of partition functions for macroscopic systems
of interacting particles (for example, liquids) is very difficult, because the
number of possible quantum states of a system of many molecules is enor-
mous. Practical calculations require approximations. Some very clever ap-
proaches are known, but let’s move to noninteracting systems (ideal gases!)
where concrete results are easier to come by.

25.1 Molecular partition functions

If we have a collection of identical, noninteracting molecules, then the over-
all partition function becomes

Z =
zN

N!
, (573)

where N is the number of molecules and z is the molecular partition function:

z = ∑
r

e
− εr

kBT , (574)

where r labels the individual quantum states of a single molecule, and εr
is the energy of each level. The molecular partition function can be rewrit-
ten in terms of energy levels, as opposed to individual quantum states, as
follows:

z = ∑
j

gje
− ε j

kBT (575)

where gj is the degeneracy of level j with energy ε j.

25.2 The Boltzmann distribution

One of the most fundamental results of molecular statistical mechanics is
the Boltzmann distribution law. The probability of finding a molecule in
energy level i is given by

Pi =
gie

− εi
kBT

z
(576)

For example, the fraction of molecules in a sample of CO at 300 K in the
rotational level J is

PJ =
(2J + 1)e−

BJ(J+1)
kBT

∞

∑
J=0

(2J + 1)e−
BJ(J+1)

kBT

(577)
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With B = 1.9225 cm−1, at 300 K we get z = 106.9 and P(10) = 0.067. To
evaluate the partition function I carried out the sum up to J = 50, which is
plenty high to converge the sum to three decimal places.

GCM July 19, 2002 notes-26


