
PMPM: a parallel version of M v. 
G C. MB

 Overview

M is a popular program for computation of inelastic scattering cross sections,
written by S. Green and J. Hutson. PMPM provides a parallelized version of
the program. It can be used with Beowulf-type cluster systems, grid systems such as
Apple’s Xgrid, symmetric multiprocessor systems such as SGI Altix or IBM p, or
on collections of independent serial machines. On clusters or SMP machines it uses
MPI message passing.

 Basic structure of a quantum scattering calculation

Computation of scattering cross sections
with the close coupled (CC) method re-
quires a series of “propagations”. Propaga-
tions are carried out formany values (tens to
hundreds) of the total angular momentum
J, two values of the parity p = ±, and all to-
tal energies E of interest. Each propagation
yields an S matrix. Once all the S-matrices
are known, their elements can be combined
to determine integral cross sections, differ-
ential cross sections, pressure broadening
cross sections, and so on. ¿e computation
time for the whole calculation is dominated
by the time required for the propagations.
In a “coupled states” (CS) calculation, the

structure of the calculation is the same, but p
is replaced by jz , the projection of the rotor
angular momentum on the intermolecular
axis. Typically – values of jz are required,
but the individual propagations take much
less time than in the CC method, and all
propagations take about the same amount of
time.
M places the E loop inside the

J/p loop. ¿is structure avoids unnecessary
recomputation of the angular momentum
coupling array VL, which is independent of
E. ¿e program writes all the S-matrices
to a single file, one a er another. A er the
M run, a second “post-processor”
program reads this S-matrix file and com-
putes cross sections.
¿e structure of a calculation with serial

M is shown at right. ¿e strategy
of PMP M is to parallelize the loop
over angular momentum and parity, shown
in red in the diagram.

Start Molscat

Initialize
generate J/p list

Loop over J/p

Construct VL
coupling array

Loop over E

Propagate F(R);
construct S-matrix;

append to file

Finished E list?

Finished J/p list?

End Molscat

Start postprocessor

Read S matrices

Construct cross sections

End postprocessor

S

s

 PMPM program design

. Philosophy

PMP stands for “poor man’s parallel”. ¿e package was originally conceived as a
means of dividing up the work of a large cross section calculation among several
independent serial machines, without requiring any direct interprocess communica-
tion. ¿e main design criterion is therefore No large data arrays are passed between
processes.
¿is design decision produces two important limitations:

• PMP M does not parallelize the loop over total energy, because that
would require passing the VL array between processes.

• PMPM requires the use of postprocessor programs even for calculation
of integral cross sections; it does not compute any cross sections as part of the
main run, because that would require passing S matrices between processes.

In return for these limitations, PMPM is simple in structure, runs on a wide
variety of parallel machines, and does not require high network speed.

. Components

PMPM provides two basic tools:

. A utility program, , that can read in S-matrix files generated by several
different M runs, sort them, and write them out as a single file that
looks like it was generated by one long run of serialM.

. A version of the main M program with additional code for parallel
computers or computer clusters. ¿e extra code uses MPI message passing.
It spawns severalM processes, and divides up the J/p pairs from a sin-
gleM input file among the processes. Each process writes out its own
S-matrix file.

. Use of 

 combines S-matrix files from several different M runs into a single,
properly sorted file that can be read by the postprocessor programs.

Start postprocessor

Read S matrices

Construct cross sections

End postprocessor

S

s

Start SMERGE

Read S matrix files

Sort S matrices and write
to combined file

End SMERGE

S

Molscat run 0

S

Molscat run 1

S

Molscat run 2

 True PMP: Using withoutMPI

Users without MPI but with access to groups of serial machines can use  to
combine results from separate runs of serial M. ¿e user must prepare a set
of M input files, each of which specifies a subset of the J/p pairs needed.
Each of those files can then be distributed to a different machine for calculations
with serialM. Batch-job schedulers such as PBS or “grid computing” systems
such as Xgrid, if they are available, simplify the task of distributing the input files and
collecting the resulting output files.
For example, if three machines are available, the three different input files might

contain the lines

machine : JTOTL = 0, JTOTU=30, JSTEP=3
machine : JTOTL = 1, JTOTU=30, JSTEP=3
machine : JTOTL = 2, JTOTU=30, JSTEP=3
Machine  would then do calculations for J = , ,  . . ., machine  would do J =
, ,  . . ., and so on. Taken together, these three runs would include all values of J
with J ≤ .
When all the runs are finished, their S-matrix files can then be combined by

 and cross sections generated by the postprocessor programs as usual.

 Using MPI: static and dynamic task allocation

For users with machines running MPI (“Beowulf ” clusters or SMP machines),
PMP M provides two different mechanisms for allocating all the J/p pairs
(“tasks”) from a singleM input file among the available processes.

. Static allocation

Start PMP Molscat

Initialize
generate J/p list

Propagate F(R) and
construct S-matrices

for all E for
this J/p subset

End process 0

S

Find process ID;
select J/p subset

to be handled by
this process

Initialize
generate J/p list

End process 1

S

Find process ID;
select J/p subset

to be handled by
this process

Initialize
generate J/p list

End process 2

S

Find process ID;
select J/p subset

to be handled by
this process

Propagate F(R) and
construct S-matrices

for all E for
this J/p subset

Propagate F(R) and
construct S-matrices

for all E for
this J/p subset

Each process uses a simple algorithm to select the J/p pairs it is responsible for and
carries out the scattering calculations for those pairs. ¿e static allocation mecha-
nism is especially effective when all the tasks take the same amount of time, as in CS
calculations or CC calculations when J > jmax ,where jmax is the highest rotational
quantum number included in the basis set. Under these conditions the user should
specify a number of processes (and CPUs) that is a divisor of the number of J/p pairs.
Parallel performance is then excellent, even up to one CPU per task.

. Dynamic allocation

Start PMP Molscat

Initialize
get PID

End process 0

PID=0;
become dispatcher;

create task list

Initialize
get PID

End process 1

S

PID >0;
become worker

Propagate F(R) and
construct S-matrices

for this task

Loop over tasks

Wait for request;
reply with task

Tasks finished?

Loop over workers

Wait for request;
reply with �done�

All workers
 notified?

Send task request;
receive reply

�done� signal
received?

One process acts as “dispatcher”, assigning tasks to the “worker” processes until
all tasks have been assigned. Tasks are handed out in decreasing order of length.
¿e dynamic allocation mechanism works well when there is a large number of tasks
of varying lengths. It is most o en used for CC calculations. With some operating
systems it is efficient to “overload” one CPU with both the dispatcher and one com-
putational process, so it is not necessary to dedicate an entire CPU to the dispatcher’s
job. In typical CC calculations, numbers of CPUs up to about a third the number of
total J/p pairs give good efficiency.

 Performance

. Scaling for CS calculations

¿is table shows results for a small static-allocation job with  total tasks, taking a
total of about  seconds. Notice the efficiency increases obtained when the number
of CPUs is a divisor of the number of tasks. ¿e "total time" increases with number
of CPUs because of the duplicated initialization work; this effect is less important for
larger jobs.

CPUs total time/s max process time/s speedup efficiency

 . . . 

 . . . 

 . . . 

 . . . 

 . . . 

 . . . 

 . . . 

 . . . 

. Scaling for CC calculations

¿is table shows scaling performance for a small CC calculation. ¿is calculation
had  tasks ( ≤ J ≤ , p = ±), and took about  s total. Note the effect of
"overloading" one CPU with both the dispatcher and a computational process.

Model CPUs MPI proc. speedup efficiency

static   . 
  . 
  . 
  . 
  . 

dynamic   . 
  . 
  . 

. Performance in production calculations

Performance for several real calculations is shown below. ¿e number of MPI pro-
cesses is listed; for the calculation marked *, each process was an -way SMP node
dedicated to a single propagation using multithreaded BLAS. All these calculations
were run on the DataStar machine at the San Diego Supercomputer Center.

Calc type Model Tasks Nmax MPI proc. speedup efficiency

CS static     >
CS static     

CC static   * . 

CC dynamic    . 

 Portability and availability

¿e  program is written in near-standard Fortran , using a few extensions
that are widely available in modern compilers (including g). It should compile
easily on any machine that can compileM.
¿epackage is available through a link on themainMwebpage athttp://www.giss.nasa.gov/tools/molscat/, or directly at http://faculty.gvsu.edu/mcbaneg/pmpmolscat/index.html. If you use it, please send me email atmcbaneg@gvsu.edu so I can keep you informed of updates to the program.

 Acknowledgements

¿anks to Jeremy Hutson for advice, to Ian Bush for his original PVM-based parallel
version, to Christian Tre�z for parallel programming advice, to Teck-Ghee Lee and
Brian Stewart for bug reports, and to several computer centers (OSC in Columbus,
GWDG inGöttingen, SDSC in SanDiego, andGVSU) for access to parallelmachines.


