
PMP Molscat

George C. McBane
Department of Chemistry

Grand Valley State University

April 3, 2005

1 Introduction

1.1 Purpose and scope

This short manual describes a “poor man’s parallel” version of the Molscat in-
elastic scattering program. The parallel program is a modification of the serial
Molscat program, version 14. It will not be useful to people unfamiliar with the
serial version and its manual. It uses the MPI message passing library for paral-
lelization. In addition, the PMP Molscat package provides a utility called smerge

that can be used to do simple parallel calculations without any message passing
library at all.

Molscat[1] was written by Sheldon Green and Jeremy Hutson. It is widely
used for solving the coupled channel equations of time-independent quantum
scattering theory for inelastic processes. The usual serial version of Molscat is
available at http://www.giss.nasa.gov/tools/molscat/.

For computation of scattering cross sections, a partial wave expansion is
used; solutions of the coupled channel equations are determined for many val-
ues of the total angular momentum (JTOT in Molscat parlance), and then the
resulting S-matrix elements are combined to compute the cross sections. Fur-
thermore, the calculation at a single JTOT can be broken into two or more sec-
tions corresponding to different values of a “parity” parameter M. (The physical
meanings of JTOT and M vary with the type of calculation.) Each calculation with
specified values of JTOT and M is essentially independent of all the others. The
poor man’s parallel (“PMP”) version of Molscat parallelizes the loop over JTOT
and M, distributing the required (JTOT, M) pairs across the available processes.

In the serial version of Molscat, the program completes all the propagations
required, then computes the desired cross sections and prints the results in a
single run. Since in the parallel version the required S-matrices are determined

1



by separate processes, they are not all available at once. In the PMP version, each
separate process simply writes its S-matrices to a file using the ISAVEU option of
Molscat. The user then runs a separate (serial) program, called smerge, to com-
bine the collection of S-matrix files into a single file with the standard Molscat
format. The “postprocessor” programs supplied with Molscat can then read
that S-matrix file and compute cross sections as required. Postprocessors are
available to compute integral (sig_save.f), differential (dcs_save.f), pressure
broadening (prbr_save.f), or more generalized (sbe.f) cross sections.

1.2 Limitations

Since the PMP version only parallelizes the JTOT and M loops, it is pointless for
Molscat calculations that concern only a single JTOT/M pair. Such calculations
include searching for scattering resonances and convergence checking.

The loop over energies is not parallelized in the PMP version. Each process
does calculations for all the total energies for each of its JTOT/Mpairs. The ISCRU
file that can be used to save energy-independent matrices is used in the PMP
version; each process keeps its own private copy of the ISCRU file.

IOS calculations in Molscat are completed before PMP Molscat begins dis-
tributing tasks. Therefore, while IOS calculations should work, every processor
will do exactly the same calculation; for IOS calculations, just stick with serial
Molscat. IOS calculations are usually cheap enough not to need parallelization
anyway.

Most of the normal Molscat input flags are available. The following are not,
and are trapped at initialization:

• Nonzero KSAVE, which is not appropriate for partial wave sums.

• Automatic termination-on-convergence in JTOT (JTOTU < JTOTL). This
very convenient feature of the serial program does not parallelize well.
However, it is relatively easy to check convergence, since you can do a new
run that includes only one or two more values of JTOT, and compare the
results with and without the S-matrices from that run included in the cross
section calculation.

• The LASTIN option does not work correctly in the PMP context, because
ISAVEU files generated in the first pass will be overwritten in later passes.

• The IRSTRT option is not available. If a run needs to be restarted, one
should simply use a new run with different JTOTL, JTOTU, MSET, MHI, and/or
ENERGY values to generate additional S-matrices and then use the smerge

2



program to combine the old and new ISAVEU files into a single one. Smerge
will recognize duplicate S-matrices in separate ISAVEU files and save only
one into its output file, so it is usually easy to “fill in” new S-matrices in the
way IRSTRT normally would.

1.3 Other Parallel Versions

A different parallel version of Molscat was written in 1993 by Ian Bush; its man-
ual is available on the Molscat website. That version is considerably more so-
phisticated than this one. It parallelizes the energy loop as well as the JTOT/M
loops by using interprocess communication to pass data between processes do-
ing different energies for the same JTOT/M pair. In addition, it provides the abil-
ity to distribute the large VL array across the memory of several processes, and
it collects the S-matrices and computes integral cross sections at the end of the
run like the serial version.

Bush’s version uses the PVM message passing library. Unfortunately, many
modern computing centers do not support PVM. It would be useful to have
an MPI version of his code, but none is yet available. In order to make use of
current-day clusters based on MPI, I have prepared the PMP version. Several
of the techniques (and a tiny amount of the code) in PMP Molscat were copied
from Bush’s program. The name “poor man’s parallel” is a reference to the lim-
ited capability of this version in comparison to Bush’s parallelization.

2 Load balancing

2.1 Available mechanisms

PMP Molscat provides three mechanisms for distributing the work among dif-
ferent processes.

Static assignments In the “static dispatch” version, each process generates a list
of all the JTOT/M tasks to be done at the beginning of the job. Each process
then selects a subset of the tasks to do; each process chooses a different
subset, using an approach that tries to give about the same amount of
work to each process. Then all the processes work on their assigned tasks
until they have finished. No interprocess communication is used at all.

Dynamic assignments In the “dynamic dispatch” version, one process acts as
dispatcher. It constructs a list of all the JTOT/M tasks to be done, then waits
for the computational processes to call in asking for work. Starting with
the longest tasks, the dispatcher hands out JTOT/M tasks to computational

3



processes until all of them have been done. The next time each compu-
tational process asks for work, the dispatcher sends it a “completed” mes-
sage, and the computational process then does its end-of-run cleanup and
exits.

True PMP The smergeprogram makes it possible to use parallel processing with-
out any message passing harness at all. See section 7 below for details.

2.2 Controlling which mechanism is used

The main v14pmp.f program is the same in both the static and dynamic dis-
patch versions. The user chooses which version to use at link time: pmpstat.f
contains code for the static version, and pmpdyn.f generates the dynamic ver-
sion.

2.3 Deciding on a mechanism

On most clusters, the dynamic mechanism will work well. The static version
gives similar performance on CS calculations, and usually considerably worse
performance on CC calculations. However, if your cluster structure forces you
to use exactly the same number of MPI processes as you have physical CPUs, the
static version may be a better choice because it does not have to dedicate one
CPU to act as dispatcher. See section 5 below for more details.

3 Programs

The following programs make up PMP Molscat.

v14pmp.f This is the main Molscat program, modified for parallelization. All
the modified sections may be found easily by searching for “pmp” in the
code. Other modifications from the stock serial version include

1. updated values of the physical constants,

2. removal of the POTENL and related routines from the main program,

3. elimination of duplicate checking in the IVCHK subroutine if MXLAM
is large. (The duplicate check in its current form is very expensive for
large MXLAM.)

pmpstat.f/pmpdyn.f These files contain routines that need to be linked with
v14pmp.f. Only one of the two should be linked into each executable file,
pmpstat.f for the static-dispatch version and pmpdyn.f for the dynamic

4



version. They both include the MPI interface code, a subroutine that se-
lects the JTOT/M pairs for each process, and some other simple routines.

smerge.f This program reads the separate S-matrix files produced by each of
the parallel processes, and combines them into a single S-matrix file in
the standard Molscat ISAVEU format. It is a standalone serial program
that must be run after the parallel run has completed.

The user will also need to provide a POTENL routine and associated subrou-
tines to evaluate the potential, and link them with v14pmp.f. The standard ones
from Molscat v. 14 may be used. In addition, at least one of the postprocessor
programs mentioned above will be needed; they are available from the Molscat
website.

Finally, the LAPACK and BLAS linear algebra libraries will be necessary, as
with serial Molscat. While it is possible to use the stock Fortran versions of those
programs available at the Molscat website or at http://netlib.org/, if you
have big enough problems to be interested in the parallel version of Molscat
you really need optimized linear algebra libraries. A good version of the BLAS
is worth six processors. Some sources for optimized BLAS are listed at the BLAS
FAQ, http://www.netlib.org/blas/faq.html. Others include ACML for AMD
processors, the Altivec libraries provided by Apple for their G5, and the BLAS by
Kazushige Goto for several different processors, http://www.cs.utexas.edu/
users/flame/goto/.

PMP Molscat is not “multithreaded”; that is, it does not try to distribute the
linear algebra work of a single propagation among several processors. My tests
indicated the scaling with that approach was much worse than simply letting
each processor work on its own JTOT/M propagations. So no OpenMP or similar
shared-memory threading is used, and ordinary single-threaded BLAS libraries
are appropriate.

4 Using PMP Molscat

1. Get your problem running with the serial Molscat, version 14, available at
the Molscat website, http://www.giss.nasa.gov/tools/molscat/. If
the problem is large (presumably it is, or you wouldn’t be reading a parallel
Molscat manual) you can get it running on the serial version for just a few
low values of JTOT.

Make sure the input file you use for the serial version sets ISAVEU > 0,
does not set KSAVE > 0, has JTOTU > JTOTL, and sets LASTIN = 1 or does

5



not set it at all. If you are doing multiple energies, you probably want to
set ISCRU> 0 as well.

2. Compile the pmp version. You need to compile and link v14pmp.f, ei-
ther pmpstat.f or pmpdyn.f, your version of POTENL and its subroutines
(VRTP, VSTAR, and so on; you will have these already from setting up the
serial version), and the LAPACK, BLAS, and MPI libraries for your site.
A couple of .fi files are read by the programs at compile time, defining
COMMON blocks and integer flags.

3. Compile smerge.f. It does not call any external library routines other
than standard Fortran routines, but the .fi files distributed with it need
to be in the same directory as smerge.f.

4. Compile the postprocessor program(s) you need; get them from the Molscat
site, http://www.giss.nasa.gov/tools/molscat/. Certainly you should
get sig_save.f and compile that. If you need something other than inte-
gral cross sections, you will need additional postprocessors.

5. Save a copy of your serial-version input file with the name molscat.in.
Copy your v14pmp executable, molscat.in, and any files your POTENL

routines need to the the working directory for your parallel runs.

6. Run the program. In a stock LINUX/MPI environment that will mean is-
suing a command something like

mpirun -np 6 v14pmp

for six processes. You do not need to redirect the input file; the executable
looks in the working directory for molscat.in.

When the program runs it will produce one file called molscatlog.nnnn

and one file called ISAVEU.nnnn for each process, where nnnn is an integer
that identifies each process (running from 0 to numproc-1). It will also
produce a small amount of output to the terminal, and may produce a set
of ISCRU.nnnn files as well.

7. Prepare an input file for smerge.f. It has one NAMELIST block, called
&MERGE. It is adequate to set just three variables in the NAMELIST block:

&MERGE

autoname = .true.

6



numfiles = 6

outputfilename = 'fort.10'

/

The autoname variable tells the program to use the default PMP Molscat
names for the ISAVEU files, and the numfiles variable tells it how many
processes you used; the outputfilename is a character string specifying
the name of the final assembled S-matrix file. That file must not exist al-
ready; if it does, smergewill write out its temporary files and exit. (It might
have taken months to generate an existing S-matrix file, so overwriting it
is too dangerous.)

If you are combining ISAVEU files from several different runs (either of
PMP Molscat or of the serial version), or combining a set of temporary
files left by a previous run of smerge, you can leave autoname unset or set
it to .false., and then explicitly give the names of the files you want to
merge as filenames(1)='foo', filenames(2)='bar', and so on.

8. Run smerge:

smerge < smerge.input

You should get a few messages from the program telling you of its progress,
and it should produce an output file.

9. Run the sig_save program. See the comments at the top of the program
for definitions of its NAMELIST input. It reads an unnamed file to find the
S-matrices, by default opened as unit 10; on many Unix systems, naming
your smerge output file fort.10 will let sig_save find your data.

10. (Very important) Compare the integral cross sections output by sig_save
with those you obtained with the serial version above. They may not match
exactly, because the physical constants used in the PMP version are more
recent than those used in the serial program, but they should all agree to
at least five significant figures.

You have now confirmed that the parallel version is working correctly for
your problem, and can modify molscat.in to let the program do what
you need.

7



5 Scaling properties

5.1 Recommendations for use

CS calculations For coupled states (CS) calculations, with the static version it
is best to use a number of CPUs that is a divisor of the number of JTOT/M pairs,
and a number of MPI processes equal to the number of CPUs; each pair takes
about the same amount of time, so you want all the processors to have the same
number of JTOT/M pairs to work on. With the dynamic version you want the
number of physical CPUs to be a divisor of the number of JTOT/M pairs, and you
want the number of MPI processes to be one more than the number of CPUs. If
you can’t run one extra process because of your cluster software, then you are
probably better off with the static version.

With CS calculations, the scaling tends to be good even up to the point where
there is one CPU for each JTOT/M pair, so long as the rules above about the num-
ber of processors per task are followed.

A small CS calculation with a total of 14 JTOT/M pairs (JTOTL = 0, JTOTU =
6, JZCSMX = 1), taking a total of 4–5 seconds, gave the scaling results shown in
Table 1. These were obtained with static allocation, though the same results
can be expected with dynamic allocation if it is possible to run one more MPI
process than CPU.

CPUs total time max process time speedup scaling efficiency
2 4.18 2.18 1.9 95.9%
3 4.15 1.48 2.8 93.5
4 4.29 1.27 3.4 84.4
5 4.29 0.93 4.6 92.3
6 4.34 0.95 4.6 76.1
7 4.45 0.65 6.8 97.8
8 4.36 0.66 6.6 82.6

14 4.60 0.35 13.1 93.9

Table 1: Scaling results for CS calculation, 14 tasks, with static job allocation.
Times are in seconds. Speedups and scaling efficiencies are slightly overes-
timated because they ignore extra initialization time incurred by additional
processes, but that error will decrease in longer runs.

CC calculations For close-coupled (CC) calculations, the dynamic version is
usually the better choice. If you are forced to use exactly one MPI process per

8



CPU, and you have only a few CPUs (say, four or fewer), then the static version
might give better scaling.

The scaling is not as sensitive to the number of processors for CC calcula-
tions as for CS. For CC calculations you should usually use a number of CPUs
that is less than about half the number of JTOT/M pairs; above that value, the
parallel efficiency deteriorates because of poor load balancing.

I have more limited scaling data available for CC calculations. A medium-
sized, 48-task CC job (JTOTL = 0, JTOTU = 23), with a total run time of about
1000 s, gave the results listed in Table 2. As expected, running the same number
of processes as CPUs reduces the dynamic speedup factor by about one.

Dispatching CPUs MPI proc. speedup efficiency
Static

4 4 3.4 83.9%
5 5 4.5 90.0
7 7 6.0 85.2
8 8 6.2 77.1

16 16 10.3 64.6
Dynamic

8 8 6.9 86.8
8 9 7.8 93.4

16 17 14.4 90.0

Table 2: Scaling results for CC calculation, 48 tasks.

6 Requirements on user code

The POTENL routine and its subroutines used with normal Molscat can be used
unchanged with PMP Molscat, with one exception. If you are using the dy-
namic dispatch version, any code that is used during the actual propagations
(as opposed to the initialization routines) should not use the Fortran STOP state-
ment; instead, it should call the DIE subroutine (simply CALL DIE) provided in
pmpdyn.f. That routine signals the dispatcher that it is dying, so the dispatcher
does not wait forever for the dead process to call in asking for another job. The
same requirement holds for other code used during the propagations.

Initialization code is free to use STOP. All the processes, including the one
that will eventually become the dispatcher, go through the same initialization,
so a STOP encountered there will kill all processes and there will be no problem
with deadlock. Similarly, code executed after the exit from the JTOT/M loop is

9



free to use STOP since the dispatcher is no longer waiting for messages.
You are welcome to pilfer the DIE subroutine definition from pmpstat.f and

use it when you link your potential code with serial Molscat, so you don’t have
to maintain two separate versions of your potential routines.

7 Running without MPI

If you don’t have an MPI-based cluster, you can still use several independent
machines (which must have the same Fortran unformatted record structure) to
solve a large problem. Use the serial version of Molscat, and set up one input file
that would do the whole problem if given long enough. Be sure to set ISAVEU>
0. Then create several versions of that file, all identical except that a different
range of JTOT is done by each. Run them separately (presumably one on each
of your collection of machines). Gather the resulting ISAVEU files into a single
directory. Make an input file for smerge that lists those ISAVEU files explicitly as
described above, and run smerge. You now have a single ISAVEU file that can be
read by the postprocessor programs to calculate cross sections.

8 Acknowledging PMP Molscat

If you use PMP Molscat in published work, in addition to the usual Molscat
citations, please also cite “George C. McBane, “PMP Molscat”, a parallel ver-
sion of Molscat version 14 available at http://faculty.gvsu.edu/mcbaneg/
pmpmolscat, Grand Valley State University (2005).”

References

[1] J. M. Hutson and S. Green. MOLSCAT computer code, version 14 (1994),
distributed by Collaborative Computational Project No. 6 of the Engineering
and Physical Sciences Research Council (UK).

10


