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Abstract

Elucidating how life history traits vary geographically is important to understanding variation

in population dynamics. Because many aspects of ectotherm life history are climate-depen-

dent, geographic variation in climate is expected to have a large impact on population

dynamics through effects on annual survival, body size, growth rate, age at first reproduc-

tion, size–fecundity relationship, and reproductive frequency. The Eastern Massasauga

(Sistrurus catenatus) is a small, imperiled North American rattlesnake with a distribution

centered on the Great Lakes region, where lake effects strongly influence local conditions.

To address Eastern Massasauga life history data gaps, we compiled data from 47 study

sites representing 38 counties across the range. We used multimodel inference and general

linear models with geographic coordinates and annual climate normals as explanatory vari-

ables to clarify patterns of variation in life history traits. We found strong evidence for geo-

graphic variation in six of nine life history variables. Adult female snout-vent length and

neonate mass increased with increasing mean annual precipitation. Litter size decreased

with increasing mean temperature, and the size–fecundity relationship and growth prior to

first hibernation both increased with increasing latitude. The proportion of gravid females

also increased with increasing latitude, but this relationship may be the result of geographi-

cally varying detection bias. Our results provide insights into ectotherm life history variation

and fill critical data gaps, which will inform Eastern Massasauga conservation efforts by

improving biological realism for models of population viability and climate change.

Introduction

Knowledge of how life history traits vary geographically is important to understanding varia-

tion in population dynamics and improving biological realism for models of population viabil-

ity and response to climate change [1–3]. Phenotypic variation may be a consequence of

developmental plasticity, heritable differences within and among populations, or interplay

between these factors [4]. Additionally, biotic and climate gradients jointly regulate variation

in resource availability and thus help shape life histories [5]. Consequently, selective pressures

imposed by local conditions can result in life history variation among populations. This varia-

tion may be especially evident in species with broad geographic distributions (e.g. [6–8]).

However, heterogeneity among populations can also occur within small geographic areas

when fine-scale climate (e.g., temperature, precipitation) and environmental factors (e.g., com-

petition, prey availability, habitat composition and structure) vary sharply across the landscape

[9–11].

The Eastern Massasauga (Sistrurus catenatus) is a small, secretive rattlesnake with a distri-

bution centered on the Great Lakes region of North America. Although historically considered

subspecies, multilocus DNA sequence data demonstrate that the Eastern Massasauga is taxo-

nomically distinct from the Western Massasauga (S. tergeminus) [12, 13]. Local weather and

climate within the Eastern Massasauga’s range are strongly influenced by lake effects [14].

Many aspects of ectotherm life history are climate dependent ([15, 16], reviewed in [4, 17, 18]).

Thus, geographic variation in climate is expected to have a large impact on Eastern Massasauga

population dynamics through effects on annual survival, body size, growth rate, age at first

reproduction, reproductive frequency, and fecundity. Consistent with this expectation, annual
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adult survival for S. catenatus increases along a southwest to northeast axis, ranging from 0.35

to 0.95 (see Fig 3 in [7]). Similarly, litter size shows a two-fold increase from 6 to 12 offspring

from southern to northern sites (see Fig 1 in [19]). However, it is unknown whether latitudinal

litter size patterns result from females being larger at northern sites, from a change in litter-

size/female-size relationships, or both.

The Eastern Massasauga is considered threatened or endangered everywhere it occurs and

was listed under the Endangered Species Act in the United States in 2016 [20, 21]. As a conse-

quence, extinction risk for this species has been extensively modeled using a range of parame-

ter estimates and approaches [7, 22–28]. Unfortunately, such conservation evaluations are

hampered by data gaps in life history traits (e.g., growth rate, age at first reproduction, body

size, reproductive frequency, and size-specific fecundity) and demography (e.g., population

size). Consequently, modelers have often substituted estimates from distant populations or

relied upon expert opinion to fill these gaps.

The 2016 federal listing has increased the need to improve biological realism for extinction

risk models (e.g., [28]). An obvious strategy for improving model realism and the predictive

power of these models is to incorporate estimates of life history parameters and associated var-

iances, which are still lacking for many populations. Fortunately, the Eastern Massasauga has

been the focus of research throughout much of its range. As a result, detailed, site-specific

information on Eastern Massasauga life history exists but has not been synthesized in a system-

atic way. The purpose of this study is to fill existing data gaps in Eastern Massasauga life his-

tory. Therefore, our specific objectives are to 1) synthesize available life history data and

describe range-wide patterns of variation in these traits, 2) elucidate the abiotic factors that

best explain this variation, and 3) gain insight into processes that may have given rise to these

geographic patterns.

Materials and methods

We compiled life history information collected by researchers over the past 128 years (1886–

2014) from peer-reviewed publications, technical reports, and collaborators for 47 study sites

representing 38 counties in nine North American states and provinces (Table 1, Fig 1). From

these data, we selected nine life history variables expected to vary geographically and influence

population growth: 1) adult male snout-vent length (SVL), 2) adult female SVL, 3) proportion

of gravid females, 4) litter size, 5) maternal SVL–litter size relationship (hereafter, size–fecun-

dity relationship), 6) neonate SVL, 7) neonate mass, 8) age-zero annual growth (growth prior

to first hibernation), and 9) age-one annual growth (growth between first and second hiberna-

tion). Data meeting our sample size criteria for these life history traits were available for years

1937–2014 (Table 1). Unless otherwise specified, for each variable we calculated an average for

a given study site. Definitions of response variables and sample size criteria for inclusion in the

range-wide analyses are described below.

Response variables

Adult SVL. We defined adult male SVL and adult female SVL as the mean SVL of the ten

largest individuals for each sex, provided data were available for at least 20 individuals� 40

cm SVL of a given sex per study site. To ensure that including sites with moderate sample sizes

(20–44 individuals, N = 8) with sites that had large sample sizes (� 95 individuals per site,

N = 9) did not significantly influence our results [82, 83], we also computed estimates from the

top-ranked model (see Modeling section below) using only sites with large sample sizes. The

overall pattern remained unchanged and confidence intervals broadly overlapped between the

two models.

Climatic and geographic predictors of life history variation
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Proportion gravid. We estimated the proportion of gravid females as the ratio of gravid

females to the total number of adult females captured, provided N� 50 adult females captured

per study site. Where data permitted, we calculated a weighted average by year for a given site.

Table 1. Sources for Eastern Massasauga life history information including locality and study years.

State/

Province

County/ District/ Municipality Year(s) Life history variable(s) Source citation or co-author initials

IA Bremer 2002–2012 1, 2, 3, 4, 6–9 TJV

IL Clinton 1999–2011 1–9 [19, 29–33], MJD, CAP, SJW

IL DuPage 1941 5, 6 [34]

IL *Cook/ Lake 1937–1938; 1982–1991;1999–

2009

2, 3, 4, 6, 7 [35–38], TGA, MR

IL Piatt 2002–2006 1, 2, 4, 5, 6 CAP

IL Warren 1971–1972 1, 2, 5, 6, 7 [39]

IL Will 1992–1994 1, 2 DM; TGA

IN Hendricks 1886 5 [40]

IN LaGrange 1999–2001 1, 2, 4, 6, 7, 9 [41], BAK, JCM

IN Marshall 1959 5, 6 [42]

MI Barry 2004–2013 1–5, 6, 7, 9 [43, 44], RLB, KMB, DRB, RC, BDK,

JAM

MI Cass 2006–2014 1–9 [45–47], MDC; LJF; ETH

MI Kalkaska 2002–2007 1, 2, 4–7 [48–52], NDB, BAD, BAK, JCM, JMR

MI Lenawee 2003–2004 1, 2 [53, 54], JAM

MI Oakland 2002–2006 2 [55, 56], BAK

MI Van Buren 2004–2008 1, 2 MDC, JAM

MI Washtenaw 2010–2011 1, 2, 3 TGA, GSC, DM, YL

NY Genesee 2006–2013 1, 2, 3, 4, 6, 7 [57], JMA, KTS

NY Onondaga 1988–1993; 2006–2013 1–4, 6–8 [57–59], TB, BDJ, GJ, KTS

OH Ashtabula 2002–2003 1, 2, 4, 6–9 GL; DW

OH Champaign 2007 1, 2, 6, 7 JGD

OH Clark 2007 1, 2, 6, 7 JGD

OH Greene 1993 5–7 [60]

OH *Greene / Warren 2003–2007 1, 2 JGD

OH Hardin 1931 5, 6 [61, 62]

OH Wyandot 1994–2012 1, 2, 4–9 DW

ONT Bruce 2001–2004 1, 2, 4, 6, 7 [63–69], DSH

ONT Essex 2000–2004 1, 2, 4, 6, 7 KC, AML, PDP, TP

ONT Muskoka 2002–2009 2–9 JDR

ONT Parry Sound Beausoliel Island 1978–2008 1, 2 [7, 70], MD, AP, KAP, SS

ONT Parry Sound 1995–1996 4, 6, 7 [71, 72]

1992–2009 1, 2, 4–8 [73], JDR

ONT Niagara 2000–2012 1, 2, 3, 4–9 AY

PA *Butler/ Venango 1977; 1933; 2003–2013 1–9 [74–76], BCJ, MJK, HKR

WI Buffalo 1967; 2000–2007 1–5, 6, 7, 9 [77–79], RWH, RAP

WI *Juneau/ Monroe 1994–2004 1999–2000 7 [80, 81]

Due to the sensitive nature of locality data, study site information is reported at the county, district, or municipality level. Datasets with life history variables

meeting sample size criteria are bolded. Notation for life history variables: 1, adult male SVL; 2, adult female SVL; 3, proportion gravid; 4, litter size; 5, size-

fecundity relationship; 6, neonate SVL; 7, neonate mass; 8, age-zero growth; 9, age-one growth

*, data pooled due to close proximity between study sites.

doi:10.1371/journal.pone.0172011.t001
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Reproductive status was determined by detection of enlarged follicles via palpation, x-ray, or

ultrasound. Due to insufficient recaptures across study sites, estimates are unadjusted for dif-

ferences in detection probabilities between gravid and non-gravid females. As gravid females

have higher detection probabilities than non-gravid females (E. T. Hileman, unpublished

data), we anticipated these estimates would be positively biased [84]. If the magnitude of this

bias can be assumed to be similar across study sites, then any differences detected among

study sites should be biologically meaningful even if point estimates are biased.

Fig 1. Locations of Eastern Massasauga study sites (counties/districts shaded black) and the approximate historic range of the Eastern

Massasauga (gray shading, from http://www.iucnredlist.org/). County and district codes: IA = Bremer, IA; IL.1 = Clinton, IL; IL.2 = DuPage, IL;

IL.3 = Cook/ Lake, IL; IL.4 = Piatt, IL; IL.5 = Warren, IL, IL.6 = Will, IL; IN.1 = Hendricks, IN; IN.2 = LaGrange, IN; IN.3 = Marshall, IN; MI.1 = Barry, MI;

MI.2 = Cass, MI; MI.3 = Kalkaska, MI; MI.4 = Lenawee, MI; MI.5 = Oakland, MI; MI.6 = Van Buren, MI; MI.7 = Washtenaw, MI; NY.1 = Genesee, NY;

NY.2 = Onondaga, NY; OH.1 = Ashtabula, OH; OH.2 = Champaign, OH; OH.3 = Clark, OH; OH.4 = Greene, OH; OH.5 = Greene/ Warren, OH;

OH.6 = Hardin, OH; OH.7 = Trumball, OH; OH.8 = Wyandot, OH; ONT.1 = Bruce, ONT; ONT.2 = Essex, ONT; ONT.3 = Muskoka, ONT; ONT.4 = Beausoliel

Island, ONT; ONT.5 = Parry Sound District (1995–1996), ONT; ONT.6 = Parry Sound District (1992–2009), ONT; ONT.7 = Regional Municipality of Niagara,

ONT; PA = Butler/ Venango, PA; WI.1 = Buffalo, WI; WI.2 = Juneau/ Monroe, WI. Reprinted and modified from [150] under a CC BY license, with permission

from [Collin P. Jaeger], original copyright [2016] (See S3 File).

doi:10.1371/journal.pone.0172011.g001
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Litter size. We defined litter size as the mean number of captive offspring produced per

wild-caught female, including stillborns, provided N� 3 litters per study site.

Size–fecundity relationship. We characterized the size–fecundity relationship across

sites with N� 8 litters using analysis of covariance with litter size as the response variable,

study site as a fixed factor, and maternal SVL as a covariate. Litter size is expected to increase

as a function of maternal abdominal volume, which is a cubic function of maternal length [85].

Therefore, we natural log-transformed litter size and SVL prior to analysis. This relationship

did not differ in slope (site-by-maternal SVL interaction, F 9, 204 = 0.44, P = 0.91) but did differ

in elevation among sites (site, F 1, 213 = 37.32, P< 0.0001). Therefore, to compare sites, we

computed the expected litter size of an average adult female Eastern Massasauga (SVL = 55.2

cm, mean size of adult females from Cass County, Michigan). We used mean female size from

the Cass County population due to its proximity to the range center for the species. In other

words, we assumed that an adult female SVL of 55.2 cm falls within the size range of adult

females across the range.

Neonate SVL and mass. Neonate SVL and mass represent average measurements at birth,

excluding stillborns, provided N� 3 litters or� 25 neonates per study site.

Age-zero and age-one growth. For age-zero growth and age-one growth, we first plotted

SVL against capture day-of-year (DOY). Visualized graphically, individuals captured in their

birth year (age-zero) are identifiable as distinct clusters (Fig 2, S1 File). Similarly, individuals

that survived their first winter but have not experienced a second winter (age-one) are identifi-

able early in the season. However, later in the season some age-one and older individuals begin

to overlap in size (Fig 2). In these instances, age assignment was somewhat arbitrary but neces-

sary to obtain an adequate sample size. For age-zero we required N� 35 captures over a time

span� 46 days per study site; for age-one we required N�11 captures over a time span� 106

days per study site. Age-zero individuals are born in summer and thus have a shorter capture

time span due to the truncated active season. Analysis of covariance with SVL as the response

variable, study site as a fixed factor, and DOY as a covariate revealed significant differences in

daily growth rate among sites (site-by-DOY interaction for age-zero, F 8, 1344 = 5.77,

P< 0.0001; for age-one, F 10, 608 = 3.78, P< 0.0001).

Because growing season length varies across sites, we multiplied daily growth rates by the

average number of ‘growing days’ to obtain annual growth rates for age-zero and age-one. We

defined growing days for a given site as the number of days (averaged over� 15 years) the

minimum average daily temperature exceeded 5˚C. For age-zero, we included growing days

from the estimated birth date (date of first neonate capture) through fall. For age-one, we

included growing days from spring through fall. For sites in the United States, we used 1981–

2010 daily climate normals from the National Oceanic and Atmospheric Administration [86].

For sites in Canada, we used 1965–2015 daily almanac averages and extremes from Environ-

ment Canada (http://climate.weather.gc.ca/climate_normals/index_e.html). Details on

weather station selection are provided below.

Explanatory variables

Study site Cartesian coordinates were provided by collaborators or approximated using pub-

lished locality information and Google Earth (version 7.1.5.1557). We used these coordinates

to identify the nearest weather data logging station to each study site (mean distance = 16.67

km ± 12.13 SD) using web tools from the National Oceanic and Atmospheric Administration

(NOAA, http://www.ncdc.noaa.gov/cdo-web/datatools/normals), Midwestern Regional Cli-

mate Center (Cli-MATE, http://mrcc.isws.illinois.edu/CLIMATE/), and Environment Canada

(EC, http://climate.weather.gc.ca/climate_normals/index_e.html). We acquired 30-year

Climatic and geographic predictors of life history variation
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annual climate normals (1981–2010) from these websites and considered only climate vari-

ables that we a priori hypothesized would have strong explanatory power and were available

for sites in the United States and Canada. In addition to latitude and longitude, these included

the 30-year annual climate normals for mean temperature (˚C, MT), mean precipitation (mm,

MP), frost-free days (FFD), and growing degree-days (GDD). MP includes rainfall plus snow

water equivalent. The number of FFD is based on a 90% probability that the last spring frost

did not occur earlier in the season and the first fall frost did not occur later in the season. GDD

is the sum of degrees by which daily mean temperature is above 10˚C.

Modeling

To elucidate geographic and climatic patterns of variation in life history, we used general linear

models and ordinary least square methods with geographic coordinates and the four climate

normals as explanatory variables. To address scaling differences, we z-transformed explanatory

variables before analysis to make model effect sizes (slopes) comparable within a given

Fig 2. Snout-vent length plotted against capture day-of-year of Eastern Massasaugas captured during 2006–2014 in Cass

County, Michigan. Seven distinct age classes are evident: age 0 (blue) includes recently born animals prior to their first hibernation;

age 1 (gray) includes animals captured following their first hibernation, but prior to their second hibernation; age 2 (black) includes

animals captured following their second hibernation, but prior to their third hibernation, and so on; age 3 (white); age 4 (orange); age 5

(red); age 6 (yellow). Age 1 begins to overlap with age 2 in August (~ DOY 225).

doi:10.1371/journal.pone.0172011.g002

Climatic and geographic predictors of life history variation
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candidate set. Ninety-five percent confidence intervals for coefficients were calculated using

the t-distribution. We employed multimodel inference using an information-theoretic

approach and Akaike’s information criterion adjusted for small sample size (AICc, [87, 88]).

We avoided including over-fitted models in our candidate sets by requiring� 7 observa-

tions per explanatory variable [89]. For analyses to be considered confirmatory rather than

exploratory, the number of models (R) considered in a candidate set should be far fewer than

the number of observations (N, [88, 90]). We achieved this by restricting the number of candi-

date models per analysis to R � 1

2
N. As anticipated, latitude, frost-free days, growing degree-

days, and mean temperature were highly correlated with one another (Pearson’s correlation

coefficient = 0.82–0.96). We avoided issues associated with multicollinearity by restricting use

of these predictors to separate models (i.e., we considered only models that included latitude

or frost-free days or growing degree-days or mean temperature singly or in combination with

longitude and mean annual precipitation). We did not correct for spatial autocorrelation using

partial Mantel tests [91, 92] as these methods have been shown to be problematic and can yield

biased results [93].

To aid in interpretability of results across analyses, latitude, mean annual precipitation,

mean annual temperature, and frost-free days were included in all candidate sets. Response

variables with larger sample sizes (N� 10) included additional models (Table 2). We per-

formed general linear model analyses and multimodel inference using R [94] and the package

‘AICcmodavg’ [95]. We used the R package ‘ggplot2’ [96] to graphically depict relationships

Table 2. (A) Number of study sites, number of explanatory variables per model, and number of candidate models possible and (B) specific candi-

date models used in analyses of Eastern Massasauga life history response variables.

A. Number of study sites, number of explanatory variables per model, and number of candidate models.

Life history response variables

Criteria Adult Male

SVL (cm)

Adult

Female SVL

(cm)

Proportion

gravid

Litter

size

Size–fecundity

relationship

Neonate

SVL (cm)

Neonate

mass (g)

Age-zero

Growth (cm/

year)

Age-one

Growth (cm/

year)

Number of study

sites

N 14 17 8 20 10 17 18 9 11

Number of

explanatory variables

per model

K 2 2 1 2 1 2 2 1 1

Number of candidate

models per analysis

R 7 8 4 10 5 8 9 4 5

B. Specific candidate models used for each analysis.

1) LAT LAT LAT LAT LAT LAT LAT LAT LAT

2) MT MT MT MT MT MT MT MT MT

3) MP MP MP MP MP MP MP MP MP

4) FFD FFD FFD FFD FFD FFD FFD FFD FFD

5) GDD GDD GDD GDD GDD GDD GDD

6) LONG LONG LONG LONG LONG

7) MP+FFD MP+FFD MP

+FFD

MP+FFD MP+FFD

8) MP+MT MP

+MT

MP+MT MP+MT

9) MP

+GDD

MP+GDD

10) MP

+LAT

Shaded region represents four models used for all variables. Abbreviations: LAT–Latitude, LONG–Longitude, FFD–Frost-free days, GDD–Growing degree-

days, MP–Mean Precipitation, MT–Mean Temperature

+ denotes additive effects.

doi:10.1371/journal.pone.0172011.t002

Climatic and geographic predictors of life history variation
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between untransformed explanatory and response variables for the best supported candidate

models based on AICc weights. Since candidate model sets were non-nested and therefore

lacked a global model, we evaluated the top-ranked model for each candidate set using residual

analyses consisting of Q-Q plot and Cook’s distance to ensure the assumption of normality

was adequately met.

Results

Data meeting our sample size criteria were available for 8–20 Eastern Massasauga study sites

depending on the variable, allowing inclusion of one or two explanatory variables per model

and analysis of 4–10 models per variable (Table 2, S2 File). Of the nine life history variables

included, six (described individually below) provided evidence for an association with one or

more explanatory variables, whereas three (adult male SVL, neonate SVL, age 1 growth) did

not (Table 3). The untransformed effect size, 95% confidence intervals, and equation of the

line are provided below for the top-ranked model of each candidate set from Table 3.

Adult female SVL

–Among 17 sites, adult female mean SVL ranged from 56.6 cm in Kalkaska County, Michigan,

to 73.9 cm in the Parry Sound District, Ontario, with an overall mean of 63.3 cm. Of the eight

models used to explain geographic variation in adult female SVL, the top three received 99% of

the support based on AICc weights (Table 3). All three of these models included mean precipi-

tation (MP) as an explanatory variable and in all three MP was informative as indicated by

95% confidence intervals (CI) for effect size that excluded zero. Models two and three were

simple additive embellishments of model MP which included the uninformative (i.e., 95% CI

for effect sizes included zero) variables frost-free days and mean temperature, respectively

(Table 3). These lower ranking models cannibalized 0.30 of the AICc weight which would have

otherwise been absorbed by the top-ranked model. Based on the top-ranked model (Table 3,

Fig 3), adult female SVL increased by 3.6 cm (95% CI = 1.8–5.4) for every 100 mm increase in

mean annual precipitation (Y = 0.03558X + 27.73).

Proportion gravid

–Among eight sites, the proportion of gravid females ranged from 23% in Clinton County, Illi-

nois, to 82% in Onondaga, New York, with an overall mean of 62%. Latitude was strongly sup-

ported (Wi = 0.85) as an explanatory variable for the proportion of gravid females for a given

site with the proportion of gravid females increasing with increasing latitude (Table 3, Fig 4).

Latitude was the only explanatory variable with an effect size differing significantly from zero.

Mean temperature, frost-free days, and mean precipitation were all considered uninformative

because confidence intervals included zero. Based on the top-ranked model (Table 3, Fig 4),

the proportion of gravid females increased 0.07 (95% CI = 0.02–0.12) for every 1˚increase in

latitude (Y = 0.0682X + –2.29).

Litter size

–Among 20 sites, mean litter size ranged from 4.0 in Genesee County, New York, to 13.3 in

the Parry Sound District, Ontario, with an overall mean of 8.8. Mean temperature had a nega-

tive effect size and received modest support (Wi = 0.32) as an explanatory variable for litter

size (Table 3, Fig 5), as did models including frost-free days (Wi = 0.22) and latitude (Wi =

0.19), reflecting strong positive correlations among these explanatory variables. Additive mod-

els (4, 6, and 7) were weakly supported (Wi = 0.04–0.07) due to the presence of informative

Climatic and geographic predictors of life history variation
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Table 3. Candidate model sets for life history variables. Bolded 95% confidence intervals exclude zero and therefore indicate the standardized effect size

for a given explanatory variable is informative. For models with two predictor variables, the standardized effect size and 95% CI for the first and second vari-

able are in the first and second row associated with that model. Model abbreviations are the same as in Table 2.

Model K AICc ΔAICc Wi Log(LL) R2 Effect Size 95% CI

Adult male SVL

1) MP 3 91.48 0.00 0.36 -41.54 0.17 2.14 -0.83–5.12

2) LAT 3 93.25 1.77 0.15 -42.43 0.06 1.21 -1.85–4.26

3) MT 3 93.53 2.05 0.13 -42.56 0.04 -1.01 -4.16–2.13

4) FFD 3 93.91 2.43 0.11 -42.76 0.01 -0.59 -3.89–2.71

5) GDD 3 94.04 2.56 0.10 -42.82 0.00 -0.31 -3.48–2.86

6) Long 3 94.04 2.56 0.10 -42.82 0.00 -0.25 -2.96–2.46

7) MP + FFD 4 95.46 3.98 0.05 -41.51 0.17 2.10 -1.06–5.26

-0.32 -3.53–2.9

Adult female SVL

1) MP 3 97.92 0.00 0.69 -45.04 0.54 3.34 1.65–5.03

2) MP + FFD 4 100.87 2.95 0.16 -44.77 0.56 3.09 1.20–4.99

-0.62 -2.60–1.36

3) MP + MT 4 101.07 3.16 0.14 -44.87 0.55 3.22 1.41–5.03

-0.48 -2.46–1.50

4) FFD 3 108.05 10.13 0.00 -50.10 0.17 -1.95 -4.32–0.42

5) MT 3 109.74 11.82 0.00 -50.95 0.08 -1.43 -4.05–1.19

6) GDD 3 110.68 12.76 0.00 -51.41 0.03 -0.89 -3.64–1.85

7) LAT 3 110.83 12.91 0.00 -51.49 0.02 0.77 -2.04–3.58

8) LONG 3 110.89 12.97 0.00 -51.52 0.02 0.60 -1.79–2.99

Proportion of gravid females

1) LAT 3 -2.34 0.00 0.85 7.17 0.68 0.12 0.04–0.21

2) MT 3 1.95 4.29 0.10 5.03 0.45 -0.10 -0.20–0.01

3) FFD 3 4.18 6.52 0.03 3.91 0.27 -0.07 -0.19–0.05

4) MP 3 5.70 8.04 0.02 3.15 0.11 -0.05 -0.18–0.09

Litter size

1) MT 3 94.30 0.00 0.32 -43.40 0.26 -1.22 -2.24 –-0.20

2) FFD 3 95.06 0.77 0.22 -43.78 0.23 -1.08 -2.06 –-0.10

3) LAT 3 95.32 1.02 0.19 -43.91 0.22 1.15 0.08–2.21

4) MP + MT 4 97.43 3.13 0.07 -43.38 0.26 -0.08 -1.13–0.97

-1.25 -2.36 –-0.13

5) GDD 3 97.63 3.33 0.06 -45.06 0.12 -0.87 -2.01–0.27

6) MP + FFD 4 97.98 3.68 0.05 -43.66 0.24 -0.25 -1.38–0.88

-1.19 -2.32 –-0.06

7) MP + LAT 4 98.35 4.05 0.04 -43.84 0.23 0.17 -0.86–1.19

1.12 0.02–2.23

8) MP 3 99.95 5.65 0.02 -46.22 0.02 0.30 -0.81–1.41

9) Long 3 100.04 5.74 0.02 -46.27 0.01 -0.24 -1.30–0.82

10) MP + GDD 4 100.79 6.49 0.01 -45.06 0.13 0.03 -1.11–1.18

-0.86 -2.11–0.39

Size–fecundity relationship

1) LAT 3 -2.93 0.00 0.58 6.47 0.56 0.13 0.04–0.22

2) MT 3 -0.98 1.95 0.22 5.49 0.47 -0.11 -0.21 –-0.01

3) GDD 3 0.53 3.46 0.10 4.73 0.38 -0.10 -0.21–0.00

4) FFD 3 1.08 4.01 0.08 4.46 0.35 -0.09 -0.19–0.01

(Continued)
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explanatory variables mean temperature, latitude, or frost-free days. Mean precipitation had

an effect size that included zero and was thus considered uninformative. Based on the top-

ranked model (Table 3, Fig 5), litter size decreased by one neonate (95% CI = 0.2–1.8) for

every 1.64˚C increase in mean annual temperature (Y = –0.6111X + 13.94).

Table 3. (Continued)

Model K AICc ΔAICc Wi Log(LL) R2 Effect Size 95% CI

5) MP 3 4.31 7.24 0.02 2.85 0.10 -0.05 -0.17–0.07

Neonate SVL

1) Long 3 49.18 0.00 0.29 -20.67 0.17 -0.34 -0.76–0.08

2) MP 3 50.22 1.04 0.17 -21.19 0.12 0.29 -0.16–0.74

3) LAT 3 50.64 1.46 0.14 -21.39 0.09 -0.26 -0.7–0.18

4) GDD 3 50.98 1.81 0.12 -21.57 0.07 0.05 -0.21–0.67

5) MP + MT 4 51.64 2.46 0.08 -20.15 0.19 0.14 -0.08–0.96

0.23 -0.21–0.71

6) MT 3 51.81 2.64 0.08 -21.98 0.03 0.44 -0.31–0.58

7) MP + FFD 4 52.15 2.97 0.07 -20.41 0.22 0.25 -0.07–0.88

0.41 -0.17–0.73

8) FFD 3 52.22 3.04 0.06 -22.19 0.00 0.28 -0.37–0.48

Neonate mass

1) MP 3 47.20 0.00 0.59 -19.74 0.44 0.55 0.22–0.88

2) MP + FFD 4 50.02 2.82 0.14 -19.47 0.45 0.59 0.23–0.94

0.11 -0.25–0.48

3) MP + GDD 4 50.41 3.21 0.12 -19.67 0.45 0.57 0.21–0.93

0.07 -0.35–0.48

4) MP + MT 4 50.44 3.24 0.12 -19.68 0.44 0.57 0.21–0.92

0.06 -0.33–0.45

5) LONG 3 54.11 6.91 0.02 -23.20 0.44 0.34 -0.05–0.72

6) GDD 3 57.29 10.09 0.00 -24.79 0.44 -0.12 -0.63–0.39

7) MT 3 57.40 10.20 0.00 -24.84 0.44 -0.09 -0.58–0.40

8) FFD 3 57.46 10.26 0.00 -24.87 0.18 -0.07 -0.52–0.38

9) LAT 3 57.49 10.29 0.00 -24.89 0.02 0.07 -0.44–0.58

Age-zero growth

1) LAT 3 43.03 0.00 0.83 -16.11 0.62 -1.94 -3.30 –-0.58

2) MT 3 46.88 3.86 0.12 -18.04 0.42 1.59 -0.09–3.26

3) FFD 3 49.30 6.27 0.04 -19.25 0.24 1.15 -0.69–3.00

4) MP 3 51.45 8.42 0.01 -20.33 0.03 -0.47 -2.78–1.84

Age-one growth

1) MP 3.00 71.53 0.00 0.30 -31.05 0.14 -1.66 -4.77–1.45

2) FFD 3.00 71.91 0.38 0.25 -31.24 0.11 1.56 -1.81–4.93

3) MT 3.00 72.62 1.09 0.17 -31.60 0.05 1.06 -2.45–4.58

4) GDD 3.00 72.92 1.39 0.15 -31.75 0.00 -0.04 -3.55–3.47

5) LAT 3.00 73.17 1.64 0.13 -31.87 0.02 0.73 -2.89–4.36

AICc is Akaike’s information criterion adjusted for small sample size. ΔAICc is the difference between the AICc of model i and that of the top-ranking model.

AICc weight (Wi) is the probability that model i is the best model given the data and the other hypothesized models in the candidate set. AICc weights must

sum to 1. K is the number of parameters in the model (i.e., intercept, slope(s), and residual variance). Log(LL) is the natural logarithm of the likelihood

function.

doi:10.1371/journal.pone.0172011.t003

Climatic and geographic predictors of life history variation

PLOS ONE | DOI:10.1371/journal.pone.0172011 February 14, 2017 11 / 27



Size–fecundity relationship

–Among 10 sites, expected litter size for a typical female (SVL = 55.2 cm) ranged from 5.4 in

Clinton County, Illinois, to 10.7 in Buffalo County, Wisconsin, with an overall mean of 8.2.

Latitude was supported (Wi = 0.58) as an explanatory variable of the size–fecundity relation-

ship (Table 3, Fig 6). Latitude also had the largest and only positive effect size. Mean tempera-

ture also garnered some support (Wi = 0.22). The remaining three models included the

uninformative variables growing degree-days, frost-free days, or mean precipitation. Based on

the top-ranked model (Table 3, Fig 6), expected litter size of a typical female increased by one

neonate (95% CI = 0.2–1.8) for every 1.89˚increase in latitude (Y = 0.5280X + –14.38).

Neonate mass

Among 18 sites, mean neonate mass ranged from 8.3 g in Juneau and Monroe Counties, Wis-

consin, to 11.6 g in the Muskoka District, Ontario, with an overall mean of 10.2 g. Models

Fig 3. Relationship between mean annual precipitation (untransformed) and adult female size as explained by the top-ranked model using AICc

(Table 3). The shaded area represents the smoothed 95% CI using t-based approximations. County and district abbreviations are as in Fig 1.

doi:10.1371/journal.pone.0172011.g003
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including the explanatory variable mean annual precipitation had the largest (positive) effect

sizes and best explained geographic variation in neonate mass (Table 3, Fig 7). The top four of

nine models were considered informative due to the inclusion of the explanatory variable

mean precipitation. Similar to the first candidate model set (adult female size), models 2–4

were embellishments of model one that included the uninformative additive effects of frost-

free days, growing degree-days, and mean temperature, respectively. These models cannibal-

ized 0.38 of the AICc weight which would have otherwise been allotted to model MP (Wi =

0.59). Based on the top-ranked model, neonate mass increased by 0.6 g (95% CI = 0.2–0.9) for

every 100 mm increase in mean annual precipitation (Y = 0.00589X + 4.37).

Age-zero growth

Among nine sites, age-zero growth ranged from 2.2 cm/year in the Regional Municipality of

Niagara, Ontario, to 8.5 cm/year in Clinton County, Illinois, with an overall mean of 5.1 cm/

Fig 4. Relationship between latitude (untransformed) and the proportion of gravid females as explained by the top-ranked model using AICc

(Table 3). The shaded area represents the smoothed 95% CI using t-based approximations. County and district abbreviations are as in Fig 1.

doi:10.1371/journal.pone.0172011.g004

Climatic and geographic predictors of life history variation

PLOS ONE | DOI:10.1371/journal.pone.0172011 February 14, 2017 13 / 27



year. Latitude was strongly supported (Wi = 0.83) as an explanatory variable for age-zero

growth (Table 3, Fig 8). It also had the largest (negative) effect size. Mean temperature, frost-

free days, and mean precipitation were all considered uninformative because confidence inter-

vals included zero. Based on the top-ranked model (Table 3, Fig 8), annual growth decreased

1.1 cm (95% CI = 0.3–1.8) for every 1˚increase in latitude (Y = –1.0783X + 50.1489).

Discussion

Our study is one of few to investigate intraspecific variation in squamate life history traits over

the geographic extent of a species’ range (e.g., [6–8, 91]). Others have investigated intraspecific

variation in reptile life history traits at local ecotypic [9, 10] or broader but incomplete geo-

graphic scales [15, 97–102]. Our range-wide analyses provide strong evidence for geographic

patterns in six of the nine examined Eastern Massasauga life history traits. Adult female SVL

and neonate mass increased with increasing mean annual precipitation (Table 3). Litter size

Fig 5. Relationship between mean annual temperature (untransformed) and litter size as explained by the top-ranked model using AICc (Table 3).

The shaded area represents the smoothed 95% CI using t-based approximations. County and district abbreviations are as in Fig 1.

doi:10.1371/journal.pone.0172011.g005
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decreased with increasing mean temperature, and the size–fecundity relationship and age-zero

growth both increased with increasing latitude. The proportion of gravid females also

increased with increasing latitude, but as discussed below, this may be the result of geographi-

cally varying detection bias in gravid and non-gravid females. We did not find evidence for

geographic variation in adult male SVL, neonate SVL, or age-one growth (Table 3). However,

this is likely due to a combination of small sample sizes (i.e., lack of power) and measurement

error rather than the absence of geographic variation in these life history traits. For example,

for age-one growth, some individuals captured late in the active season may have been errone-

ously included or excluded due to size overlap between age class one and older individuals,

impeding our ability to detect a geographic pattern (Fig 2).

Body size impacts key aspects of an organism such as physiology, survival, fecundity, and

longevity, making it one of the most important life history traits ([16, 103–105]. The tendency

Fig 6. Relationship between latitude (untransformed) and size–fecundity (natural log back-transformed) as explained by the top-ranked model

using AICc (Table 3). Female size was held constant at 55.2 cm SVL based on the average size of adult females in Cass County, Michigan. The shaded area

represents the smoothed 95% CI using t-based approximations. County and district abbreviations are as in Fig 1. The image of dam and offspring was taken

within minutes of parturition in Cass County, Michigan (Photograph credit, E. T. Hileman).

doi:10.1371/journal.pone.0172011.g006
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for body size to be larger in cooler environments is described by Bergmann’s rule [106] and

the temperature-size rule [107], which collectively represent the most taxonomically wide-

spread rules in biology (summarized in [4]). Bergmann’s rule describes variation in body size

that may include both plastic responses and heritable traits, whereas the temperature-size rule

describes variation in body size attributable to phenotypic plasticity [4]. Examples of this gen-

eral pattern of variation in body size abound in endotherms [108–110] and ectotherms [111–

113], but there are exceptions (e.g., [114, 115]). In reptiles, using latitude or temperature as

proxies, chelonians followed Bergmann’s rule (33 of 38 species), whereas the majority of squa-

mates (101 of 139 reviewed) followed its inverse (i.e., larger body sizes in warmer environ-

ments) [116].

In our analysis, mean precipitation best explained variation in adult female SVL rather than

latitude or mean temperature (as in Bergmann’s rule, or its inverse) or one of their correlates

(e.g., frost-free days, growing degree-days). However, given the distribution of the Eastern

Fig 7. Relationship between mean annual precipitation (untransformed) and neonate mass as explained by the top-ranked model using AICc

(Table 3). The shaded area represents the smoothed 95% CI using t-based approximations. County and district abbreviations are as in Fig 1.

doi:10.1371/journal.pone.0172011.g007
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Massasauga and influence the Great Lakes have on local climate, it is not entirely surprising

that females are larger where there is more precipitation. Westerly winds accumulate moisture

as they move across the Great Lakes, resulting in snow belts and higher rates of annual precipi-

tation principally off the eastern and southern shores [14]. Precipitation directly contributes to

primary productivity and thus may influence prey availability and abundance [10, 97, 117–

120]. In European Grass Snakes (Natrix natrix), females of a mainland population were signifi-

cantly larger than those of an island population due to the presence of larger prey (mainly

toads) on the mainland [121]. Based on fecal analyses, Eastern Massasauga populations in

Ontario and Ohio overlapped in 5 of 13 prey species [69]. However, snakes that consumed

smaller versus larger prey animals did not differ significantly in size in Ontario or Ohio [69].

Whether prey species differ between other populations enough to impact adult body size is

unknown [33, 122, 123]. A stronger influence on variation in adult body size may be the dura-

tion that prey and water are available to massasaugas during their active season [10]. Larger

SVLs were associated with higher precipitation in four lacertid species (Phoenicolacerta laevis,

Fig 8. Relationship between latitude (untransformed) and age-zero annual growth as explained by the top-ranked model using AICc (Table 3). The

shaded area represents the smoothed 95% CI using t-based approximations. County and district abbreviations are as in Fig 1.

doi:10.1371/journal.pone.0172011.g008
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Ophisops elegans, Acanthodactylus boskianus, and Mesalina guttulata, [124]). Similarly, body

size in the Eastern Side-blotched Lizard (Uta stansburiana stejnegeri) was significantly larger

in a wet year when compared to a dry year [125]. Conversely, in frog-eating snakes (Tropido-
nophis mairii), temporal variation in rainfall did not affect adult female body length but did

increase prey abundance and snake clutch size [119].

Our results suggest that multiple factors influence geographic variation in reproductive out-

put. We found evidence for a negative relationship between litter size and mean annual tem-

perature such that litter size is larger at cooler (more northerly) sites, thus corroborating the

results of Aldridge et al. (2008). This latitudinal pattern is not solely due to variation in mater-

nal size: when holding female size constant (55.2 cm, SVL; ANCOVA), litter size still increased

one neonate (95% CI = 0.2–1.8) for every 1.89˚increase in latitude. Thus, litter size increases

because females are generally larger in the north, especially where mean precipitation is higher,

and because the female size-specific fecundity is greater. Furthermore, neonate mass increased

with increasing mean precipitation, indicating that at those northerly sites where precipitation

is high, females produce larger litters and heavier offspring.

Geographic variation in sexual maturity and reproductive frequency may help explain size-

specific fecundity. Eastern Massasaugas reach sexual maturity between 2–3 years old at the

southern extent of their range (Clinton Co., IL, [19]) and 4–6 years old at the northern extent

(the Parry Sound District, Ontario, Canada, J. D. Rouse, unpublished data). On average, there

are 108 fewer frost-free days in the Parry Sound District than in Clinton County (NOAA, EC).

The shorter growing season in northern latitudes is likely an important contributor to geo-

graphic variation in the age of sexual maturity [19, 120]. In support of this, we found evidence

for latitudinal variation in annual growth rates for age-zero, with fast growers in the south and

slow growers in the north (a decrease of 1.1 cm, 95% CI = 0.3–1.8, for every 1˚increase in lati-

tude). Delayed sexual maturity in northern latitudes reduces reproductive potential. However,

increased survival [7], litter size ([19, 120], this study), and longevity [126] may serve as com-

pensatory mechanisms to overcome this reduction in reproductive potential. Based on our

results, maternal size alone cannot adequately explain the increase in litter size with increasing

latitude. An alternative explanation is that lower reproductive frequencies in the north may

provide females time to accumulate the necessary energetic capital to increase litter size with-

out a concomitant increase in female body size. Because active season length decreases along a

latitudinal gradient, reproductive frequencies in northern populations are predicted to

decrease with increasing latitude [120, 127]. Based on the proportion of gravid females, Eastern

Massasaugas may generally reproduce biennially in Illinois [19], Indiana (J. C. Marshall, pers

comm), Wisconsin (R. W. Hay, pers comm, but see [77] for a report of annual reproduction),

Michigan (E. T. Hileman, unpublished data), and Pennsylvania [75]. However, reproductive

frequencies for populations in northern latitudes are largely unknown.

Of the life history traits we analyzed, only the results from the proportion of gravid females

analysis yielded results contrary to previous predictions [120, 127]. The estimated proportion

of gravid females increased 0.07 (95% = 0.02–0.12) for every 1˚increase in latitude. If females

in the north require more time to recover from post-partum depletion of fat stores than

females in the south, it should be reflected in a negative relationship between the proportion

gravid and latitude. Markedly lower reproductive frequencies have been recorded in Timber

Rattlesnakes near the northern extent of their range [128, 129]. In the Australian elapid (Drys-
dalia coronoides), females reproduce annually in warmer climates and bi- or triennially in the

coldest climates [130]. In our experience, the thermoregulatory behavior of gravid Eastern

Massasaugas (e.g., [43]) increases their detectability compared to non-gravid females (E. T.

Hileman, unpublished data). In using proportion gravid as a surrogate for reproductive fre-

quency, we had assumed the bias in detection probability was constant across sites. This may
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not be the case given the heterogeneity of Eastern Massasauga habitats across their range (E. T.

Hileman, pers obs) and variation in sampling across sites. Viviparity buffers developing

embryos from unfavorable thermal conditions, thus allowing viviparous species to live in

colder climates than oviparous species [131, 132]. However, given the colder active-season

temperatures in the north, gravid females may need to bask more frequently during gestation

to maintain optimal embryonic temperatures and reduce the incidence of stillborns [133].

Additionally, parturition must occur early enough to permit neonates adequate time to locate

suitable hibernacula. Consequently, the apparent increase in the proportion of gravid females

with latitude may be an artifact of differences in behavior and detection probabilities of gravid

females across sites. Ideally, multistate models could be used to account for differences in

detection probability between gravid and non-gravid females and across sites [134]. Unfortu-

nately, these models are data hungry and require multiple years of capture-recapture data,

which will preclude their use for all but the largest of datasets (but see [135] for an example

with Meadow Viper, Vipera ursinii ursinii, using a 28-year capture-recapture dataset).

Reproductive frequency may be the most important but poorly understood aspect of repro-

ductive biology in snakes [18, 136]. Whether reproductive frequency is annual, biennial, trien-

nial, or less frequent, it is likely driven by age structure, thermal regulation opportunities, and

food availability [128, 129, 137–139]. Eastern Massasaugas are longer lived in the northeast than

in the southwest [7]. Thus, at higher latitudes age structure is likely skewed toward older adults,

with the largest individuals in areas with the highest precipitation. Reproductive frequency may

be higher in populations that are skewed toward larger adults in Eastern Cottonmouths (Agkis-
trodon piscivorus [138]). As evidence of this, larger individuals were more likely to be gravid and

possessed higher levels of lipid reserves than smaller adults [138, 140, 141]. Food availability in

turn is regulated, in part, by precipitation rates, season length, and the availability of appropriate

vegetation types to support prey populations. Due to the shorter active season at higher lati-

tudes, massasauga females in the north may need additional time to recover fat stores lost dur-

ing gestation and parturition and thus may reproduce less frequently than those in the south.

Because they are capital breeders, lowered reproductive frequencies should yield proportionally

larger energy budgets during years of reproduction, thus resulting in increased litter sizes.

In this study, we provide strong evidence for geographic variation in several Eastern Massa-

sauga life history traits. The degree to which the phenotypic gradients observed here are attribut-

able to plastic responses versus genetic dissimilarities between populations is unknown. Genetic

causes for phenotypic differences have been identified in the Western Gartersnake (Thamnophis
elegans) using common garden experiments with naïve individuals from local mountain

meadow or lakeshore habitats [142]. Conversely, Lake Erie Watersnakes (Nerodia sipedon insu-
larum) exhibited phenotypically plastic responses to the accidental introduction of a new prey

species, the round goby (Neogobius melanostomus), via increases to litter and maternal size after

the introduction [143, 144]. Previous analyses using microsatellite DNA suggest Eastern Massa-

sauga populations are genetically isolated even over short geographic distances (see Fig 2, [145]).

Such isolation might facilitate local adaptation in life history. Conveniently, for predictive model-

ing, disentangling the product of these two sources of variation is unnecessary.

Climate change is predicted to have a large impact on fauna and flora distributions [146,

147]. Reptiles may be particularly vulnerable due to their thermal constraints and life histories

[148]. Thus, understanding climatic variables associated with range-wide variation in life his-

tory traits will be useful in predicting life history trait responses to climate change.

Our findings suggest climatic variation in the Great Lakes region influences multiple

aspects of Eastern Massasauga life history, including body size, reproduction (litter and off-

spring size, size-fecundity relationship), and growth. Our results, in combination with informa-

tion on geographic variation in annual survival [8], will serve conservation efforts by facilitating
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new iterations of extinction risk models that are biologically more realistic than current models.

Of the life history traits we analyzed, size-specific fecundity may be the most important perfor-

mance measure to consider for future conservation efforts [149], especially if size-based models

are used to predict extinction risk. Our analyses also highlight remaining data gaps in Eastern

Massasauga life history. Geographic variation in age at maturity and in frequency of reproduc-

tion remain poorly documented and these variables can have large effects on population projec-

tions. In addition, mechanistic explanations for the associations we document between climatic

variables and Eastern Massasauga life history are speculative. A clearer understanding e.g., of

the relationship between climatic variables, primary productivity, and prey availability could

facilitate Eastern Massasauga conservation through habitat management strategies focused on

prey productivity, much as studies of Eastern Massasauga thermal biology have identified habi-

tat management strategies focused on basking habitats [55].
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92. GvoŽDÍK V, Moravec J, KratochvÍL L. Geographic morphological variation in parapatric Western Pale-

arctic tree frogs, Hyla arborea and Hyla savignyi: are related species similarly affected by climatic con-

ditions? Biological Journal of the Linnean Society. 2008; 95(3):539–56.

93. Guillot G, Rousset F. Dismantling the Mantel tests. Methods in Ecology and Evolution. 2013; 4

(4):336–44.

94. R: A language and environment for statistical computing [Internet]. R Foundation for Statistical Com-

puting. 2016. Available from: https://www.R-project.org/.

95. AICcmodavg: Model selection and multimodel inference based on (Q)AIC(c). R package version 2.0–

4 [Internet]. 2016. Available from: http://CRAN.R-project.org/package=AICcmodavg.

96. Wickham H. ggplot2: elegant graphics for data analysis. New York: Springer-Verlag; 2009.

97. Seigel RA, Fitch HS. Annual variation in reproduction in snakes in a fluctuating environment. Journal of

Animal Ecology. 1985; 54(2):497–505.

98. Zuffi MAL, Gentilli A, Cecchinelli E, Pupin F, Bonnet X, Filippi E, et al. Geographic variation of body

size and reproductive patterns in Continental versus Mediterranean asp vipers, Vipera aspis. Biologi-

cal Journal of the Linnean Society. 2009; 96(2):383–91.

99. Wei-Guo DU, Xiang JI, Yong-Pu Z, Zhi-Hua LIN, Xue-Feng XU. Geographic variation in offspring size

of a widespread lizard (Takydromus septentrionalis): importance of maternal investment. Biological

Journal of the Linnean Society. 2010; 101(1):59–67.

100. Tuttle KN, Gregory PT. Growth and maturity of a terrestrial ectotherm near its northern distributional

limit: does latitude matter? Canadian Journal of Zoology. 2012; 90(6):758–65.

101. Tuttle KN, Gregory PT. Reproduction of the plains garter snake, Thamnophis radix, near its northern

range limit: more evidence for a "fast" life history. Copeia. 2014; 2014(1):130–5.

102. Angilletta MJ Jr., Oufiero CE, Leache AD. Direct and indirect effects of environmental temperature on

the evolution of reproductive strategies: an information-theoretic approach. American Naturalist. 2006;

168(4):E123–35. doi: 10.1086/507880 PMID: 17004215

103. Peters RH. The ecological implications of body size. New York: Cambridge University Press; 1983.

104. Calder WA III. Size, function and life history. Cambridge: Harvard University Press; 1984.

105. Roff DA. The Evolution of life histories: theory and analysis. New York: Chapman & Hall; 1992.

106. Mayr E. Geographical character gradients and climatic adaption. Evolution. 1956; 10(1):105–8.

107. Atkinson D. Ectotherm life-history responses to developmental temperature. In: Johnston IA, Bennett

AF, editors. Animals and temperature: phenotypic and evolutionary adaptation. Society for Experi-

mental Biology Seminar Series. 1996. pp. 183–204.

108. Ashton KG, Tracy MC, Queiroz Ad. Is Bergmann’s rule valid for mammals? The American Naturalist.

2000; 156(4):390–415.

109. Ashton KG. Patterns of within-species body size variation of birds: strong evidence for Bergmann’s

rule. Global Ecology & Biogeography. 2002; 11(6):505.

110. Meiri S, Dayan T. On the validity of Bergmann’s rule. Journal of Biogeography. 2003; 30(3):331–51.

111. Ray C. The application of Bergmann’s and Allen’s Rules to the poikilotherms. Journal of morphology.

1960; 106:85–108. doi: 10.1002/jmor.1051060104 PMID: 14436612

112. Atkinson D. Temperature and organism size—A biological law for ectotherms? Advances in Ecological

Research. 1994; 25:1–58.

113. Fischer K, Fiedler K. Reaction norms for age and size at maturity in response to temperature: a test of

the compound interest hypothesis. Evolutionary Ecology. 2002; 16(4):333–49.

114. De Block M, Stoks R. Adaptive sex-specific life history plasticity to temperature and photoperiod in a

damselfly. Journal of Evolutionary Biology. 2003; 16(5):986–95. PMID: 14635914

115. Adams DC, Church JO. Amphibians do not follow Bergmann’s rule. Evolution. 2008; 62(2):413–20.

doi: 10.1111/j.1558-5646.2007.00297.x PMID: 17999723

116. Ashton KG, Feldman CR. Bergmann’s rule in nonavian reptiles: turtles follow it, lizards and snakes

reverse it. Evolution. 2003; 57(5):1151. PMID: 12836831

117. Madsen T, Shine R. Silver spoons and snake body sizes: prey availability early in life influences long-

term growth rates of free-ranging pythons. Journal of Animal Ecology. 2000; 69(6):952–8.

Climatic and geographic predictors of life history variation

PLOS ONE | DOI:10.1371/journal.pone.0172011 February 14, 2017 25 / 27

https://www.R-project.org/
http://CRAN.R-project.org/package=AICcmodavg
http://dx.doi.org/10.1086/507880
http://www.ncbi.nlm.nih.gov/pubmed/17004215
http://dx.doi.org/10.1002/jmor.1051060104
http://www.ncbi.nlm.nih.gov/pubmed/14436612
http://www.ncbi.nlm.nih.gov/pubmed/14635914
http://dx.doi.org/10.1111/j.1558-5646.2007.00297.x
http://www.ncbi.nlm.nih.gov/pubmed/17999723
http://www.ncbi.nlm.nih.gov/pubmed/12836831


118. Madsen T, Ujvari B, Shine R, Olsson M. Rain, rats and pythons: climate-driven population dynamics of

predators and prey in tropical Australia. Austral Ecol. 2006; 31(1):30–7.

119. Brown G, Shine R. Rain, prey and predators: climatically driven shifts in frog abundance modify repro-

ductive allometry in a tropical snake. Oecologia. 2007; 154(2):361–8. doi: 10.1007/s00442-007-0842-

8 PMID: 17724615

120. Fitch HS. Variation in clutch and litter size in new-world reptiles. University of Kansas Museum of Nat-

ural History Miscellaneous Publication. 1985;(76):1–76.

121. Madsen T, Shine R. Phenotypic plasticity in body sizes and sexual size dimorphism in European grass

snakes. Evolution. 1993; 47(1):321–5.

122. Keenlyne KD, Beer JR. Food habits of Sistrurus catenatus catenatus. Journal of Herpetology. 1973; 7

(4):382–4.

123. Holycross AT, Mackessy SP. Variation in the diet of Sistrurus catenatus (massasauga), with emphasis

on Sistrurus catenatus edwardsii (desert massasauga). Journal of Herpetology. 2002; 36(3):454–64.

124. Volynchik S. Climate-related variation in body dimensions within four Lacertid species. International

Journal of Zoology. 2014:1–14.

125. Worthington RD. Dry and wet year comparisons of clutch and adult body sizes of Uta stansburiana

stejnegeri. Journal of Herpetology. 1982; 16(3):332–4.

126. Scharf I, Feldman A, Novosolov M, Pincheira-Donoso D, Das I, Boehm M, et al. Late bloomers and

baby boomers: ecological drivers of longevity in squamates and the tuatara. Global Ecology and Bio-

geography. 2015; 24(4):396–405.

127. Klauber LM. Rattlesnakes: their habits, life histories, and influence on mankind. 2nd ed. Berkeley:

University of California Press; 1972.

128. Brown WS. Female reproductive ecology in a northern population of the timber rattlesnake, Crotalus

horridus. Herpetol J. 1991; 47(1):101–15.

129. Martin WH. Life history constraints on the timber rattlesnake (Crotalus horridus) at its climatic limits. In:

Schuett GW, Hoggren M, Douglas ME, Greene HW, editors. Biology of the vipers. 2002. pp. 285–306.

130. Shine R. Venomous snakes in cold climates: ecology of the australian genus Drysdalia (serpentes,

Elapidae). Copeia. 1981; 1981(1):14–25.

131. Blackburn DG. Evolutionary origins of viviparity in the reptilia II. Serpentes, Amphisbaenia, and

Ichthyosauria. Amphibia-Reptilia. 1985; 6(3):259–91.

132. Shine R. The evolution of viviparity in reptiles: an ecological analysis. Biology of Reptilia. 1985;

15:605–94.

133. Lourdais O, Shine R, Bonnet X, Guillon M, Naulleau G. Climate affects embryonic development in a

viviparous snake, Vipera aspis. Oikos. 2004; 104(3):551–60.

134. Nichols JD, Hines JE, Pollock KH, Hinz RL, Link WA. Estimating breeding proportions and testing

hypotheses about costs of reproduction with capture-recapture data. Ecology. 1994; 75(7):2052–65.

135. Baron J-P, Galliard J-F, Ferrière R, Tully T, Herrel A. Intermittent breeding and the dynamics of

resource allocation to reproduction, growth and survival. Functional Ecology. 2013; 27(1):173–83.

136. Seigel RA, Ford NB. Reproductive ecology. In: Seigel RA, Collins JT, Novak SS, editors. Snakes: ecol-

ogy and evolutionary biology. New York: McGraw-Hill; 1987. pp. 210–52.

137. Aldridge RD. Female reproductive-cycles of the snakes Arizona elegans and Crotalus viridis. Herpetol

J. 1979; 35(3):256–61.

138. Blem CR. Biennial reproduction in snakes: an alternative hypothesis. Copeia. 1982; 1982(4):961–3.

139. Diller LV, Wallace RL. Reproductive-biology of the northern pacific rattlesnake (Crotalus viridis orega-

nus) in northern Idaho. Herpetol J. 1984; 40(2):182–93.

140. Burkett RD. Natural history of the eastern cottonmouth moccasin, Agkistrodon piscivorus (Reptilia).

Univ Kans Publ Mus Nat Hist. 1966; 17:435–91.

141. Blem CR. Reproduction of the eastern cottonmouth Agkistrodon piscivorus piscivorus serpentes viper-

idae at the northern edge of its range. Brimleyana. 1981;(5):117–28.

142. Bronikowski AM. Experimental evidence for the adaptive evolution of growth rate in the garter snake

Thamnophis elegans. Evolution. 2000; 54(5):1760–7. PMID: 11108602

143. King RB, Ray JM, Stanford KM. Gorging on gobies: beneficial effects of alien prey on a threatened ver-

tebrate. Canadian Journal of Zoology. 2006; 84(1):108–15.

144. King RB, Stanford KM, Ray JM. Reproductive consequences of a changing prey base in island water-

snakes (Reptilia: Colubridae). South American Journal of Herpetology. 2008; 3(2):155–61.

Climatic and geographic predictors of life history variation

PLOS ONE | DOI:10.1371/journal.pone.0172011 February 14, 2017 26 / 27

http://dx.doi.org/10.1007/s00442-007-0842-8
http://dx.doi.org/10.1007/s00442-007-0842-8
http://www.ncbi.nlm.nih.gov/pubmed/17724615
http://www.ncbi.nlm.nih.gov/pubmed/11108602


145. Chiucchi JE, Gibbs HL. Similarity of contemporary and historical gene flow among highly fragmented

populations of an endangered rattlesnake. Molecular Ecology. 2010; 19(24):5345–58. Epub 2010/10/

23. doi: 10.1111/j.1365-294X.2010.04860.x PMID: 20964755

146. Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, et al. Extinction risk

from climate change. Nature. 2004; 427(6970):145–8. doi: 10.1038/nature02121 PMID: 14712274

147. Ackerly DD, Loarie SR, Cornwell WK, Weiss SB, Hamilton H, Branciforte R, et al. The geography of cli-

mate change: implications for conservation biogeography. Diversity and Distributions. 2010; 16

(3):476–87.

148. Gibbons JW, Scott DE, Ryan TJ, Buhlmann KA, Tuberville TD, Metts BS, et al. The global decline of

reptiles, Deja Vu amphibians. Bioscience. 2000; 50(8):653–66.

149. Haufler JB, Baydack RK, Campa H III, Kernohan BJ, Miller C, O’Neil LJ, et al. Performance measures

for ecosystem management and ecological sustainability. Wildl Soc Tech Rev. 2002; 02(1):33.

150. Jaeger CP, Duvall MR, Swanson BJ, Phillips CA, Dreslik MJ, Baker SJ, et al. Microsatellite and major

histocompatibility complex variation in an endangered rattlesnake, the eastern massasauga (Sistrurus

catenatus). Ecology and Evolution. 2016; 6(12):3991–4003. doi: 10.1002/ece3.2159 PMID:

27516858

Climatic and geographic predictors of life history variation

PLOS ONE | DOI:10.1371/journal.pone.0172011 February 14, 2017 27 / 27

http://dx.doi.org/10.1111/j.1365-294X.2010.04860.x
http://www.ncbi.nlm.nih.gov/pubmed/20964755
http://dx.doi.org/10.1038/nature02121
http://www.ncbi.nlm.nih.gov/pubmed/14712274
http://dx.doi.org/10.1002/ece3.2159
http://www.ncbi.nlm.nih.gov/pubmed/27516858

