## Multidesigns for Graph-Triples of Order 6

Atif Abueida \*

Mike Daven<sup>†</sup>

Wiebke S. Diestelkamp<sup>‡</sup>

Stephanie P. Edwards §

Darren B. Parker <sup>¶</sup>

MR Subject Classifications: 05C70, 05B40

Keywords: Multidecomposition, multidesign, multipacking, multicovering, graph decomposition.

#### Abstract

We call  $T = (G_1, G_2, G_3)$  a graph-triple of order t if the  $G_i$  are pairwise non-isomorphic graphs on t non-isolated vertices whose edges can be combined to form  $K_t$ . If  $m \ge t$ , we say T divides  $K_m$ if  $E(K_m)$  can be partitioned into copies of the graphs in T with each  $G_i$  used at least once, and we call such a partition a T-multidecomposition. In this paper, we study multidecompositions of  $K_m$  for graph-triples of order 6. We focus on graph-triples in which either one graph is a perfect matching or all graphs have 5 edges each. Moreover, we determine maximum multipackings and minimum multicoverings when  $K_m$  does not admit a multidecomposition.

## 1 Introduction

The graph decomposition problem, in which the edges of a graph are decomposed into copies of a fixed subgraph, has been widely studied (see [BHRS80], [BS77], and [Kot65]). In [AD03], A. Abueida and M. Daven extended this notion to graph-pairs. Given graphs  $G_1$  and  $G_2$  such that  $G_1 \cup G_2 = K_t$ , they sought complete graphs  $K_m$  with  $m \ge t$  whose edges can be partitioned into copies of  $G_1$  and  $G_2$  using at least one copy of each graph. They called such a partition a  $(G_1, G_2)$ -multidecomposition.

In the same paper, the authors studied maximum multipackings and minimum multicoverings when a multidecomposition is impossible. A maximum multipacking is a partitioning of a subset of  $E(K_m)$ into copies of  $G_1$  and  $G_2$ , using at least one copy of each  $G_i$  where the number of edges outside the partition, called the *leave*, is minimum. A minimum multicovering is a collection of copies of both  $G_i$ that use all edges of  $K_m$  at least once and where the number of edges used more than once, called the *padding*, is minimum. A multidesign refers to a multidecomposition, a maximum multipacking, or a minimum multicovering. The authors solved the existence problem for all optimal multidesigns of  $K_m$ into graph-pairs of order 4 and 5. In [ADR05], Abueida, Daven and K. Roblee proved similar results for multidesigns of  $\lambda K_m$  into graph-pairs of orders 4 and 5 for any value of  $\lambda \geq 1$ .

In this paper we define a graph-triple  $T = (G_1, G_2, G_3)$  of order t to be a triple of non-isomorphic graphs  $G_1, G_2$ , and  $G_3$  without isolated vertices that that factor  $K_t$  (i.e.  $G_1 \cup G_2 \cup G_3 = K_t$ ). We define T-multidecompositions, T-multipackings, T-multicoverings, T-multidesigns, and the notion of T dividing a graph analogously with the graph-pair definitions.

One can show that there are no graph-triples of order  $t \leq 5$ . We therefore consider graph-triples of order 6. An exhaustive search shows that there are 131 such graph-triples (see Appendix B). In Section 2, we determine the sizes of the leave and padding for all optimal multidesigns of  $K_m$  into graph-triples of

<sup>\*</sup>Department of Mathematics, University of Dayton, Dayton, Ohio 45469, USA

<sup>&</sup>lt;sup>†</sup>Division of Mathematics & Computer Science, Mount Saint Mary College, Newburgh, NY 12550, USA

<sup>&</sup>lt;sup>‡</sup>Department of Mathematics, University of Dayton, Dayton, Ohio 45469, USA

<sup>&</sup>lt;sup>§</sup>Department of Mathematics, University of Dayton, Dayton, Ohio 45469, USA

 $<sup>\</sup>P \textsc{Department}$  of Mathematics, University of Dayton, Dayton, Ohio 45469, USA

order 6 that include a perfect matching (see Theorem 2.10). In Section 3, we prove analogous results for graph-triples whose graphs have 5 edges each (see Theorem 3.12).

We list the graphs that are part of graph-triples of order 6 in Appendix A. In memory of Frank Harary, we will denote the  $i^{th}$  graph on 6 vertices with j edges and no isolated vertices with the notation  $H_i^j$ . The graphs are obtained from [HP73], where we remove graphs that cannot be part of a graph-triple of order 6. Note that the vertices are labeled a through f. If  $v_k \in V(K_m)$  for  $k \in \{a, b, c, d, e, f\}$ , we will denote by  $[v_a, v_b, v_c, v_d, v_e, v_f]$  the subgraph of  $K_m$  isomorphic to  $H_i^j$  in which each  $v_k$  plays the role of k. This will not be ambiguous as long as we specify  $H_i^j$ .

We write V(G) to denote the vertex set of G and  $\deg(v)$  to denote the degree of  $v \in V(G)$ . Further,  $\Delta(G) = \max\{\deg(v) : v \in G\}$ . We write  $G_1 + G_2$  to denote any graph with edge set  $E(G_1) \cup E(G_2)$ and  $kG_1$  to be a graph whose edges can be partitioned into k copies of  $G_1$ . We let  $V(K_n) = \mathbb{Z}_n$ , and for  $r \leq n$ , we consider  $\mathbb{Z}_r \subseteq \mathbb{Z}_n$  in the natural way. Note that  $\mathbb{Z}_r$  induces a subgraph of  $\mathbb{Z}_n$  isomorphic to  $K_r$ . We define  $G_{r,m} = K_m - K_r$  with  $V(G_{r,m}) = \mathbb{Z}_n$ , and we let the vertices from which the edges of  $K_r$  are removed be  $\mathbb{Z}_r$ . If  $m \geq 6$ , we have  $K_m = K_6 \cup G_{6,m}$ . We can factor  $K_6$  into any graph-triple of order 6, and so we get the following.

**Lemma 1.1.** Let  $m \ge 6$ , and let  $T = (G_1, G_2, G_3)$  be a graph-triple of order 6. Suppose  $G_{6,m}$  has a *T*-multipacking with leave *L* (resp. a *T*-multicovering with padding *P*). Then  $K_m$  has a *T*-multipacking with leave *L* (resp. a *T*-multicovering with padding *P*).

For other terminology used but not defined herein, see [BM79], [LR97].

# **2** Multidesigns for Graph-Triples $(G_1, G_2, H_1^3)$

In this section, we determine multidesigns of  $K_m$  for graph-triples  $T = (G_1, G_2, H_1^3)$  of order 6. The multidesigns are generated recursively. We begin with a lemma.

#### **Lemma 2.1.** $H_1^3$ divides $K_{3,m}$ for all $n \ge 3$ .

*Proof.* The cases m = 3, 4, 5 are easy to prove. Let m = 3k + r with  $k \ge 0$ , and r = 3, 4, or 5. We have  $K_{3,m} = K_{3,r} + kK_{3,3}$ . Then  $H_1^3$  divides  $K_{3,r}$  and  $K_{3,3}$ , which completes the proof.

This gives us the following.

**Lemma 2.2.** Let  $T = (G_1, G_2, H_1^3)$  be a graph-triple of order 6, and let  $m \ge 6$ ,  $m \ne 7$ . For each *T*-multidesign of  $K_m$ , there is a *T*-multidesign of  $K_{m+3}$  with the same leave or padding.

Proof. Take  $\mathbb{Z}_m \subseteq V(K_{m+3})$ , whose induced subgraph is  $K_m$ , which has the given *T*-multidesign. Without loss of generality,  $\mathbb{Z}_6$  is the vertex set of  $H_1^3 \cong [0, 1, 2, 3, 4, 5]$  in the *T*-multidesign. If  $m \neq 8$ , remove the edges of  $H_1^3$ , and add in  $H_1^3 \cong [0, 1, m, m+1, 2, m+2]$ , [2, 3, m+1, m+2, 4, m], [4, 5, m, m+2, 0, m+1], [1, m, 3, m+1, 5, m+2], [0, m, 2, m+1, 4, m+2], [1, m+1, 3, m+2, 5, m], [0, m+2, 2, m, 4, m+1], [1, m+2, 3, m, 5, m+1]. The remaining edges between  $\mathbb{Z}_m$  and  $\{m, m+1, m+2\}$  form a graph isomorphic to  $K_{3,m-6}$ , which can be filled in with copies of  $H_1^3$  by Lemma 2.1. The leave or padding is unchanged.

What remains is the case m = 8. Now  $\mathbb{Z}_8$  induces a  $K_8$  in  $K_{11}$ , which has the given *T*-multidesign. We remove  $H_1^3 \cong [0, 1, 2, 3, 4, 5]$  and insert  $H_1^3 \cong [6, 8, 7, 9, 5, 10]$ , [6, 9, 7, 10, 0, 8], [6, 10, 7, 8, 1, 9], [8, 9, 3, 10, 4, 5], [9, 10, 4, 8, 2, 3], [8, 10, 2, 9, 0, 1], [0, 9, 1, 8, 2, 10], [3, 8, 4, 10, 5, 9],

[0, 10, 2, 8, 3, 9], [1, 10, 4, 9, 5, 8] gives us a *T*-multidesign with the same leave or padding as that in  $K_8$ .  $\Box$ 

Lemma 2.2 reduces our problem to determining optimal multidesigns for each congruence class modulo 3. The case  $m \equiv 0 \pmod{3}$  is easily disposed of by a factorization of  $K_6$ . It is different for  $m \equiv 1, 2 \pmod{3}$ , as in those cases not every multidesign is a multidecomposition. For  $m \equiv 1 \pmod{3}$ , we have the following.

**Theorem 2.3.** Let  $T = (G_1, G_2, H_1^3)$  be a graph-triple of order 6.

- 1. T divides  $K_{10}$ .
- 2. If  $G_1 = H_i^8$  and  $G_2 = H_j^4$ , then T does not divide  $K_7$ .
- 3. If  $G_1 = H_i^7$  and  $G_2 = H_j^5$ , then T divides  $K_7$  if and only if  $(i, j) \in \{(4, 2), (5, 2), (5, 3), (5, 7), (6, 2), (8, 3)\}.$
- 4. If  $G_1 = H_i^6$  and  $G_2 = H_i^6$ , then T divides  $K_7$  if and only if  $(i, j) \neq (1, 8)$ .

*Proof.* For part (1), an  $H_1^3$ -decomposition of  $G_{6,10}$  is  $H_1^3 \cong [0, 6, 1, 7, 8, 9]$ , [7, 8, 2, 6, 3, 9], [6, 7, 4, 8, 5, 9], [6, 8, 0, 7, 1, 9], [7, 9, 2, 8, 3, 6], [6, 9, 4, 7, 5, 8], [0, 8, 1, 6, 2, 7], [4, 9, 3, 7, 5, 6], [0, 9, 1, 8, 4, 6], [2, 9, 3, 8, 5, 7]. By Lemma 1.1, T divides  $K_{10}$ 

For (2) and (3), assume T divides  $K_7$ . Then  $K_7 = H_i^8 + H_j^4 + 3H_1^3$ , and so  $K_7 - H_i^8 - H_j^4 \cong 3H_1^3$ . Thus, any vertex in  $K_7 - H_i^8 - H_j^4$  must have degree 3 or less. We assume  $V(H_i^8) = \mathbb{Z}_6$  and note that the vertex 6 does not appear in  $H_i^8$ .

Now we attack (2). If  $(i, j) \neq (4, 3)$ , then  $\Delta(H_j^4) = 2$ , so in  $K_7 - H_i^8 - H_j^4$  we have deg $(6) \geq 4$ . But this implies that  $H_1^3$  does not divide  $K_7 - H_i^8 - H_j^4$ , a contradiction. For the remaining triple  $T = (H_4^8, H_3^4, H_1^3)$ , assume that deg(0) = 1 in  $H_4^8$ , and observe that  $\Delta(H_3^4) = 3$ . In  $K_7 - H_4^8 - H_3^4$  we have deg $(0) \geq 4$  or deg $(6) \geq 4$  (or both), and thus  $H_1^3$  does not divide  $K_7 - H_4^8 - H_3^4$ . This is a contradiction, and so T does not divide  $K_7$ .

For (3), the *T*-decompositions of  $K_7$  with  $(i, j) \in \{(4, 2), (5, 2), (5, 3), (5, 7), (6, 2), (8, 3)\}$  are given in Appendix C. If (i, j) = (9, 4), we may assume that  $\deg(0) = \deg(3) = 1$  in  $H_9^7$ , and we observe that  $\Delta(H_4^5) = 3$ . In  $K_7 - H_9^7 - H_4^5$  we have  $\deg(0) \ge 4$ ,  $\deg(3) = 6$ , or  $\deg(6) \ge 4$ , and thus *F* does not divide  $K_7 - H_9^7 - H_4^5$ . If  $(i, j) \in \{(1, 1), (2, 1), (2, 5), (3, 1), (3, 6), (10, 1)\}$ , then  $\Delta(H_2^5) = 2$ , so in  $K_7 - G_1 - G_2$  we have  $\deg(6) \ge 4$ . Thus, *F* does not divide  $K_7 - G_1 - G_2$ , and so *T* does not divide  $K_7$ .

For (4), the *T*-multidecompositions for  $(i, j) \neq (1, 8)$  are given in Appendix C. If  $(H_1^6, H_8^6, H_1^3)$  divides  $K_7$ , we can assume  $H_1^6 \cong [0, 1, 2, 3, 4, 5]$ . Since  $\Delta(H_1^6) = \Delta(H_8^6) = 2$ , the vertex 6 has degree at least 4 in  $K_7 - H_1^6 - H_8^6$ . Thus, the remaining edges cannot be partitioned into copies of  $H_1^3$ , and so there must be a copy of either  $H_1^6$  or  $H_8^6$  remaining. This is impossible if  $V(H_8^6) = \mathbb{Z}_6$ . Thus, without loss of generality,  $H_8^6 \cong [6, 1, 0, 2, 4, 3]$ . But then there are no copies of  $H_8^6$  and a unique copy [1, 4, 6, 0, 3, 5] of  $H_1^6$  in  $K_7 - H_1^6 - H_8^6$ . The edges 26 and 25, remain, which cannot be part of  $H_1^3$ .

For the remaining multidesigns of  $K_7$ , note that a  $(H_i^8, H_j^4, H_1^3)$ - multipacking can have a leave of no fewer than two edges.

**Theorem 2.4.** Let T be a graph-triple of order 6.

- 1. If  $T = (H_1^6, H_8^6, H_1^3)$ , then there exist T-multidesigns of  $K_7$  whose leave and padding are both  $P_4$ .
- 2. If  $T = (H_i^8, H_i^4, H_1^3)$ , then there exist T-multidesigns of  $K_7$  with leave  $P_2 + P_2$  and padding  $P_2$ .
- 3. If  $T = (H_i^7, H_j^5, H_1^3)$ , then there exists a *T*-multipacking of  $K_7$  with leave  $P_2$  for all  $(i, j) \neq (3, 6)$ . If (i, j) = (3, 6), we have an optimal leave of  $P_3 + P_2$ .
- 4. If  $T = (H_i^7, H_j^5, H_1^3)$ , then there exists a T-multicovering of  $K_7$  with padding  $P_2$  for  $(i, j) \neq (10, 1)$ . For (i, j) = (10, 1), we get a padding of  $P_3$ .

*Proof.* For (1), we have the *T*-multipacking given by  $H_1^6 \cong [0, 1, 2, 3, 4, 5]$ ,  $H_8^6 \cong [0, 2, 1, 3, 5, 6]$ , and  $H_1^3 \cong [0, 4, 1, 6, 2, 5]$ , [0, 3, 1, 4, 5, 6]. The leave is  $\{2, 4\}$ ,  $\{4, 6\}$ ,  $\{3, 6\}$ , which can be part of a *T*-multicovering with a 3-edge padding. This is clearly optimal.

The remaining multidesigns are listed in Appendix C. Part (2) follows easily, and so it suffices to prove that for  $T = (H_i^7, H_j^5, H_1^3)$ , we have neither a *T*-multipacking with leave  $P_2$  for (i, j) = (3, 6) nor a *T*-multicovering with leave  $P_2$  for (i, j) = (10, 1). These can be proven using arguments similar to those in Theorem 2.3(2) and (3).

We now consider the case  $m \equiv 2 \pmod{3}$ . We begin with the case  $T = (H_i^6, H_i^6, H_1^3)$ , in which a T-multidecomposition is impossible. In Appendix C, we determine a T-multipacking with leave  $P_2$  for each graph-triple  $T = (H_i^6, H_j^6, H_1^3)$ . Note that by adding in the remaining edge and two other edges disjoint to the first, we get T-multicoverings with leaves  $P_3$  and  $P_2 + P_2$ . This gives us the following.

**Theorem 2.5.** Let  $T = (H_i^6, H_j^6, H_1^3)$  and  $m \equiv 2 \pmod{3}$ . Then  $K_m$  has T-multidesigns with leave  $P_2$ and padding  $P_2 + P_2$ .

For each of the remaining triples  $T = (G_1, G_2, H_1^3)$ , we demonstrate a T-multidecomposition of  $K_8$ . We begin with the case  $T = (H_i^8, H_i^4, H_1^3)$ . Let  $H \cong K_6$  be the graph induced by  $\mathbb{Z}_6$ , and factor it into T. Let  $H' \cong G_{6,8}$  be the complement of H.

**Lemma 2.6.** For any  $1 \le j \le 3$ , if we remove the edges of  $H_j^4$ , from H, we can partition these edges and some of the edges of H' using only copies of  $H_1^3$  to obtain (up to relabeling V(H)) the graph with the edge set  $E(H) \cup \{\{6,7\}, \{0,6\}, \{1,6\}, \{4,7\}, \{5,7\}\}$ .

*Proof.* Each  $H_j^4$  has two connected components. After removing edges of  $H_j^4$  from H, we get our first copy of  $H_1^3$  from an edge of each component of  $H_j^4$  and  $\{6,7\}$ . Two edges of  $H_j^4$  remain. Our next copy of  $H_1^3$  uses one of these edges. The other edges are formed by the vertices of the remaining edge of  $H_i^4$ and 6 and 7, respectively, unless there is only one additional vertex available on the remaining edge. In this case, we choose the second vertex of the edge from one of the other vertices in H. There are now two vertices in H whose edges with 6 and 7 have not been used, and that are not on the remaining edge of  $H_i^4$ . Our last copy of  $H_1^3$  is formed from the edges formed by these two vertices with 6 and 7, respectively, and the remaining edge of  $H_i^4$ . This completes the proof. 

We then get a T-multidecomposition for all graph-triples with  $j \neq 2$ .

**Corollary 2.7.** Any graph-triple  $T = (H_i^8, H_j^4, H_1^3)$  divides  $K_8$  for j = 1, 3.

*Proof.* Fill in edges of  $K_8$  as in Lemma 2.6. We partition the remaining edges with either  $H_1^4 \cong$  $[2, 6, 3, 0, 7, 1], [2, 7, 3, 4, 6, 5] \text{ or } H_3^4 \cong [2, 6, 3, 0, 7, 4], [1, 7, 2, 5, 6, 3].$ 

We turn our attention to  $H_2^4$ .

**Lemma 2.8.** Given any factorization of the graph H into T, and any  $i, j \in \mathbb{Z}_6$ , we can remove the edges of  $H_1^3$  from H and then add two copies of  $H_1^3$  to achieve the graph with edge set  $E(H) \cup \{67, i6, j7\}$ .

Proof. Without loss of generality, let  $H_1^3 \cong [0, 1, 2, 3, 4, 5]$ . If  $ij \notin E(H_1^3)$ , we can assume i = 0, j = 5and add in  $H_1^3 \cong [0, 1, 4, 5, 6, 7]$ , [2, 3, 0, 6, 5, 7]. If  $ij \in E(H_1^3)$ , we can assume i = 0, j = 1 and add in  $H_1^3 \cong [0, 6, 1, 7, 2, 3]$ , [0, 1, 6, 7, 4, 5]. Each gives us the desired graph.

**Corollary 2.9.**  $(H_i^8, H_2^4, H_1^3)$  divides  $K_8$ .

*Proof.* Relabel V(H) so that  $H_2^4 \cong [0, 1, 2, 3, 4, 5]$ , and remove these vertices. We remove and insert edges as in Lemma 2.8 with i = 0, j = 5. We add in  $H_1^3 \cong [2, 3, 1, 6, 4, 7], [1, 2, 0, 7, 4, 6]$ , and the remaining edges are  $H_2^4 \cong [5, 6, 3, 7, 0, 1], [1, 7, 2, 6, 4, 5].$ 

Now we consider T-multidecompositions of  $K_8$  for graph-triples of the form  $T = (H_i^7, H_j^5, H_k^3)$ . As before, we take an induced  $H \cong K_6$  with  $V(H) = \mathbb{Z}_6$  in  $K_8$  and factor it into T. Let  $H' \cong G_{6,8}$  be the complement of H.

Consider j = 1. We remove and add in copies of  $H_1^3$  as in Lemma 2.8 with i = 0, j = 5, and we relabel V(H) so that  $H_1^5 \cong [3, 4, 5, 0, 1, 2]$ . Remove these edges, and add in  $H_1^5 \cong [6, 4, 5, 0, 7, 2], [7, 1, 0, 5, 6, 3],$ [3, 4, 7, 6, 1, 2].

For j = 2, we remove  $H_1^3 \cong [0, 1, 2, 3, 4, 5]$  from H and then add in  $H_1^3 \cong [0, 1, 2, 3, 6, 7]$ , [1, 7, 2, 6, 4, 5]. We partition the remaining edges with  $H_2^5 \cong [7, 5, 0, 1, 6, 4]$ , [6, 5, 0, 2, 7, 3]. For j = 3, we remove  $H_3^5 \cong [0, 1, 2, 3, 5, 4]$ . We then add in  $H_1^3 \cong [1, 4, 2, 3, 6, 7]$  and  $H_3^5 \cong$ 

[0, 7, 2, 1, 6, 3], [2, 6, 1, 0, 7, 5], [5, 4, 6, 0, 1, 7].

Next, consider j = 4. We remove  $H_4^5 \cong [0, 1, 4, 3, 5, 2]$ , and add in  $H_1^3 \cong [1, 2, 3, 4, 5, 6]$ , along with  $H_4^5 \cong [0,6,7,3,5,2], \ [4,6,1,0,7,3], \ [5,4,7,0,2,1].$ 

For j = 5, we remove  $H_5^5 \cong [0, 1, 3, 4, 5, 2]$ . Without loss of generality, the copy of  $H_1^3$  in the factorization of H is [0, 3, 1, 4, 2, 5]. We remove these edges and add in  $H_1^3 \cong [7, 0, 6, 5, 3, 4], [6, 4, 7, 1, 0, 3]$ . We then add in  $H_5^5 \cong [6, 7, 0, 1, 2, 3], [6, 0, 7, 4, 5, 2], [7, 5, 6, 1, 4, 2].$ 

We next consider j = 6. We remove  $H_6^5 \cong [0, 1, 4, 5, 2, 3]$  from the factorization of H. We add in

$$\begin{split} H_1^3 &\cong [0,3,1,2,6,7] \text{ and } H_6^5 &\cong [0,6,4,5,1,7], [6,4,2,3,7,5], [6,2,1,0,7,3]. \\ \text{Finally, consider } j = 7. \text{ We remove } H_7^5 &\cong [0,1,5,4,3,2] \text{ from the factorization of } H. \text{ We add in } \\ H_1^3 &\cong [6,4,7,0,2,3] \text{ and } H_7^5 &\cong [0,1,7,3,2,6], [1,2,3,6,4,7], [6,7,0,2,4,5]. \end{split}$$

We summarize our results as follows.

**Theorem 2.10.** Let  $T = (G_1, G_2, H_1^3)$  be a graph-triple of order 6, and let  $m \ge 6$ .

- 1. If  $m \neq 7$ , and if either  $m \equiv 0, 1 \pmod{3}$  or  $(G_1, G_2) \neq (H_i^6, H_j^6)$  for all  $1 \leq i, j \leq 11$ , then T divides  $K_m$ .
- 2. T divides  $K_7$  if and only if either  $(G_1, G_2) = (H_i^7, H_i^5)$  with  $(i, j) \in$  $\{(4,2), (5,2), (5,3), (5,7), (6,2), (8,3)\}$  or  $(G_1, G_2) = (H_i^6, H_j^6)$  with  $(i,j) \neq (1,8)$ .
- 3. Let  $T = (H_i^6, H_j^6, H_1^3)$  with  $m \equiv 2 \pmod{3}$ .  $K_m$  has T-multidesigns with leave  $P_2$  and padding  $P_2 + P_2$ .
- 4. If  $T = (H_1^6, H_8^6, H_1^3)$ , then there exist T-multidesigns of  $K_7$  whose leave and padding are both  $P_4$ .
- 5. If  $T = (H_i^8, H_i^4, H_1^3)$ , then there exist T-multidesigns of  $K_7$  with leave  $P_2 + P_2$  and padding  $P_2$ .
- 6. If  $T = (H_i^7, H_j^5, H_1^3)$ , then there exist T-multipackings of  $K_7$  with leave  $P_2$  for all  $(i, j) \neq (3, 6)$ . If (i, j) = (3, 6), we have an optimal leave of  $P_3 + P_2$ .
- 7. If  $T = (H_i^7, H_j^5, H_1^3)$ , then there exist T-multicoverings of  $K_7$  with leave  $P_2$  for  $(i, j) \neq (10, 1)$ . For (i, j) = (10, 1), we get an optimal leave of  $P_3$ .

#### Multidesigns for Graph-Triples $(H_i^5, H_i^5, H_k^5)$ 3

We now consider graph-triples of order 6 of the form  $T = (H_i^5, H_j^5, H_k^5)$ . We construct multidesigns recursively as before, but we address T- multidecompositions separately. Note that  $K_m$  has  $\frac{m(m-1)}{2}$ edges, so a necessary condition for a T-multidecomposition is  $m \equiv 0, 1 \pmod{5}$ . The following gives us our induction step and delineates the necessary base cases.

**Lemma 3.1.** Suppose that  $T = (H_i^5, H_i^5, H_k^5)$  is a graph-triple of order 6. Then

- 1. If T divides  $K_{10}$ , and if the edges of  $K_{5,5}$ ,  $G_{5,10}$ , and  $G_{6,11}$  can be partitioned into copies of  $H_i^5$ ,  $H_j^5$ , and  $H_k^5$ , then T divides all  $K_m$  for  $m \ge 6$  and  $m \equiv 0,1 \pmod{5}$ .
- 2. If T divides  $K_{10}$  and  $K_{11}$ , and if the edges of  $K_{5,5}$ ,  $K_{2,5}$ , and  $G_{6,n}$  can be partitioned into copies of  $H_i^5$ ,  $H_j^5$ , and  $H_k^5$  for n = 10 or 11, then T divides all  $K_m$  for  $n \ge 6$  and  $m \equiv 0 \pmod{5}$ .
- 3. If T divides  $K_{11}$  and  $K_{16}$ , and  $K_{5k}$  for all  $k \ge 2$ , and if the edges of  $K_{5,5}$  and  $K_{2,5}$  can be partitioned into copies of  $H_i^5$ ,  $H_i^5$ , and  $H_k^5$ , then T divides all  $K_m$  for  $m \ge 6$  and  $m \equiv 1 \pmod{5}$ .
- 4. If T divides  $K_{10}$ , and if the edges of  $K_{2,5}$  can be partitioned into copies of  $H_i^5$ ,  $H_j^5$ , and  $H_k^5$ , then T divides  $K_{16}$

Proof. For (1), we start with  $m \equiv 0 \pmod{5}$ . Let m = 5k. By assumption, T divides  $K_{10}$ , which gives us the case k = 2. For  $k \geq 3$ , partition the vertices of  $K_m$  into sets A, B, and C of sizes 5, 5, and 5k - 10, respectively. By induction, T divides  $K_{5k-5}$ , which is isomorphic to the graph induced by  $B \cup C$ . The remaining edges among  $A \cup B$  form  $G_{5,10}$ , and the remaining edges between B and C can be partitioned into k - 2 copies of  $K_{5,5}$ . For  $m \equiv 1 \pmod{5}$ , let m = 5k + 1. A factorization of  $K_6$  gives us k = 1. For  $k \geq 2$ , partition the vertices of  $K_m$  into sets A, B, and C of sizes 5, 6, and 5k - 10, respectively. By induction, T divides  $K_{5k-4}$ , which is isomorphic to the graph induced by  $B \cup C$ . The remaining edges of  $A \cup B$  form  $G_{6,11}$ , and the remaining edges between A and C form k-2 copies of  $K_{5,5}$ . This gives us (1).

For (2), we first show that T divides  $K_{15}$ . Partition the vertices of  $K_{15}$  into sets A, B, and C of size 4, 5, and 6, respectively. Now T divides the graph induced by  $B \cup C$ . The remaining edges among  $A \cup C$  form a copy of  $G_{6,10}$  and the remaining edges among  $A \cup B$  form two copies of  $K_{2,5}$ , which gives us the case n = 10. The case n = 11 is similar. For m = 5k,  $k \ge 4$ , partition the vertices of  $K_{5k}$  into sets A and B of size 10 and 5k - 10, respectively. We have that T divides the graphs induced by A and B. The remaining edges form 2k - 4 copies of  $K_{5,5}$ .

For (3), we need only show the result for m = 5k + 1,  $k \ge 4$ . We partition the vertices of  $K_{5k+1}$  into sets A, B, and C of sets 5, 6, and 5k - 10, respectively. By induction, T divides the graph induced by  $A \cup B$ , and T divides the graph induced by C by assumption. The remaining edges among  $A \cup C$  form k-2 copies of  $K_{5,5}$ , and the remaining edges among  $B \cup C$  form 3k - 6 copies of  $K_{2,5}$ , which completes the proof.

For (4), we partition the vertices of  $K_{16}$  into sets A and B of size 6 and 10, respectively. We factor the graph induced by A into T. Also, T divides the graph induced by B. The remaining edges form six copies of  $K_{2,5}$ , which completes the proof.

For the base cases, we first consider triples with  $H_1^5$ . By Lemmas 1.1 and 3.1(1), we require only the following lemma.

**Lemma 3.2.**  $H_1^5$  divides  $K_{5,5}$ ,  $G_{5,10}$ ,  $G_{6,10}$ , and  $G_{6,11}$ .

*Proof.* For  $K_{5,5}$ , let the partite sets be given by  $\mathbb{Z}_5$  and  $\{a, b, c, d, e\}$ . An  $H_1^5$ -decomposition is [b, 2, c, 0, a, 1], [e, 4, a, 1, d, 3], [c, 3, b, 2, d, 4], [e, 0, d, 3, a, 2], [c, 1, e, 4, b, 0].

For  $G_{5,10}$ , an  $H_1^5$ -decomposition is [7, 1, 8, 0, 5, 6], [5, 2, 8, 0, 6, 9],

[5,3,8,0,9,7], [7,4,9,1,5,8], [6,3,7,2,9,8], [6,4,5,3,9,1], [7,2,6,4,8,0].

An  $H_1^5$ -decomposition of  $G_{6,10}$  is [1, 8, 9, 6, 0, 7], [7, 5, 8, 6, 1, 9],

[8, 2, 7, 6, 9, 3], [9, 4, 8, 7, 6, 5], [8, 0, 9, 7, 3, 6], [6, 2, 9, 8, 7, 4].

For  $G_{6,11}$ , an  $H_1^5$ -decomposition is [8, 9, 1, 0, 6, 7], [6, 8, 4, 5, 10, 9], [10, 6, 3, 2, 9, 7], [4, 7, 2, 0, 8, 10], [8, 5, 9, 0, 7, 1], [10, 3, 9, 4, 6, 2], [7, 5, 6, 2, 8, 3], [10, 1, 6, 4, 9, 0].

Now we move on to the case i = 2. Lemma 1.1 and Lemma 3.1(2), (3), and (4) reduce our problem to the following two lemmas:

**Lemma 3.3.** There exists an  $H_2^5$ -decomposition of  $K_{5,5}$ ,  $K_{2,5}$ , and  $G_{6,10}$ .

*Proof.* For  $K_{5,5}$ , let the partite sets be  $\mathbb{Z}_5$  and  $\{a, b, c, d, e\}$ . An  $H_2^5$ -decomposition is [1, d, a, b, 0, c], [0, d, a, b, 1, e], [3, d, a, b, 2, c], [4, d, a, e, 3, b], [2, d, a, c, 4, e].

For  $K_{2,5}$ , we have partite sets  $\{a, b\}$  and  $\mathbb{Z}_5$ . An  $H_2^5$ -decomposition is [b, 3, 0, 1, a, 2], [a, 3, 0, 1, b, 4]. Finally, for  $G_{6,10}$ , an  $H_2^5$ -decomposition is [7, 1, 8, 9, 6, 0], [6, 3, 7, 9, 8, 2], [2, 7, 6, 8, 1, 9], [4, 6, 7, 8, 3, 9], [0, 8, 6, 7, 5, 9], [8, 5, 6, 9, 7, 4].

**Lemma 3.4.** There exists a T-multidecomposition of  $K_{11}$ .

*Proof.* We factor the  $K_6$  induced by  $\mathbb{Z}_6$  into T so that  $H_2^5 \cong [4, 5, 2, 3, 0, 1]$ . Remove  $\{0, 2\}$  and have it reappear as  $\{0, 10\}$ . This will still be a copy of  $H_2^5$ . We partition the remaining edges into  $H_2^5 \cong [7, 1, 8, 9, 6, 0]$ , [9, 3, 8, 6, 7, 2], [8, 1, 6, 7, 10, 3], [10, 5, 7, 8, 9, 4], [6, 3, 8, 9, 10, 2], [7, 3, 0, 2, 8, 5], [5, 9, 7, 8, 4, 6], [0, 2, 6, 10, 1, 9]

What remains is the triple  $(H_3^5, H_4^5, H_7^5)$ . Lemmas 1.1 and 3.1(1) reduce our problem to the following.

Lemma 3.5. The following are true:

- 1. There exist an  $(H_3^5, H_4^5)$ -multidecompositions of  $K_{5,5}$  and  $G_{5,10}$ .
- 2. There exists an  $(H_3^5, H_4^5, H_7^5)$ -multidecomposition of  $G_{6,10}$ .
- 3. There exists an  $H_4^5$ -decomposition of  $G_{6,11}$ .

*Proof.* For (1), we start with  $K_{5,5}$ . As before, let the partite sets be  $\mathbb{Z}_5$  and  $\{a, b, c, d, e\}$ . An  $(H_3^5, H_4^5)$ - $\text{multidecomposition is } H_3^5 \cong [d, 1, e, 0, 4, b], [b, 3, a, 4, 0, d] \text{ and } H_4^5 \cong [2, a, 0, b, c, 1], [2, e, 4, c, d, 3], [1, c, 2, b, d, 3].$ 

For  $G_{5,10}$ , an  $(H_3^5, H_4^5)$ -multidecomposition is  $H_3^5 \cong [1, 9, 5, 3, 8, 2]$  and  $H_4^5 \cong [0, 5, 6, 2, 3, 1]$ , [9, 8, 7, 2, 3, 4], [4, 9, 6, 0, 1, 3], [2, 5, 8, 1, 3, 4],

[8, 0, 7, 5, 4, 9], [4, 6, 7, 1, 9, 8].

For (2), an  $(H_3^5, H_4^5, H_7^5)$ -multidecomposition of  $G_{6,10}$  is  $H_3^5 \cong [2, 6, 0, 7, 8, 1], [3, 6, 5, 7, 8, 4], [8, 2, 7, 6, 1, 9], [6, 8, 3, 7, 9, 0], H_4^5 \cong$ 

[1, 7, 9, 4, 3, 8], and  $H_7^5 \cong [5, 8, 7, 4, 6, 9]$ .

Finally, for (3), an  $H_4^5$ -decomposition of  $G_{6,11}$  is [0, 6, 7, 2, 5, 1],

[2, 8, 9, 4, 5, 1], [0, 7, 10, 4, 5, 1], [2, 6, 8, 5, 3, 4], [0, 8, 10, 1, 6, 4], [0, 9, 7, 8, 4, 1], [3, 6, 9, 2, 10, 5], [0, 10, 3, 7, 9, 2].

Putting Lemma 3.1, Lemma 3.2, Lemma 3.3, and Lemma 3.5 together, we get the following.

**Theorem 3.6.** For each  $m \ge 6$  with  $m \equiv 0, 1 \pmod{5}$ , any triple  $T = (H_i^5, H_i^5, H_k^5)$  divides  $K_m$ .

We now turn to multidesigns for the cases  $m \equiv 2, 3, 4 \pmod{5}$ . If  $m \equiv 2, 4 \pmod{5}$ , then the number of edges of  $K_m$  is congruent 1 mod 5, and so an optimal multidesign must have at least a 1-edge leave or 4-edge padding. If  $m \equiv 3 \pmod{5}$ , the number of edges is congruent 3 mod 5, and so an optimal multidesign must have at least a 3-edge leave or 2-edge padding. We show that each of these lower bounds is achieved for all triples.

We begin with some designs that will prove useful to us.

#### Lemma 3.7.

- 1. There are  $H_i^5$ -packings of  $K_{6,6}$  with leave  $P_2$  for i = 1, 2, 3, 4.
- 2.  $H_i^5$  divides  $K_{4,5}$  for i = 1, 3.
- 3.  $H_3^5$  divides  $K_{3,5}$  and  $H_1^5$  divides  $K_{5,7}$ .

*Proof.* Let  $\mathbb{Z}_6$  and  $\{a, b, c, d, e, f\}$  be the partite sets of  $K_{6,6}$ . For (1), an  $H_1^5$ -packing is [2, a, 1, c, 3, b], [5, d, 4, f, 0, e], [4, c, 2, d, 1, f], [5, b, 1, d, 0, a], [3, d, 2, e, 4, a], [0, b, 4, e, 1, c], [f, 5, c, 2, e, 3], with leave  $\{2, f\}$ . An  $H_2^5$ -packing is [b, 3, 0, 1, a, 2], [4, c, f, e, 5, d], [a, 5, 1, 0, b, 4], [5, b, d, e, 2, c], [c, 1, 2, 4, f, 3], [1, d, c, e, 0, f], [d, 0, 1, 4, e, 3] with leave  $\{3, a\}$ . An  $H_3^5$ -packing is

 $[3,a,1,b,c,2], \ [0,a,4,e,f,5], \ [4,d,3,c,f,0], \ [4,b,2,e,c,5], \ [0,c,1,d,f,4],$ 

[3, e, 0, b, d, 5], [3, f, 1, e, d, 2] with leave  $\{3, b\}$ . Finally, an  $H_4^5$ -packing is [b, 0, a, 1, 2, c], [d, 1, b, 2, 3, c], [d, 2, c, 3, 4, e], [f, 3, d, 5, 4, e], [b, 5, f, 1, 2, c],

[d, 0, e, 1, 5, f], [e, 4, a, 3, 5, f] with leave  $\{4, b\}$ .

For (2), let the partite sets of  $K_{4,5}$  be  $\mathbb{Z}_5$  and  $\{a, b, c, d\}$ . An  $H_1^5$ -decomposition is [2, a, 1, c, 3, b], [d, 4, a, 1, c, 0], [a, 0, b, 2, d, 3], [b, 1, d, 2, c, 4]. An  $H_3^5$ -decomposition is [3, a, 1, b, c, 2], [3, b, 2, d, a, 4], [4, c, 3, d, a, 0], [4, d, 1, c, b, 0].

For (3), label the vertices of  $K_{3,5}$  and  $K_{5,7}$  similarly as before. An  $H_3^5$ -decomposition of  $K_{3,5}$  is [a, 1, b, 2, 3, c], [c, 4, a, 2, 3, b], [b, 0, a, 3, 2, c]. An  $H_1^5$ -decomposition of  $K_{5,7}$  is  $[2, a, 1, c, 3, b], [1, c, 2, e, 4, d], [5, e, 3, a, 6, c], [0, a, 4, b, 5, d], [3, a, 5, e, 6, d], [4, b, 6, e, 0, c], [1, b, 0, d, 2, e]. \square$ 

**Lemma 3.8.** Let  $T = (H_i^5, H_j^5, H_k^5)$ . Suppose that  $K_8$  has a *T*-multipacking with leave *L*, and that  $K_m$  has a *T*-multipacking with leave  $P_2$  for m = 7, 9, 12, 14.

- 1. If  $m \equiv 2, 4 \pmod{5}$  and  $m \geq 17$ , then  $K_m$  has T-multipacking with leave  $P_2$ .
- 2. If  $m \equiv 3 \pmod{5}$  and  $m \ge 18$ , then  $K_m$  has a T-multipacking with leave L.

Proof. Note that T includes either  $H_1^5$ ,  $H_2^5$ , or  $H_3^5$ . Suppose T includes  $H_1^5$ . For (1), we begin with  $m \equiv 2 \pmod{5}$ , so m = 5k + 2,  $k \geq 3$ . We first partition the vertices of  $K_m$  into sets A and B of size 7 and 5k - 5, respectively. Now B induces a  $K_{5k-5}$ , which T divides by Theorem 3.6. The graph induced by A has a multipacking with leave  $P_2$  by assumption, and the remaining edges form copies of  $K_{5,7}$ , which T divides by Lemma 3.7(3). For  $H_2^5$ , we partition the vertices of  $K_m$  into sets A, B, and C of size 6, 6, and 5k - 10, respectively. By Theorem 3.6, T divides the graph induced by  $B \cup C$ , and the graph induced by A can be factored into T. The remaining edges among  $A \cup C$  form copies of  $K_{2,5}$ , which T divides by Lemma 3.7(1). The remaining edges among  $A \cup B$  form  $K_{6,6}$ , which has a T-multipacking with leave  $P_2$  by Lemma 3.7(1). The argument for  $H_3^5$  is almost identical, using Lemma 3.7(3) in place of Lemma 3.3.

Now let  $m \equiv 4 \pmod{5}$ , so m = 5k + 4,  $k \geq 3$ . We begin with  $H_1^5$ . Partition the vertices of  $K_m$  into sets A, B, and C of size 4, 5, and 5k-5, respectively. Now  $A \cup B$  induces a  $K_9$ , which has a T-multipacking with leave  $P_2$  by assumption. The set C induces a  $K_{5k-5}$ , which T divides. The remaining edges among  $A \cup C$  form copies of  $K_{4,5}$ , which  $H_1^5$  divides by Lemma 3.7(2). The remaining edges among  $B \cup C$  form copies of  $K_{5,5}$ , which  $H_1^5$  divides by Lemma 3.2. The argument for  $H_2^5$  is identical, except we partition the copies of  $K_{4,5}$  into copies of  $K_{2,5}$  and use Lemma 3.3. For  $H_3^5$ , we partition the vertices of  $K_m$  into sets A and B of size 9 and 5k-5, respectively. The set A induces a  $K_9$ , which has a T-multipacking with leave  $P_2$  by assumption. Moreover, T divides the graph induced by B, which is  $K_{5k-5}$ . The remaining edges form copies of  $K_{3,5}$ , which  $H_3^5$  divides by Lemma 3.7(3).

For (2), we have m = 5k + 3,  $k \ge 3$ , and we partition the vertices of  $K_m$  into sets A and B of size 8 and 5k - 5, respectively. We have a T-multidecomposition of the subgraph induced by B as well as a T-multipacking of the graph induced by A with leave L. The remaining vertices can be partitioned into either copies of  $K_{2,5}$  or  $K_{4,5}$ .  $H_2^5$  divides the first of these, and  $H_1^5$  and  $H_3^5$  divide the second.

This reduces the multipacking problem to finding optimal multipackings for  $K_m$ , m = 7, 8, 9, 12, 13, 14. We construct these multipackings so that the leave is a subgraph of one of the graphs in the triple, which yields an optimal *T*-multicovering. We begin with a technical lemma. **Lemma 3.9.** Let G be the graph given by  $K_{3,3}$  along with an additional 2-path among the vertices of one of the partite sets P. Then G has an  $H_1^5$ -packing with leave  $P_2$ . Furthermore, the leave is between two vertices in P.

*Proof.* Let the partite sets of  $K_{3,3}$  be  $\mathbb{Z}_3$  and  $\{a, b, c\}$ , and let the additional edges of G be  $\{0, 1\}$  and  $\{1, 2\}$ . We then have the  $H_1^5$ -packing [b, 2, c, 0, a, 1], [1, 2, a, b, 0, c] with leave  $\{0, 1\}$ .

The following gives us optimal multipackings for  $m \equiv 2, 4 \pmod{5}$ .

**Lemma 3.10.** For m = 7, 9, 12, 14 and  $T = (H_i^5, H_i^5, H_k^5), K_m$  has a T-multipacking with leave  $P_2$ .

*Proof.* For  $K_7$ , we begin with triples T that include  $H_2^5$ . Now  $\mathbb{Z}_6$  induces a  $K_6$ , which we can factor into T. We remove the copy of  $H_2^5$  (say [1, 0, 4, 5, 3, 2]). We then insert  $H_2^5 \cong [1, 0, 5, 3, 6, 2]$ , [3, 5, 1, 0, 6, 4], which gives us a multipacking with leave  $\{2, 3\}$ . For triples that include  $H_3^5$ , we factor an induced  $K_6$  into T and remove  $H_3^5 \cong [0, 1, 2, 3, 5, 4]$ . We then insert  $H_3^5 \cong [3, 6, 0, 1, 5, 4], [5, 6, 2, 3, 4, 1]$ . The leave is  $\{1, 2\}$ . The remaining triple is  $(H_1^5, H_5^5, H_7^5)$ . We remove  $H_1^5 \cong [3, 4, 5, 0, 1, 2]$  and insert  $H_1^5 \cong [6, 2, 1, 3, 4, 5]$  and  $H_7^5 \cong [0, 1, 2, 3, 4, 6]$ .

For multipackings of  $K_9$ , we first consider triples that include either  $H_1^5$  or  $H_3^5$ . By Theorem 1.1, it suffices to construct an  $H_i^5$ -decomposition of  $G_{6,9}$  for i = 1, 3. An  $H_1^5$ -packing is [6, 8, 4, 3, 7, 2], [1, 8, 2, 0, 6, 7], [7, 8, 5, 3, 6, 4], [7, 0, 8, 1, 6, 5] with leave  $\{3, 8\}$ . An  $H_3^5$ -packing is [0, 6, 1, 8, 2, 7], [3, 7, 0, 8, 6, 5], [2, 8, 4, 7, 6, 3], [5, 8, 6, 2, 1, 7], with leave  $\{4, 6\}$ .

Two triples remain, both of which include  $H_2^5$ . We factor the  $K_6$  induced by  $\mathbb{Z}_6$  into  $H_2^5 \cong [1, 0, 4, 5, 3, 2]$ . Remove the edges of this subgraph, and insert  $H_2^5 \cong [1, 0, 8, 2, 7, 6]$ , [3, 7, 1, 2, 8, 4], [2, 1, 4, 5, 6, 3], [3, 5, 0, 2, 6, 8], [8, 5, 1, 4, 7, 0]. The leave is  $\{5, 7\}$ .

For multipackings of  $K_{12}$ , we first consider triples T that include either  $H_2^5$  or  $H_4^5$ . Partition the vertices of  $K_{12}$  into two sets of size 6. Each subset induces a  $K_6$ , which can be factored into T. The remaining vertices form  $K_{6,6}$ , which has a T-multipacking with leave  $P_2$  by Lemma 3.7(1).

The only remaining triples include a copy of  $H_1^5$ . Partition the vertices of  $K_{12}$  into the sets  $A = \mathbb{Z}_6$ and  $B = \mathbb{Z}_{12} - \mathbb{Z}_6$ , and factor each induced subgraph into T. We remove  $H_1^5 \cong [3, 4, 5, 0, 1, 2]$ . The remaining edges among  $\{0, 1, 2, 6, 7, 8\}$  form the graph G from Lemma 3.9. We execute an  $H_1^5$ -packing with leave  $\{0, 1\}$ . We do the same thing with the vertices  $\{0, 1, 2, 9, 10, 11\}$ , only this time with a leave of  $\{1, 2\}$ . The same process with the vertices in  $\{3, 4, 5\} \cup B$  give us a T-multipacking with leave  $\{2, 3\}$ .

For multipackings of  $K_{14}$ , T divides the subgraph induced by  $\mathbb{Z}_{11}$  by Theorem 3.6. For triples that include  $H_1^5$ , we remove  $H_1^5 \cong [3, 4, 5, 0, 1, 2]$  from the T-decomposition. We then insert  $H_1^5 \cong [11, 1, 2, 13, 12, 0]$ ,

[6, 11, 10, 1, 0, 13], [7, 11, 8, 12, 1, 13], [12, 4, 3, 13, 11, 5], [10, 12, 6, 4, 5, 13],

 $\begin{array}{l} [8,12,7,11,4,13], [3,11,9,12,2,13], [12,9,13,3,2,11]. \text{ The leave is } \{3,12\}. \text{ We proceed similarly for } H_2^5, \\ \text{removing } H_2^5 \cong [1,0,4,5,3,2] \text{ and adding in } H_2^5 \cong [13,7,0,1,12,2], [13,4,7,1,11,5], [5,3,13,11,6,12], \\ [13,0,7,3,12,10], [1,2,12,10,11,0], [3,4,12,13,8,11], [4,11,1,3,13,12], [2,3,12,13,9,11]. \text{ The leave is } \\ \{11,13\}. \text{ Our last case is the triple } (H_3^5, H_4^5, H_7^5). \text{ We take a $T$-multidecomposition on the subgraph induced by $\mathbb{Z}_{10}$. We add in $H_4^5 \cong [1,10,11,2,3,0], [0,11,12,4,5,1], [2,12,13,5,4,3], [3,10,12,0,1,2], \\ [4,11,13,2,3,5], [5,10,13,0,1,4]. \text{ Then add in } H_3^5 \cong [6,10,8,12,11,7], [13,9,12,7,6,11], [7,13,8,11,12,6]. \end{array}$ 

We now proceed to optimal multipackings for m = 8, 13.

**Lemma 3.11.** For m = 8, 13 and  $T = (H_i^5, H_j^5, H_k^5)$ ,  $K_m$  has a multipacking with a 3-edge leave that is a subgraph of least one of the graphs in T.

*Proof.* We begin with  $K_8$ . For multipackings into triples T that include  $H_1^5$ , we factor an induced  $K_6$  into T and remove  $H_1^5 \cong [3,4,5,0,1,2]$ . We then add in  $H_1^5 \cong [3,7,5,0,6,2]$ , [7,4,5,6,1,0], [6,3,4,1,2,7]. The leave is  $\{4,6\}, \{5,6\}, \{1,7\}$ , which is a subgraph of  $H_1^5$ . For triples that include  $H_2^5$ , we factor a  $K_6$  into T as before. We then add in  $H_2^5 \cong [7,3,0,1,6,2]$ , [6,5,0,1,7,4]. The leave is  $\{3,6\}, \{6,7\}, \{5,7\}$ , which is a subgraph of  $H_2^5$ . What remains is the triple  $(H_3^5, H_4^5, H_7^5)$ . We remove  $H_4^5 \cong [1,2,3,4,5,0]$ 

of from a factorization of  $K_6$  into T and add in  $H_4^5 \cong [1, 6, 7, 4, 5, 0], [1, 2, 6, 3, 4, 7], [0, 7, 3, 4, 5, 1]$ . The leave is  $\{0, 2\}, \{2, 3\}, \{5, 6\}$ , which is a subgraph of any graph in T.

For  $K_{13}$ , we begin with triples that include  $H_1^5$ . By Theorem 3.6, T divides the graph induced by  $\mathbb{Z}_{11}$ . We remove  $H_1^5 \cong [3, 4, 5, 0, 1, 2]$  and insert  $H_1^5 \cong [12, 2, 1, 0, 11, 3]$ , [12, 0, 1, 6, 11, 7], [11, 2, 3, 6, 12, 1], [5, 12, 8, 3, 4, 11], [9, 11, 10, 5, 4, 12]. The leave is  $\{8, 11\}$ ,  $\{11, 12\}$ ,  $\{12, 10\}$ , which is a subgraph of  $H_1^5$ . For triples that include  $H_2^5$ , we get a T-multidecomposition of the subgraph induced by  $\mathbb{Z}_{11}$  by Theorem 3.6. The bipartite subgraph induced by  $\mathbb{Z}_5$  and  $\{12, 13\}$  is isomorphic to  $K_{2,5}$ , which  $H_2^5$  divides by Lemma 3.3. We add in  $H_2^5 \cong [11, 5, 7, 8, 12, 6]$ , [11, 7, 5, 10, 12, 9]. The leave is  $\{8, 11\}$ ,  $\{10, 11\}$ ,  $\{11, 12\}$ , which is a subgraph of  $H_2^5$ . The final triple is  $T = (H_3^5, H_4^5, H_7^5)$ , which divides the subgraph induced by  $\mathbb{Z}_{10}$ . The remaining edges minus the subgraph induced by  $\{10, 11, 12\}$  form two copies of  $K_{3,5}$ , which can be partitioned into copies of  $H_3^5$  by Lemma 3.7(3). The leave is  $\{10, 11\}$ ,  $\{11, 12\}$ ,  $\{12, 10\}$ , which is a subgraph of  $H_7^5$ .

The leaves in the multipackings of Lemmas 3.10 and 3.11 are subgraphs of at least one graph in the given graph-triple. Thus, if the leave has size s, we can obtain a multicovering of size 5-s. We summarize this, along with the other results of this section, in the following theorem.

**Theorem 3.12.** Let  $T = (H_i^5, H_j^5, H_k^5)$  be a graph-triple of order 6, and let  $m \ge 6$ .

- 1. If  $m \equiv 0, 1 \pmod{5}$ , then T divides  $K_m$ .
- 2. If  $m \equiv 2 \text{ or } 4 \pmod{5}$ , then  $K_m$  has a *T*-multipacking with leave  $P_2$  and a *T*-multicovering with a 4-edge padding.
- 3. If  $m \equiv 3 \pmod{5}$ , then  $K_m$  has a T-multipacking with a leave of three edges and a T-multicovering with a 2-edge padding.

### 4 Conclusion

We have settled the *T*-multidesign problem of  $K_m$  into graph-triples *T* of order 6 that are of the form  $(G_1, G_2, H_1^3)$  or  $(H_i^5, H_j^5, H_k^5)$ , but the problem is still open for graph-triples of the forms  $(H_i^7, H_j^4, H_k^4)$  and  $(H_i^6, H_j^5, H_k^4)$ . Another extension of this work will be to investigate multidesigns into graph-triples of order 6 with various specified leaves.

### References

- [AD03] A. Abueida and M. Daven, Multidesigns for graph pairs of order 4 and 5, Graphs Combin. 19 (2003), 433–447.
- [ADR05] A. Abueida, M. Daven, and K. Roblee, Multidesigns of the  $\lambda$ -fold complete graph for graphpairs of orders 4 and 5, Australas. J. Combin. **32** (2005), 125–136.
- [BHRS80] J.-C. Bermond, C. Huang, A. Rosa, and D. Sotteau, *Decompositions of complete graphs into isomorphic subgraphs with 5 vertices*, Ars Comb. **10** (1980), 211–254.
- [BM79] J.A. Bondy and U.S.R Murty, *Graph Theory with Applications*, North-Holland, New York, 1979.
- [BS77] J.-C. Bermond and Schönheim, *G*-decomposition of  $K_n$ , where *G* has four vertices or less, Discrete Math. **19** (1977), 113–120.
- [HP73] F. Harary and E. Palmer, *Graphical Enumeration*, Academic Press, New York, 1973.
- [Kot65] A. Kotzig, On the decomposition of complete graphs into 4k-gons, Mat. Fyz. Casop. 15 (1965), 229–233.
- [LR97] C.C. Lindner and C.A. Rodger, *Design Theory*, CRC Press, Boca Raton, 1997.

## A Graphs of Order 6 that are Part of Graph-Triples





















# B The Graph-Triples of Order 6

The graph triples of order six  $T = (G_1, G_2, G_3) = (H_{i_1}^{j_1}, H_{i_2}^{j_2}, H_{i_3}^{j_3})$ , where  $j_k$  represents the number of edges in the graph  $G_k$ .

$$\begin{split} \text{For } j_1 = 8, \ j_2 = 4, \ j_3 = 3, \\ T = (G_1, G_2, G_3) \in \{(H_1^8, H_1^4, H_1^3), (H_1^8, H_3^4, H_1^3), (H_2^8, H_3^4, H_1^3), (H_3^8, H_1^4, H_1^3), (H_3^7, H_1^3, H_1^3), (H_2^8, H_1^4, H_1^3), \\ (H_3^7, H_1^4, H_1^4), (H_4^7, H_1^4, H_3^4), (H_7^7, H_1^4, H_3^4), (H_7^7, H_1^4, H_2^4), \\ T = (G_1, G_2, G_3) \in \{(H_1^7, H_1^4, H_2^4), (H_2^7, H_1^5, H_1^3), (H_2^7, H_1^5, H_1^4), (H_1^7, H_1^4, H_2^4), (H_1^7, H_1^2, H_2^4), (H_1^7, H_1^4, H_2^4), (H_1^7, H_1^2, H_1^3), (H_1^7, H_1^2, H_1^3), (H_1^7, H_1^3, H_1^3), (H_1^7, H_1^3), (H_1^7, H_1^3, H_1^3), (H_1^7, H_1^3), (H_1^7, H_1^3, H_1^3), (H_1^7, H_1^7, H_1^3), (H_1^7,$$

For  $j_1 = 6$ ,  $j_2 = 6$ ,  $j_3 = 3$ ,

$$\begin{split} T &= (G_1,G_2,G_3) \in & \{(H_1^6,\ H_8^6,\ H_1^3), & (H_2^6,\ H_3^6,\ H_1^3), & (H_2^6,\ H_4^6,\ H_1^3), \\ & (H_5^6,\ H_6^6,\ H_1^3), & (H_5^6,\ H_7^6,\ H_1^3), & (H_6^6,\ H_{11}^6,\ H_{11}^3), \\ & (H_7^6,\ H_{10}^6,\ H_1^3)\}. \end{split}$$
 For  $j_1 = 5,\ j_2 = 5,\ j_3 = 5$  
$$T &= (G_1,G_2,G_3) \in & \{(H_1^5,\ H_2^5,\ H_3^5), & (H_1^5,\ H_2^5,\ H_6^5), & (H_1^5,\ H_2^5,\ H_7^5), \\ & (H_1^5,\ H_3^5,\ H_5^5), & (H_1^5,\ H_3^5,\ H_7^5), & (H_1^5,\ H_2^5,\ H_5^5), & (H_2^5,\ H_3^5,\ H_7^5), \\ & (H_2^5,\ H_3^5,\ H_5^5), & (H_2^5,\ H_5^5), & (H_2^5,\ H_3^5,\ H_5^5), & (H_2^5,\ H_3^5,\ H_7^5), \\ & (H_2^5,\ H_5^5,\ H_6^5), & (H_2^5,\ H_5^5,\ H_7^5), & (H_3^5,\ H_4^5,\ H_7^5)\}. \end{split}$$

## C Multidesigns for $K_7$ and $K_8$

For the following,  $V(K_7) = \mathbb{Z}_7$  and  $V(K_8) = \mathbb{Z}_8$ . We begin with *T*-multidecompositions of  $K_7$  for  $T = (H_i^7, H_j^5, H_1^3)$ .

- $T = (H_4^7, H_2^5, H_1^3)$ :  $H_4^7 \cong [3, 4, 5, 0, 1, 2], H_2^5 \cong [3, 1, 2, 5, 6, 0],$  $H_1^3 \cong [0, 1, 3, 5, 4, 6], [0, 2, 3, 6, 4, 5], [0, 4, 1, 6, 2, 5]$
- $\bullet \ T = (H_5^7, H_2^5, H_1^3) \colon \ H_5^7 \cong [3, 4, 5, 0, 1, 2], H_2^5 \cong [3, 5, 2, 1, 6, 0], \\ H_1^3 \cong [0, 2, 1, 4, 5, 6], [0, 4, 2, 5, 3, 6], [0, 5, 1, 3, 4, 6]$
- $T = (H_5^7, H_3^5, H_1^3)$ :  $H_5^7 \cong [3, 4, 5, 0, 1, 2], H_3^5 \cong [4, 6, 0, 2, 3, 5],$  $H_1^3 \cong [0, 3, 1, 6, 2, 5], [0, 4, 1, 3, 2, 6], [0, 5, 1, 4, 3, 6]$
- $T = (H_5^7, H_7^5, H_1^3)$ :  $H_5^7 \cong [3, 4, 5, 0, 1, 2], H_7^5 \cong [0, 5, 1, 4, 3, 6],$  $H_1^3 \cong [0, 2, 1, 6, 3, 5], [0, 3, 2, 5, 4, 6], [0, 4, 1, 3, 2, 6]$
- $T = (H_6^7, H_2^5, H_1^3)$ :  $H_6^7 \cong [3, 1, 5, 0, 4, 2], H_2^5 \cong [5, 0, 1, 2, 6, 3],$  $H_1^3 \cong [0, 2, 1, 3, 4, 6], [0, 3, 1, 4, 5, 6], [0, 6, 2, 5, 3, 4]$
- $T = (H_8^7, H_3^5, H_1^3)$ :  $H_8^7 \cong [2, 1, 5, 0, 4, 3], H_3^5 \cong [3, 6, 2, 4, 1, 0],$  $H_1^3 \cong [0, 2, 1, 3, 5, 6], [0, 3, 2, 5, 4, 6], [0, 4, 1, 6, 3, 5]$

The *T*-multidecompositions of  $K_7$  for  $T = (H_i^6, H_j^6, H_1^3)$  are given by

• 
$$T = (H_2^6, H_3^6, H_1^3)$$
:  $H_2^6 \cong [4, 0, 6, 1, 2, 3],$   
  $H_3^6 \cong [3, 6, 2, 4, 5, 1], [5, 3, 4, 6, 0, 2],$   
  $H_1^3 \cong [0, 5, 1, 4, 2, 6].$   
•  $T = (H_2^6, H_4^6, H_1^3)$ :  $H_2^6 \cong [3, 4, 6, 0, 1, 2, ], H_4^6 \cong [1, 3, 4, 6, 2, 5],$   
  $H_1^3 \cong [0, 3, 2, 4, 5, 6], [0, 5, 1, 4, 3, 6], [0, 2, 1, 6, 4, 5].$   
•  $T = (H_5^6, H_6^6, H_1^3)$ :  $H_5^6 \cong [1, 0, 6, 4, 3, 2], H_6^6 \cong [6, 4, 0, 2, 1, 5],$   
  $H_1^3 \cong [1, 6, 2, 4, 3, 5], [1, 3, 2, 6, 0, 5], [1, 4, 2, 5, 3, 6].$   
•  $T = (H_5^6, H_7^6, H_1^3)$ :  $H_5^6 \cong [2, 3, 4, 6, 0, 1], H_7^6 \cong [1, 4, 2, 0, 6, 5],$   
  $H_1^3 \cong [1, 3, 4, 6, 0, 5], [1, 4, 3, 6, 2, 5], [1, 6, 3, 5, 0, 4].$   
•  $T = (H_6^6, H_{11}^6, H_1^3)$ :  $H_6^6 \cong [1, 2, 3, 4, 6, 0], H_{11}^6 \cong [4, 5, 3, 0, 1, 6],$   
  $H_1^3 \cong [1, 4, 2, 6, 0, 5], [1, 5, 3, 6, 2, 4], [1, 6, 2, 5, 0, 4].$   
•  $T = (H_7^6, H_{10}^6, H_1^3)$ :  $H_7^6 \cong [0, 4, 3, 1, 5, 6], H_{10}^6 \cong [1, 2, 4, 5, 3, 0],$   
  $H_1^3 \cong [1, 4, 2, 6, 0, 5], [1, 5, 2, 4, 3, 6], [1, 6, 2, 5, 0, 4].$ 

We now move on to optimal T-multipackings of  $K_7$  for  $T = (H_i^8, H_i^4, H_1^3)$ .

| • $T = (H_1^8, H_1^4, H_1^3)$ : | $\begin{split} H_1^8 &\cong [4,5,0,1,2,3], \\ H_1^4 &\cong [1,5,2,3,6,4], [1,6,2,3,0,4], \\ H_1^3 &\cong [0,6,1,3,2,4]. \ \text{Leave is 56 \& 14}. \end{split}$       |
|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| • $T = (H_1^8, H_2^4, H_1^3)$ : | $ \begin{split} &H_1^8 \cong [4,5,0,1,2,3], \\ &H_2^4 \cong [1,3,6,4,2,5], [0,6,1,5,2,4], \\ &H_1^3 \cong [0,3,1,4,2,6]. \ \text{Leave is } 04 \ \& \ 56 \end{split} $ |
| • $T = (H_2^8, H_2^4, H_1^3)$ : | $\begin{split} H_2^8 &\cong [4,5,0,1,2,3], \\ H_2^4 &\cong [1,6,3,5,0,4], [4,6,2,5,1,3] \\ H_1^3 &\cong [0,2,1,4,5,6]. \ \text{Leave is } 06 \ \& \ 24. \end{split}$   |
| • $T = (H_3^8, H_1^4, H_1^3)$ : | $ \begin{split} &H_3^8 \cong [4,0,1,3,6,2], \\ &H_1^4 \cong [0,6,4,2,5,3], [0,5,1,2,3,4] \\ &H_1^3 \cong [0,2,1,6,4,5]. \ \text{Leave is } 12 \ \& \ 56. \end{split} $ |
| • $T = (H_4^8, H_3^4, H_1^3)$ : | $\begin{split} H_4^8 &\cong [4,5,0,1,2,3], \\ H_3^4 &\cong [5,6,4,1,2,3], [3,1,4,0,2,6], \\ H_1^3 &\cong [0,4,1,5,2,6]. \ \text{Leave is 06 \& 35.} \end{split}$       |
| • $T = (H_5^8, H_1^4, H_1^3)$ : | $\begin{split} H_5^8 &\cong [5,0,2,4,3,1], \\ H_1^4 &\cong [0,6,4,2,5,3], [0,4,1,2,6,3], \\ H_1^3 &\cong [1,6,2,3,4,5]. \ \text{Leave is } 01 \ \& \ 56. \end{split}$  |
|                                 |                                                                                                                                                                        |

The optimal *T*-multipackings of  $K_7$  for  $T = (H_i^7, H_j^5, H_1^3)$  are

• 
$$T = (H_1^7, H_1^5, H_1^3)$$
:  $H_1^7 \cong [4, 5, 0, 1, 2, 3],$   
 $H_1^5 \cong [1, 6, 3, 5, 2, 4], [5, 3, 1, 2, 0, 6],$   
 $H_1^3 \cong [0, 4, 1, 5, 2, 6].$  Leave is 46.

- $T = (H_2^7, H_1^5, H_1^3)$ :  $H_2^7 \cong [4, 5, 0, 1, 2, 3],$  $H_1^5 \cong [5, 6, 3, 2, 4, 1], [6, 2, 5, 1, 3, 0],$  $H_1^3 \cong [0, 4, 1, 6, 3, 5].$  Leave is 46.
- $T = (H_2^7, H_5^5, H_1^3)$ :  $H_2^7 \cong [4, 5, 0, 1, 2, 3],$  $H_5^5 \cong [1, 3, 0, 6, 4, 5], [2, 5, 0, 4, 1, 6],$  $H_1^3 \cong [0, 3, 1, 6, 2, 4].$  Leave is 36.
- $T = (H_3^7, H_1^5, H_1^3)$ :  $H_3^7 \cong [4, 5, 0, 1, 2, 3],$  $H_1^5 \cong [6, 5, 2, 4, 1, 3], [0, 5, 3, 4, 6, 2],$  $H_1^3 \cong [0, 3, 1, 6, 2, 4].$  Leave is 06.
- $T = (H_3^7, H_6^5, H_1^3)$ :  $H_3^7 \cong [4, 5, 0, 1, 2, 3], H_6^5 \cong [0, 2, 3, 5, 4, 6],$  $H_1^3 \cong [0, 5, 1, 4, 3, 6], [0, 3, 1, 6, 2, 5].$ Leave is 13, 26, & 56.
- $T = (H_9^7, H_4^5, H_1^3)$ :  $H_9^7 \cong [1, 2, 3, 4, 5, 0],$  $H_4^5 \cong [0, 1, 6, 4, 5, 3], [0, 4, 2, 5, 6, 1],$  $H_1^3 \cong [0, 6, 1, 5, 3, 4].$  Leave is 36.
- $T = (H_{10}^7, H_1^5, H_1^3)$ :  $H_{10}^7 \cong [1, 2, 3, 4, 5, 0],$  $H_1^5 \cong [1, 4, 2, 0, 6, 3], [2, 3, 0, 1, 6, 5],$  $H_1^3 \cong [0, 4, 1, 5, 2, 6].$  Leave is 46.

The optimal T-multicoverings of  $K_7$  for  $(T = H_i^7, H_j^5, H_1^3)$  are

• 
$$T = (H_1^7, H_1^5, H_1^3)$$
:  $H_1^7 \cong [4, 5, 0, 1, 2, 3], [5, 3, 1, 4, 2, 6],$   
  $H_1^5 \cong [4, 6, 3, 5, 2, 0],$   
  $H_1^3 \cong [0, 6, 1, 5, 2, 4].$  Padding is 24.  
•  $T = (H_2^7, H_1^5, H_1^3)$ :  $H_2^7 \cong [4, 5, 0, 1, 2, 3], [5, 3, 0, 4, 6, 1],$   
  $H_1^5 \cong [6, 2, 4, 1, 3, 5],$   
  $H_1^3 \cong [1, 4, 2, 5, 3, 6].$  Padding is 35.  
•  $T = (H_2^7, H_5^5, H_1^3)$ :  $H_2^7 \cong [4, 5, 0, 1, 2, 3], [0, 3, 6, 5, 1, 4],$   
  $H_5^5 \cong [2, 4, 1, 3, 5, 6],$   
  $H_1^3 \cong [0, 6, 2, 5, 3, 4].$  Padding is 34.  
•  $T = (H_3^7, H_1^5, H_1^3)$ :  $H_3^7 \cong [4, 5, 0, 1, 2, 3], [3, 1, 5, 6, 2, 0],$   
  $H_1^5 \cong [4, 6, 3, 0, 5, 2],$   
  $H_1^3 \cong [0, 6, 1, 4, 2, 3].$  Padding is 23.  
•  $T = (H_3^7, H_6^5, H_1^3)$ :  $H_3^7 \cong [3, 2, 0, 1, 5, 4], [0, 2, 5, 6, 1, 4],$   
  $H_6^5 \cong [3, 6, 2, 5, 4, 1],$   
  $H_1^3 \cong [0, 6, 4, 2, 3, 5].$  Padding is 14.  
•  $T = (H_9^7, H_4^5, H_1^3)$ :  $H_9^7 \cong [1, 2, 3, 4, 5, 0], [0, 1, 4, 5, 2, 6],$   
  $H_4^5 \cong [0, 6, 3, 1, 4, 5],$   
  $H_1^3 \cong [0, 4, 1, 5, 2, 3].$  Padding is 23.  
•  $T = (H_{10}^7, H_1^5, H_1^3)$ :  $H_{10}^7 \cong [1, 2, 3, 4, 5, 0], [0, 1, 4, 5, 2, 6],$   
  $H_1^5 \cong [4, 1, 5, 3, 6, 2], [4, 6, 5, 1, 3, 0],$   
  $H_1^5 \cong [4, 1, 5, 3, 6, 2], [4, 6, 5, 1, 3, 0],$   
  $H_1^5 \cong [0, 6, 1, 4, 2, 3], [1, 6, 2, 5, 3, 4].$   
 Padding is 14 & 34.

Finally, we have the following optimal T-multipackings of  $K_8$  for  $T = (H_i^6, H_j^6, H_1^3)$ .

• 
$$T = (H_1^6, H_8^6, H_1^3)$$
:  $H_1^3 \cong [1, 6, 2, 4, 5, 7], [0, 2, 1, 3, 4, 7], [1, 7, 3, 5, 4, 6],$   
[1, 4, 3, 6, 2, 7], [0, 4, 1, 5, 6, 7].  
 $H_1^6 \cong [0, 1, 2, 3, 4, 5], H_8^6 \cong [0, 3, 2, 5, 6, 7].$   
Leave is 06.

- $T = (H_2^6, H_4^6, H_1^3)$ :  $H_1^3 \cong [0, 3, 1, 5, 4, 7], [0, 7, 2, 6, 3, 5], [1, 7, 3, 6, 4, 5],$ [0, 5, 2, 7, 4, 6], [0, 2, 1, 6, 3, 7], $H_2^6 \cong [2, 1, 6, 0, 4, 3], H_4^6 \cong [6, 7, 1, 4, 2, 5].$ Leave is 13.
- $$\begin{split} \bullet \ T = (H_5^6, H_6^6, H_1^3) &: \ H_1^3 \cong [0, 6, 1, 5, 4, 7], [0, 2, 3, 7, 4, 6], [0, 4, 1, 3, 2, 6], \\ & \quad [0, 5, 1, 4, 2, 7], [1, 7, 2, 5, 3, 6], \\ & \quad H_5^6 \cong [2, 3, 4, 7, 0, 1], H_6^6 \cong [7, 5, 4, 2, 1, 6]. \\ & \quad \text{Leave is 35.} \end{split}$$

- $T = (H_6^6, H_{11}^6, H_1^3)$ :  $H_1^3 \cong [0, 3, 2, 7, 4, 6], [0, 5, 1, 3, 4, 7], [0, 6, 1, 5, 2, 4],$  [1, 7, 2, 6, 4, 5], [1, 4, 2, 5, 3, 6],  $H_6^6 \cong [5, 7, 0, 4, 1, 6], H_{11}^6 \cong [1, 2, 3, 4, 5, 0].$ Leave is 37. •  $T = (H_7^6, H_{10}^6, H_1^3)$ :  $H_1^3 \cong [0, 4, 3, 6, 5, 7], [0, 5, 1, 3, 2, 7], [0, 6, 2, 4, 3, 7],$
- $T = (H_7^6, H_{10}^6, H_1^3)$ :  $H_1^3 \cong [0, 4, 3, 6, 5, 7], [0, 5, 1, 3, 2, 7], [0, 6, 2, 4, 3, 7],$  [0, 7, 1, 6, 2, 5], [1, 5, 2, 6, 3, 4],  $H_7^6 \cong [1, 4, 5, 3, 6, 7], H_{10}^6 \cong [1, 0, 4, 6, 3, 2].$ Leave is 14.