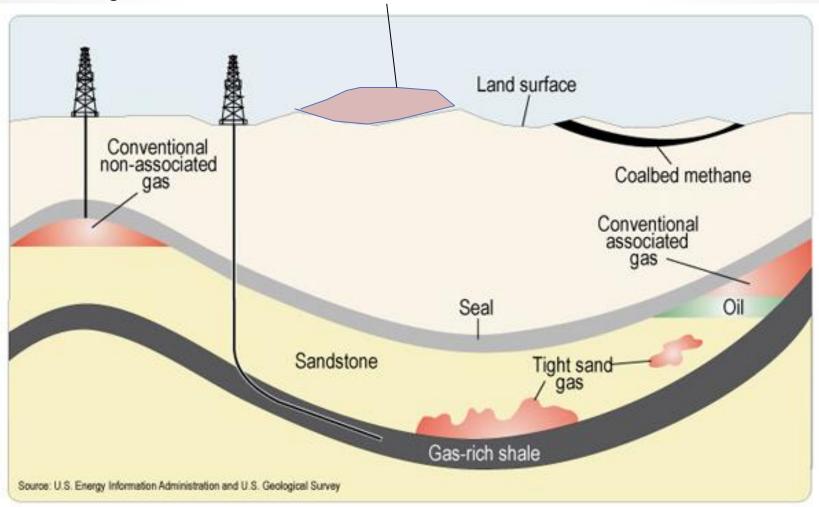
Hydraulic Fracturing "Fracking"

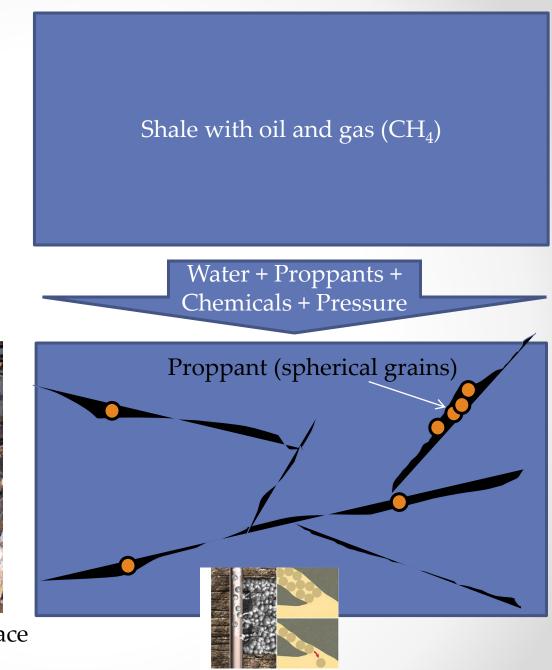

Geologic Considerations and Questions That Need Answers

College of Liberal Arts and Sciences Geology Department Dr. Peter J. Wampler wamplerp@gvsu.edu

Natural Gas Sources

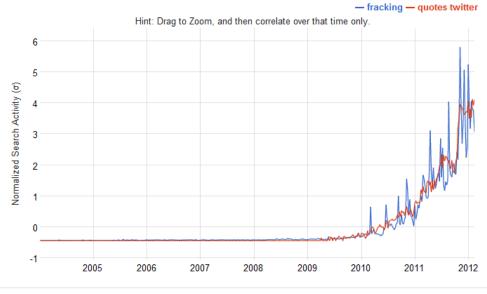
Organic methane from landfills and other surface sources

What is Fracking? (unconventional gas recovery)

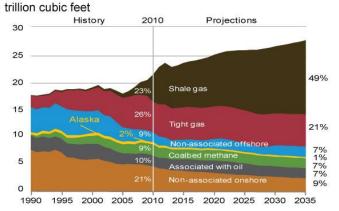

- Enhanced oil and gas recovery through hydraulic fracturing of methane-bearing shale (and other rock types).
- Shale has low permeability so fluids and gasses have a difficult time moving toward oil and gas wells.
- Hydraulic fracturing increases the permeability though creating, and maintaining, a network of fractures.

Shale and Fracking

Shale at the surface is often very fractured but at depth (1000's of feet) there are few open fractures.


Photo of Marcellus Shale on the surface Source: http://www.wvsoro.org/resources/images/MarcellusShaleOutcrop4.jpg

United States Web Search activity for fracking and quotes twitter (r=0.9577)

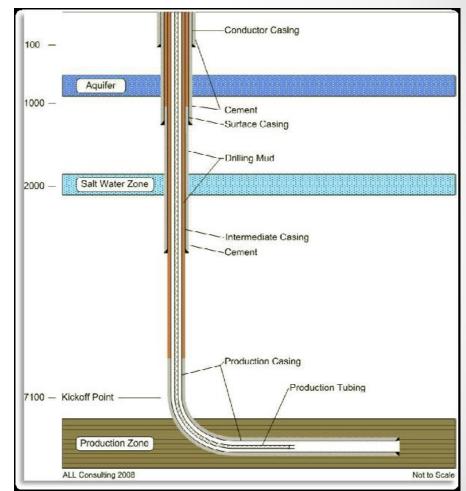

🖄 Line chart 🛛 💒 Scatter plot

Why is Fracking Booming?

United States Web Search activity for horizontal drilling and shale (r=0.7235) Kine chart 💒 Scatter plot - horizontal drilling - shale Hint: Drag to Zoom, and then correlate over that time only. 3 Normalized Search Activity (σ) 2 -3 2005 2006 2007 2008 2009 2010 2011 2012

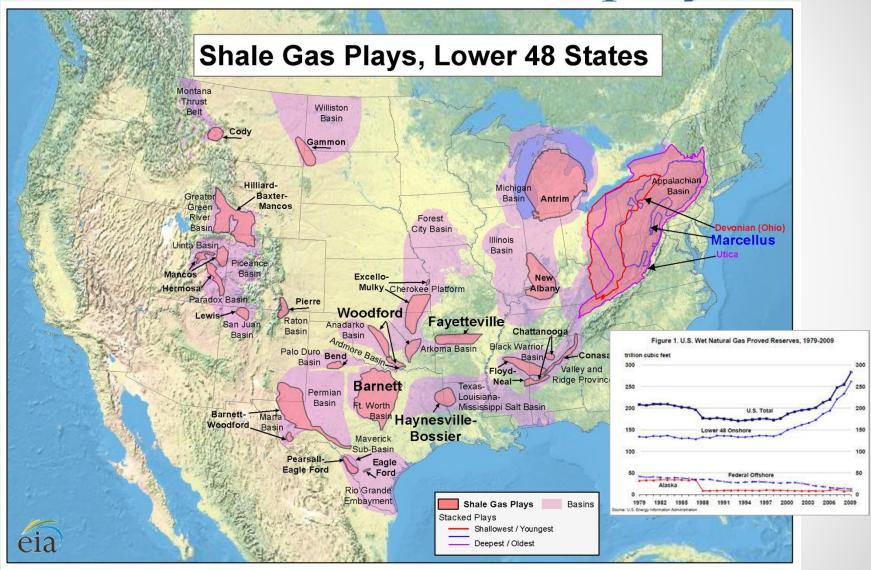
U.S. Natural Gas Production, 1990-2035

Source: U.S. Energy Information Administration, AEO2012 Early Release Overview, January 23, 2012.


Source: Google Trends; www.google.com/trends

Directional Drilling

- Advances in drilling technology have changed the way oil and gas wells are drilled
- Special drilling tools can control the direction and determine drill hole position.
- Horizontal shale layers can be accessed and many holes can be drilled from one main drill hole.


Fig. 5. Rotary Closed-Loop System (RCLS) Bottom-Hole Assembly (Baker Hughes)

Department of Energy, 2009

Lee et al., 2011

Possible Natural Gas "plays"

Source: Energy Information Administration based on data from various published studies. Updated: March 10, 2010

Potential for a 100-year supply

Fracking Issues

- Micro-earthquakes and stability
- Groundwater contamination
 - Methane contamination, "Flaming" tap water, and potential explosions
 - Contamination from toxic additives
- Surface water contamination
 - Dewatering of saline aquifers to the surface
 - Contamination from additives
- Increased dependence on fossil fuels ("bridge fuel")
 - Greenhouse gas emissions

Micro-earthquakes and stability

• Fracking is mostly applied to deep shale

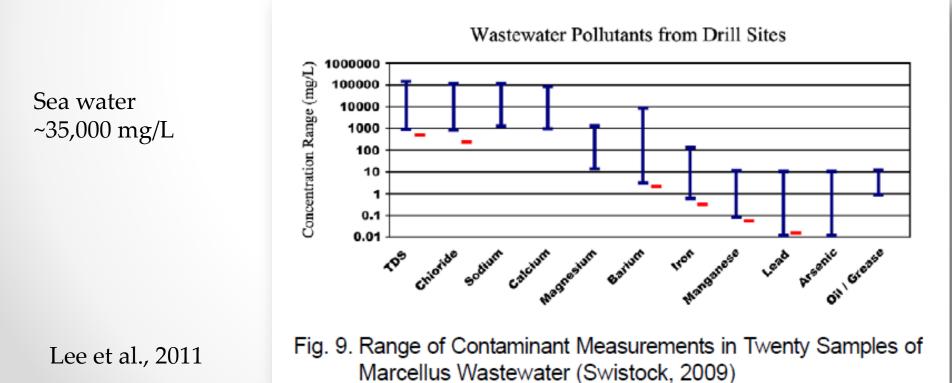
- Range is broad but from 2,000-10,000 feet
- Most drinking water aquifers are < 500 feet. One of the most productive in Michigan (Marshal Sandstone) is only 120 feet deep below GVSU campus

• Can fracking cause earthquakes?

- Likely yes, although size of quakes and risk of any damage is probably very small.
- Evidence from wells in Oklahoma suggests that earthquakes initiation can be very sporadic and changes with time (Holland, 2011)
- Can fracking cause subsidence or instability?
 - Likely not much. Volume changes are probably not significant enough to cause surface changes.

Groundwater contamination

Table 1. Chemical Components Appearing Most Often in		Table 2. States with the Highest Volume of Hydraulic Fracturing Fluids Containing 2-Butoxyethanol (2005-2009)	
Hydraulic Fracturing Products Used Between 200	No. of Products	State	Fluid Volume (gallons)
Chemical Component	Containing Chemical	Texas	12,031,734
• •	<u> </u>	Oklahoma	2,186,613
Methanol (Methyl alcohol)	342	New Mexico	1,871,501
Isopropanol (Isopropyl alcohol, Propan-2-ol)	274	Colorado	1,147,614
Crystalline silica - quartz (SiO2)	207	Louisiana	890,068
Ethylene glycol monobutyl ether (2-butoxyethanol)	126 119	Pennsylvania	747,416
Ethylene glycol (1,2-ethanediol) Hydrotreated light petroleum distillates	89	West Virginia	464,231
Sodium hydroxide (Caustic soda)	89	Utah	382,874
Seatom Ly de onde (eaustie seato)		Montana	362,497


Arkansas

348,959

Source: U.S. House of Representatives, 2011

Surface water contamination

 Formation water from deep shale formations is typically saline and may contain contaminants (As, Pb, Fe, etc.)

Conclusions

Questions that need answers

MARS

- Monitoring
 - o Seismic
 - Methane and other potential contaminants in surface water and drinking water wells
- Accountability
 - Oil companies should bear the cost and responsibility to demonstrate that fracking is safe and sustainable
- **R**eporting
 - All fluids and additives used.
 - Fluid and additive recovery data.
 - Formation water discharge quality and quantity.
- Support for research and information dissemination
 - Royalty or tax to support research

References

- Cathles, L. M., Brown, L., Taam, M., Hunter, A., (2012) A commentary on "the greenhousegas footprint of natural gas in shale formations" by R.W. Howarth, R. Santoro, and Anthony Ingraffea. Climatic Change, 1–11. URL http://dx.doi.org/10.1007/s10584-011-0333-0.
- Holland, Austin (2011) Examination of Possibly Induced Seismicity from Hydraulic Fracturing in the Eola Field, Garvin County, Oklahoma. Oklahoma Geological Survey Open:File Report OF1:2011.
- Howarth R, Santoro T, and Ingraffea A (2011) Methane and the greenhouse gas footprint of natural gas from shale formations. Climatic Change. doi:10.1007/s10584-011-0061-5. http://www.springerlink.com/content/e384226wr4160653/
- Howarth RW, Ingraffea A (2011) Should fracking stop? Yes, it is too high risk. Nature 477:271–273.
- Lee D.S., Herman J.D., Elsworth D., Kim H.T., and Lee H.S., (2011) A critical evaluation of unconventional gas recovery from the marcellus shale, northeastern united states. KSCE Journal of Civil Engineering, 15(4):679–687
- U.S. Department of Energy Office of Fossil Energy National Energy Technology Laboratory (2009) State Oil And Natural Gas Regulations Designed To Protect Water Resources. 65 p.
- U.S. Department of Energy Office of Fossil Energy National Energy Technology Laboratory (2009) Modern Shale Gas Development in the United States: A Primer. 116 p.
- U.S. House of Representatives Committee on Energy and Commerce Minority staff (2011). Chemicals Used In Hydraulic Fracturing. 32 p.