Consider an object that moves along a horizontal frictionless surface (e.g., an air hockey puck on a level air table). Suppose that the object moves under the influence of a net force expressed as follows:

$$\vec{F}_{net}(x,y) = \left(-k_x x \,\hat{i}\right) + \left(-k_y y \,\hat{j}\right)$$

Note: The above net force can be modeled by two long springs connecting the air hockey puck to two edges of the air table. One spring, with force constant k_x , would be oriented in one direction; the other spring with force constant k_v would be oriented perpendicular to the first spring.

Each diagram below corresponds to a specific experiment. The relative values of the force constants k_x and k_v and the initial conditions of the motion are given in each case.

For each case below, carefully sketch a qualitatively correct x-y trajectory that the object might follow. Explain the reasoning you used to decide how to draw the trajectory for each case.

The force constants are equal, $\underline{k}_x = \underline{k}_y$, and the object is launched from point \overline{P} in the +y direction.

$$k_x = k_y$$

b. The force constants are equal, $\underline{k}_x = \underline{k}_y$, and the object is launched from rest at point Q.

(continued on other side)

c. The force constants differ by a factor of 4, with $\underline{k_y} = 4\underline{k_x}$, and the object is launched from point *R* in the +*y* direction.

 $k_y = 4k_x$

d. The force constants differ by a factor of 4, with $\underline{k_y} = 4\underline{k_x}$, and the object is launched from the origin in the direction shown.

 $k_y = 4k_x$