Because physics majors have conceptual difficulties too:

Development of a tutorial approach to teaching intermediate mechanics

Bradley S. Ambrose

Department of Physics Grand Valley State University Allendale, MI *ambroseb@gvsu.edu*

Supported by NSF grants DUE-0441426 and DUE-0442388

Special acknowledgements

- Michael Wittmann (University of Maine)
- Lillian C. McDermott, Peter Shaffer, Paula Heron (U. of Washington)
- Stamatis Vokos, John Lindberg (Seattle Pacific University)
- Dawn Meredith (U. New Hampshire), Carrie Swift (U. Michigan-Dearborn), Juliet Brosing (Pacific U.), Brant Hinrichs (Drury U.), Daniel Lee (Wittenberg U.), Daniel Marble (Tarleton State U.),
- National Science Foundation

Outline of presentation

- Introduction and motivation for project
- Investigating the nature of student thinking: Probing ability of students to extract physical meaning from mathematics
 - *Example #1*: Conservative force fields
 - *Example #2*: Harmonic oscillations in 1D and 2D
- Using research to design and assess a tutorial approach to teaching intermediate mechanics
- Reflections and conclusions

From previous research at the introductory level

Many students have difficulty discriminating between a **quantity** and its **rate of change:**

- position vs. velocity*
- velocity vs. acceleration *
- height vs. slope of a graph **
- electric field vs. electric potential [†]
- electric (or magnetic) flux vs. change in flux
- ...and many other examples

^{*} Trowbridge and McDermott, Am. J. Phys. **48** (1980) and **49** (1981); Shaffer and McDermott, Am. J. Phys. **73** (2005).

^{**} McDermott, Rosenquist, and van Zee, Am. J. Phys. 55 (1987).

[†] Allain, Ph.D. dissertation, NCSU, 2001; Maloney et al., Am. J. Phys. Suppl. 69 (2001).

From previous research at the introductory level

Students use inappropriate **"compensation arguments"** when comparing quantities that involve two or more variables.

Students often (incorrectly) predict:

" $KE_A > KE_B$ " because faster speed of A "matters more" than mass ($KE = \frac{1}{2}mv^2$) " $p_A = p_B$ " because larger mass of B "compensates for" smaller speed (p = mv)

^{*} R.A. Lawson and L.C. McDermott, Am. J. Phys. 55, 811-817 (1987).

From previous research at the introductory level

After standard lecture instruction in introductory physics, most students:*

- lack a *functional understanding* of many basic physical concepts

(*i.e.*, they lack the ability to apply a concept in a context different from that in which the concept was introduced)

- lack a coherent framework relating those concepts

^{*} McDermott and Redish, "Resource letter PER-1: Physics Education Research," Am. J. Phys. **67** (1999).

What is "intermediate mechanics" about?

Review of fundamental topics

- Vectors
- Kinematics
- Newton's laws
- Work, energy, energy conservation
- Linear and angular momentum

New applications and extensions

- Velocity-dependent forces
- Linear and non-linear oscillations
- Conservative force fields
- Non-inertial reference frames
- Central forces, Kepler's laws

New formalism and representations

- Scalar and vector fields; del operator; gradient, curl
- Phase space diagrams

As an *instructor* of intermediate mechanics

One might expect students to have already developed:

- *functional understanding* of physical concepts covered at the introductory level
- mathematical and reasoning skills necessary to extend those concepts in solving more sophisticated problems, *both qualitative and quantitative*

As a *physics education researcher* teaching intermediate mechanics

We might think about the following research questions:

- To what extent have students developed a functional understanding of fundamental concepts in mechanics?
- What unexpected things are students doing as they encounter new topics in intermediate mechanics?
- How is the use of mathematics different in this course than in the introductory courses?

Context of investigation and curriculum development

Primary student populations: Intermediate mechanics

- Grand Valley State University (GVSU)
- University of Maine (U. Maine)
- Seattle Pacific University (SPU)
- Pilot sites for *Intermediate Mechanics Tutorials*

Primary research methods

- Ungraded quizzes (pretests)
- Written examinations

"Explain your reasoning."

- Formal and informal observations in classroom
- Individual and group student clinical interviews

Example #1

Conservative forces

What we teach about conservative forces

in intermediate mechanics

A force **F**(**r**) is conservative if and only if:

- the work by that force around any closed path is zero
- $\nabla \times \mathbf{F} = 0$ at all locations

• a potential energy function $U(\mathbf{r})$ exists so that $\mathbf{F} = -\nabla U$

(generalization of $\mathbf{E} = -\nabla V$ from electrostatics)

"Equipotential map" pretest

Intermediate mechanics

After all lecture instruction in introductory E&M

In the region of space depicted at right, the dashed curves indicate locations of *equal* potential energy for a test charge $+q_{test}$ placed within this region.

It is known that the potential energy at location *A* is *greater than* that at *B* and *C*.

- A. At each location, draw an arrow to indicate the <u>direction</u> in which the test charge $+q_{test}$ would move when released from that location. Explain.
- B. Rank the locations *A*, *B*, and *C* according to the <u>magnitude</u> of the force exerted on the test charge $+q_{test}$. Explain your reasoning.

(Qualitatively correct force vectors are shown.)

Equipotential map pretest: Results

Intermediate mechanics, GVSU (N = 73, 8 classes)

After all lecture instruction in introductory E&M

Percent correct *with correct reasoning:*

(rounded to nearest 5%)

Both parts correct	15%	(9/73)
Part B (Ranking force magnitudes)	20%	(14/73)
Part A (Directions of force vectors)	50%	(35/73)

Similar results have been found among students at U. Maine and pilot test sites.

Equipotential map pretest: Results

Intermediate mechanics

After all lecture instruction in introductory E&M

Most common *incorrect* ranking: $F_A > F_B = F_C$

Example: "A has the highest potential so it can exert a larger force on a test charge. B and C are on the same potential curve and thus have equal abilities to exert force."

Example: "A has the most potential pushing the charge fastest. B & C are on the same level."

Failure to discriminate between a quantity (potential energy U) and its rate of change (force $\mathbf{F} = -\nabla U$)

Equipotential map pretest: Results

Intermediate mechanics

After all lecture instruction in introductory E&M

Most common *incorrect* ranking: $F_A > F_B = F_C$

Example: "Since *F* is proportional to *V*, higher *V* means higher *F*."

Example: " $[V_A > V_B = V_C] \dots F(x) = - \frac{dV}{dx}$ $\therefore F_C = F_B$ in magnitude and $F_A > F_C$ in magnitude."

Failure to discriminate between a quantity (potential energy U) and its rate of change (force $\mathbf{F} = -\nabla U$)

Example #2

Harmonic motion in 1D and 2D

Research questions

After relevant lecture instruction:

- How well do students understand the factors that affect the frequency of harmonic oscillations?
 - Simple harmonic motion in 1-D and 2-D
 - Damped harmonic motion
- How well do students use and interpret formal representations of oscillatory motion?
 - Motion graphs of 1D oscillators
 - Phase space diagrams of 1D oscillators
 - Real space (x-y) trajectories of 2D oscillators

What we teach about harmonic oscillations

in intermediate mechanics

	Equation of motion	Solution for $x(t)$
Simple harmonic motion	$m\ddot{x} = -kx$	$x(t) = A_o \cos(\omega_o t + \varphi)$ where $\omega_o = \sqrt{k/m}$
Underdamped motion $(\gamma < \omega_o)$	$m\ddot{x} = -kx - c\dot{x}$ $\left(\ddot{x} = -\omega_o^2 x - 2\gamma \dot{x}\right)$	$x(t) = A_o e^{-\gamma t} \cos(\omega_d t + \varphi)$ where $\omega_d = \sqrt{\omega_o^2 - \gamma^2}$

 \Rightarrow Frequency depends on mass and spring constant

 \Rightarrow Amplitude has no effect on frequency or period

"Simple harmonic oscillator" pretest

(excerpt)

A block is connected to a spring and placed on a frictionless surface. A student releases the block 0.5 m to the <u>right</u> of equilibrium.

For each change listed below, how (if at all) would that change affect the **period** of motion? Explain your reasoning.

- The block is released <u>0.7 m</u> to the <u>left</u> of equilibrium.
- The spring is replaced with a stiffer spring.
- The block is replaced with another block four times the mass as the original one.

Predicting effect on oscillation frequency

After lecture instruction (6 classes, $N \sim 50$)

The good news...

Parts ii & iii (changing *spring* or *mass*): Most students ($\sim 65\%$) gave qualitatively correct answers with acceptable explanations.

The bad news...

Part i (increasing *amplitude*):

Most students answered correctly ($\sim 65\%$) but very few gave acceptable explanations.

Most common incorrect response (~25%): "Larger [period if amplitude is larger], because the block travels farther during each period."

"2D oscillator" pretest

Consider the motion of a 2D oscillator, with $U(x, y) = \frac{1}{2} k_1 x^2 + \frac{1}{2} k_2 y^2$, or equivalently, $U(x, y) = \frac{1}{2} m \omega_1^2 x^2 + \frac{1}{2} m \omega_2^2 y^2$.

For each *x*-*y* trajectory shown, could the oscillator follow that trajectory?

If so: Is ω_1 greater than, less than, or equal to ω_2 ? Explain.* *If not:* Explain why not.

* Original version asked instead for a comparison between k_1 and k_2 .

DePaul Physics Colloquium 2009.09.30

2D oscillator pretest: Results

Intermediate mechanics, GVSU (4 classes) and U. Maine (1 class) *After* relevant lecture instruction

- Few students (0% 15%) answered all cases correctly.
- Most incorrect responses based on "compensation arguments" involving relative amplitudes along *x* and *y*-axes:

Examples:

" $k_1 < k_2$, the spring goes farther in the *x*-direction, so spring must be less stiff in that direction."

" $\omega_2 > \omega_1$. Since we now have an oval curve with the *x*-axis longer, ω_2 must be greater to compensate."

What we teach about harmonic oscillations

in intermediate mechanics

	Equation of motion	Solution for <i>x(t)</i>
Simple harmonic motion	$m\ddot{x} = -kx$	$x(t) = A_o \cos(\omega_o t + \varphi)$ where $\omega_o = \sqrt{k/m}$
Underdamped motion $(\gamma < \omega_o)$	$m\ddot{x} = -kx - c\dot{x}$ $\left(\ddot{x} = -\omega_o^2 x - 2\gamma \dot{x}\right)$	$x(t) = A_o e^{-\gamma t} \cos(\omega_d t + \varphi)$ where $\omega_d = \sqrt{\omega_o^2 - \gamma^2}$

- \Rightarrow Damping force causes amplitude to decrease over time
- \Rightarrow Damping force lowers oscillation frequency ($\omega_d < \omega_o$)

"Underdamped oscillator" pretest

(excerpt)

The *x* vs. *t* graph represents the motion of a simple harmonic oscillator that is released from rest at t = 0.

A. Clearly indicate and label(i) amplitude, (ii) period.Explain your reasoning.

B. Suppose that a retarding force were applied to cause the oscillator to become <u>underdamped</u>.

On the axes above, sketch a qualitatively correct *x* vs. *t* graph for the oscillator when it is released *from rest* at the *same initial position as before*. Explain how you decided to draw the graph the way you did.

Underdamped oscillator pretest: Results

After lecture instruction, GVSU (5 classes) and SPU (1 class)

Most common *incorrect* response (60% - 70%):

"The amplitude will shrink with time but the period shouldn't change since they are independent of each other."

Failure to recognize that damping force affects frequency

Underdamped oscillator pretest: Results

After lecture instruction, GVSU (5 classes) and SPU (1 class)

Other category of *incorrect* response:

"The damping agent will prevent the oscillator to reach a certain point in the same amount of time, so the undamped motion 'leads' the damped motion."

Difficulty connecting verbal and graphical (x vs. t) representations of oscillatory motion

A research-tested tutorial approach for teaching *introductory* mechanics

• Emphasis:

- conceptual understanding and reasoning skills
- connecting the mathematics to the physics

• Tutorial components:

- pretests (ungraded quizzes, in-class or take-home; 10 min)
- tutorial worksheets
 (small-group work; 40 50 min)
- tutorial homework
- examination questions (post-tests)

Intermediate Mechanics Tutorials

Collaboration between GVSU (Ambrose)* and U. Maine (M. Wittmann)

- Simple harmonic motion
- Newton's laws and velocity-dependent forces
- Damped harmonic motion
- Driven harmonic motion
- Phase space diagrams
- Conservative force fields
- Harmonic motion in two dimensions
- Accelerating reference frames
- Orbital mechanics
- Generalized coordinates and Lagrangian mechanics

^{*} Ambrose, "Investigating student understanding in intermediate mechanics: Identifying the need for a tutorial approach to instruction," *Am. J. Phys.* **72** (2004).

Building students' physical <u>and</u> mathematical intuitions about conservative forces

In the tutorial Conservative forces and equipotential diagrams:

Students develop a qualitative relationship between **force vectors** and local **equipotential contours**...

...and construct an operational definition of the gradient of potential energy:

$$\nabla U = \left(\frac{\partial U}{\partial x}\hat{i} + \frac{\partial U}{\partial y}\hat{j}\right)$$

Tutorial: Conservative forces and equipotential diagrams

Topographic maps as analogues to equipotential diagrams

For the three labeled locations (A - C), students:

- Rank locations according to *slope*
- Rank locations according to *net force* (neglecting friction)
- Determine *direction* of net force

Tutorial: *Conservative forces and equipotential diagrams* Operational definition of *gradient*

For the three labeled locations (A - C), students answer:

"Unknown equipotentials" post-test

Exam after tutorial, GVSU, 2003 (N = 7)

Three identical particles are located at the labeled locations (1, 2, and 3).

Each vector represents the force $\mathbf{F}(x, y)$ exerted at that location, with:

 $F_{3} > F_{2} > F_{1}$

- A. In the space above, *carefully sketch an equipotential diagram* for the region shown. Make sure your equipotential lines are consistent with the force vectors shown. Explain the reasoning you used to make your sketch.
- B. On the basis of your results in part A, rank the labeled locations according to the *potential energy* of the particle at that location. Explain how you can tell.

"Unknown equipotentials" post-test: Results

Exam after tutorial, GVSU, 2003 (N = 7)

Three identical particles are located at the labeled locations (1, 2, and 3).

Each vector represents the force $\mathbf{F}(x, y)$ exerted at that location, with:

 $F_{3} > F_{2} > F_{1}$

Acceptable student diagram (part A)

Part A:Relative spacing of equipotentials:Orientation of equipotentials:

4/7 correct 5/7 correct 1/7 correct

Part B: Rank points by potential energy:

"Unknown equipotentials" post-test: Results

Exam after tutorial, GVSU, 2003 (N = 7)

Example of a partially correct response:

Part B (rank points by potential energy):
$$37271$$

The greater the face, the higher potental energy $\vec{F} = -\nabla V$

Persistent confusion between a quantity (potential energy U) and its rate of change (force $\mathbf{F} = -\nabla U$)

Helping students understand what the gradient *means* <u>and</u> what it *does not mean*

Last page of tutorial includes these questions:

Summarize your results: Does the vector representing ∇U ...

- point in the direction of *increasing* or *decreasing* potential energy?
- point in the direction in which potential energy changes the *most* or the *least* with respect to position?
- have the same magnitude at all locations having the same potential energy? Explain why or why not.

Role of tutorial homework

Students apply and extend results from tutorial

Students reflect upon what " ∇U " means <u>and</u> what it does <u>not</u> mean:

Consider the following statement:

"For a conservative force, the magnitude of the force is related to potential energy. The larger the potential energy, the larger the magnitude of the force."

Do you *agree* or *disagree* with this statement?

- If you agree, state so explicitly. Explain your reasoning.
- If you disagree, use your results from this tutorial to provide <u>at least</u>
 <u>three (3)</u> specific counterexamples. Explain your reasoning.

Examples of assessment questions

On written exams after tutorial instruction

Task: Given equipotential map, predict directions <u>and</u> relative magnitudes of forces.

GVSU: 20/23 correct (2 classes)

SPU: 8/11 correct (1 class)

Task: Given several forces, sketch a possible equipotential map <u>and</u> rank points by potential energy.

GVSU: 14/30 correct (3 classes)

Tutorial: *Harmonic motion in two dimensions*

Connecting force constants and frequencies

Students are guided to recognize:

- how many oscillations occur along the *y*-axis for each oscillation along the *x*-axis
- how differences in force constants affect periods and frequencies
- how phase difference between *x* and *y*-motions affect trajectories of isotropic oscillators

Tutorial homework: *Harmonic motion in two dimensions*

Connecting amplitude and potential energy (not frequency)

Excerpt from tutorial homework:

A. Critique the following statement. Explain.

"The oscillator goes farther in the *x*-direction than in the *y*-direction. That means the spring in the *y*-direction must be stiffer than the spring in the *x*-direction."

B. Rank points *P*, *Q*, and *R* according to (i) total energy, (ii) potential energy, (iii) kinetic energy.

Explain how the difference in the *x*- and *y*-amplitudes, used *incorrectly* in the statement in part A, can help justify a *correct* answer here in part B.

Summary: Even physics majors...

- Experience difficulty discriminating between a quantity and its rate of change.
 - Force and potential energy: $\mathbf{F} = -\nabla U$
- Use incomplete or inappropriate "compensation arguments"
 - Relationship between amplitude and frequency
- Need guidance to connect mathematics and physics
 - Differential operators (gradient, curl)
 - Graphical representations (motion graphs, trajectory plots)

Preliminary conclusions

- Intermediate mechanics students often experience conceptual and reasoning difficulties similar to those identified at the introductory level.
 - Deeply-seated alternate conceptions
 - Disparate "knowledge pieces"*
- Specific difficulties must be addressed <u>explicitly</u> and <u>repeatedly</u> for meaningful learning.
- An inquiry-based tutorial approach can be effective for both investigating and improving student understanding.

^{*} Scherr, Am. J. Phys. **75** (2007).

Intermediate Mechanics Tutorials

Project website: http://perlnet.umaine.edu/IMT

Bradley S. Ambrose

Dept. of Physics Grand Valley State Univ. Allendale, MI *ambroseb@gvsu.edu*

Michael C. Wittmann

Dept. of Physics & Astronomy University of Maine Orono, ME *wittmann@umit.maine.edu*

Supported by NSF grants DUE-0441426 and DUE-0442388

References

- **R. Allain**, "Investigating the relationship between student difficulties with the concept of electric potential and the concept of rate of change," Ph.D. dissertation, Dept. of Physics, North Carolina St. Univ., 2001.
- **B. S. Ambrose,** "Investigating student understanding in intermediate mechanics: Identifying the need for a tutorial approach to instruction," Am. J. Phys. **72** (2004).
- R. A. Lawson and L. C. McDermott, "Student understanding of the work-energy and impulse-momentum theorems," Am. J. Phys. 55 (1987).
- L. C. McDermott, M. L. Rosenquist, and E. H. van Zee, "Student difficulties in connecting graphs and physics: Examples from kinematics," Am. J. Phys. 55 (1987).
- D. P. Maloney, T. L. O'Kuma, C. J. Hieggelke, A. Van Heuvelen, "Surveying students' conceptual knowledge of electricity and magnetism," Am. J. Phys. 69 (2001).
- L. C. McDermott and E. F. Redish, "Resource Letter: PER-1: Physics education research," Am. J. Phys. 67 (1999).
- P. S. Shaffer and L. C. McDermott, "A research-based approach to improving student understanding of the vector nature of kinematics," Am. J. Phys. 73 (2005).
- D. E. Trowbridge and L. C. McDermott, "Investigation of student understanding of the concept of acceleration in one dimension," Am. J. Phys. **49** (1981).