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In this tutorial, we will use Newton’s Law of Gravitation, 
!
FG (!r ) = !

GMm
r2

êr , to develop some problem-

solving strategies in orbital mechanics.  We focus on two-body problems for which one is much more 
massive than the other (m « M).  

I. Work done by gravitational forces 
Consider an unmanned space probe (mass m) undergoing maneuvers in the vicinity of a planet (mass M).  
In the figure below, three locations are labeled near the planet; point P is a distance r1 away from the 
center of the planet, while points Q and R are a distance r2 away. 

 
 
 
 
 
 
 
 
 
 
 
 
 

A. Suppose the probe moved directly away from the planet from P to Q.  Compute by direct integration 
the work done on the probe by the planet from P to Q.  Check your work with your partners.  We will 
call your result “Equation 1.” 

(Note:  Keep careful track of signs [+/-].  Since r2 > r1, should the work be positive or negative?) 

 
 
 
 
 
 
 
 
 
 

[Eq. 1]   
 
 
 

B. Suppose that after arriving at point Q, the probe then maneuvered along the circular arc from Q to 
point R.  What can be said about the work done by the planet for this part of the probe’s motion?  
Explain.  
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C. Suppose now that the probe maneuvered from P to R but along a path that was different from the path 
P à Q à R.  How, if at all, would that affect the amount of work done by the planet on the probe?  
(Big hint:  At every point along the probe’s path, whatever it may be, each next “step” along the path 
can be thought of as having components parallel and perpendicular to the direction of the force.)  

Carefully discuss your reasoning with your partners—this is the 2nd most important question on the 
entire tutorial! 

 
 
 
 
 
 
 
 
II. Gravitational potential energy 

Your results thus far suggest that work done by gravitational forces depends not upon the path taken by 

an object but only upon the endpoints of that path.  We can define gravitational potential energy UG so 

that the change in gravitational energy is equal to the opposite of the work done, or:  . 
 
 
A. Your results from the preceding section suggest that gravitational potential energy can be expressed 

by a function like this (where r denotes the distance separating the centers of mass of the two bodies):  

UG (r) = ±
GMm
r

("+"or"!"?)  

 
Here’s the question:  Which sign, “+” or “–,” belongs?  Explain how your choice of sign will make 
the relationship consistent with Equation 1 from the preceding page.  (This is the most 
important question in the tutorial!)  Check your thinking by answering the following questions: 

• Intuitively, as the distance r increases, would you expect potential energy to increase or decrease? 
 
 
 
• Now more formally, explain how your choice of sign will make the relationship 

consistent with Equation 1. 
 

 
 
 
 
 
 
 
 
 

 Please STOP here to briefly check your results here with an instructor. 
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Now we’re in business!  We will now see how we can use conservation of energy for systems of celestial 
objects in which one object orbits another as a result of just gravitational forces. 

B. Consider a comet following a highly elliptical orbit around the Sun (see diagram below).   

1. If the comet (mass m) has speed v 
when it is located a distance r from 
the Sun (mass M), write down an 
expression for the total energy 
(kinetic + potential) of the Sun-comet 
system in terms of these quantities 
and physical constants.   
 
(We will call your result “Equation 2.”) 

 
 

Etot  =   [Eq. 2] 
 
 
 

2. Use Equation 2 to rank the labeled points A – E according to the speed of the comet as it passes 
that point in its orbit.  Discuss your reasoning with your partners.   

 
 
 
 
 
III. Application:  Circular orbits as examples of bound systems 
Consider now the motion of a planet (mass m) that moves with constant speed vo in orbit around a Sun-
like star (mass M) along a circular orbit of radius Ro.  (The Earth’s orbit is almost circular.) 

A. Write down an expression for the total energy of the planet-star system (kinetic + potential) in terms 
of the given parameters. 

 
 
 
 
 

Because this situation involves the special case of a circular orbit, we can rewrite the above 
expression so that the total energy is written in terms in terms of just Ro, m, M, and G (and not vo).  
Do so.  (You will need Newton’s Second Law in conjunction with Newton’s Law of Gravitation.)  
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B. With your partners, interpret your (perhaps surprising!) result from part A: 

1. Is the total energy of the planet-star system positive in value, negative in value, or equal to zero?   

 
 
 

2. If the radius of the planet’s orbit were larger than it actually was, would that change cause the 
total energy of the planet-star system to be larger or smaller than what it actually was?  (Watch 
+/- signs!) 

 
 
 
 

3. Suppose instead that the planet were located VERY far away from the star (as in, infinitely far 
away) and had ZERO velocity.  Using Equation 2, what can be said about the total energy of the 
planet-star system for this extreme case?   

 
 
 
 

4. Systems of objects like a star and an orbiting planet are often called “bound systems.”  Justify 
this term in light of what you now know about the total energy of such a system. 

 
 
 
 

 

 Please STOP here to briefly check your results here with an instructor. 

 
 
IV. Application:  “Escape velocity” 
The term “escape velocity” refers to the minimum speed vesc that a rocket or other spacebound vehicle 
must have at the time it leaves the Earth’s surface (i.e., at r = rE) in order for it to avoid being recaptured 
in orbit around the Earth. 

Calculate the escape velocity for a rocket leaving the Earth’s surface, and in so doing show that it is 
independent of the mass of the rocket.  Discuss your reasoning with your partners and show all work.  
(Ignore the effect of the Earth’s rotation as well as the change in mass of the rocket.) 

(Big hint:  What is the minimum value for the total energy of the rocket-Earth system if this system is 
not to be a bound one?)   

 
 


