\qquad

Think of an object attached to a spring and undergoing damped harmonic motion. The differential equation describing its motion is given by

$$
\frac{d^{2} x}{d t^{2}}=-2 \gamma \frac{d x}{d t}-\omega_{0}^{2} x
$$

where we have defined constants $\gamma=c / 2 m$ and $\omega_{0}{ }^{2}=k / m, k$ being the spring constant, m being the mass of the object, and c being the damping constant for $F_{\text {ait }}=-c v$. On the second page, there is a large graph of its motion.

1. Is the motion underdamped, overdamped, or critically damped? Circle one. Explain your reasoning.
2. Mark up the diagram as follows:
a. With a box, indicate all locations that are turning points.
b. With a circle, indicate all locations that are inflection points.
c. With a triangle, indicate all locations that are axis crossing points.
3. For the first inflection point (as you move from left to right), draw a free body diagram, correctly indicating the magnitude and direction of all forces acting on the object. Explain your answer.
4. For the second turning point (as you move from left to right), draw a free body diagram, correctly indicating the magnitude and direction of all forces acting on the object. Explain your answer.
5. For the second axis-crossing point (as you move from left to right), draw a free body diagram, correctly indicating the magnitude and direction of all forces acting on the object. Explain your answer.

