
 
 

©2013 Physics Department, Grand Valley State University, Allendale, MI.   

I. Equation of motion 
Consider an oscillator in which the damping force is non-linear, i.e., the damping force is not simply 
proportional to the speed of the oscillating mass.  Oscillators of this type are called non-linear oscillators.  
The equation of motion for one example of such an oscillator is shown below (all constants are positive): 
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2x = 0  (Eq. 1) 

 
We will compare the oscillator described above to a linearly damped oscillator having the same natural 
frequency ωo of motion: 
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2x = 0  (Eq. 2) 
 

A. In the linearly damped oscillator, is the damping force in the same direction or opposite in direction 
from the velocity?  Explain how you can tell from the equation of motion. 

 
 
 
 
 
B. Suppose that the initial conditions for the nonlinear oscillator were chosen such that the quantity  

( 2
ox /A2  + 2

ox /β2A2) is greater than 1.  Would the damping force be in the same direction or opposite 
in direction from the velocity?  Explain how you can tell from the equation of motion. 

 
 
 
 

How, if at all, would your answer change if the initial conditions were different such that  
( 2
ox /A2  + 2

ox /β2A2) is less than 1?  Explain your reasoning. 

 
 
 
 

How, if at all, would your answer change if the initial conditions were different again such that  
( 2
ox /A2  + 2

ox /β2A2) is equal to 1?  Explain your reasoning. 

 
 
 
 
 
C. For each of the cases described in part C above, would the total energy of the oscillator increase, 

decrease, or remain constant after it is released?  Explain your reasoning for each case.   
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ü  STOP HERE and check your results with an instructor before proceeding to the next section.   

 
 
II. Phase space trajectories of a self-limiting oscillator 
Below we consider the phase space trajectory for a weakly damped oscillator (i.e., γ´ « ωo) for which the 
equation of motion is given in Eq. 1.   

The phase space diagram below shows an ellipse with axes of length 2A (along the position axis) and 2βA 
(along the velocity axis).  Three different initial starting points (1, 2, and 3) are labeled. 

A. For each labeled point, would the 
damping force exerted on the 
oscillator be in the same direction 
as velocity, opposite in direction 
from velocity, or zero?  Explain.   

 

 

 

 

 

 

B. Consider the case in which the 
oscillator begins from point 1.   

1. Sketch a qualitatively correct 
trajectory from point 1 that 
corresponds to approximately 
¼ to ½ of an oscillation. 

 
2. As the oscillator evolves, does the damping force exerted on the oscillator increase or decrease in 

magnitude?  Explain how you can tell. 

 
 
 
 
 

On the basis of your answer, continue your phase space plot so that it shows at least two cycles of 
motion.  Describe the asymptotic behavior of the oscillator (as t → ∞) in words. 
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C. Repeat part B for the cases in 
which the oscillator instead starts 
to move from (i) point 2, 
(ii) point 3. 

(The phase space diagram from 
the preceding page has been 
reproduced at right for 
convenience.) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
D. The non-linear oscillator described by Eq. 1 is an example of a category of oscillators called self-

limiting oscillators.  The elliptical phase space trajectory shown above (having axes of length 2A and 
2βA) is called the limit cycle of the oscillator.  In light of your results: 

1. Explain why the terms self-limiting oscillator and limit cycle are appropriate.   

 
 
 
 
 
 
 

2. Describe in words the significance of the parameter β.  In particular, how is its meaning different 
from that of the natural frequency ωo?   
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