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The nature of mental structures and perceptual and cognitive processing
modes has long been of concemn in clinical psychology. However, in
recent years, there has been a movement toward more rigorous descrip-
tions and even predictions within a cognitive setting (e.g., Granholm,
Asarnow, & Marder, 1996a, 1996b). In this chapter, we consider the
strategic issue of mental architecture. Mental architecture refers to the
organization of a set of mental processes. Two special cases of great impor-
tance are parallel processing, which means the simultaneous processing of
items, and serial processing, which means the sequential and nonover-
lapping processing of items. For instance, whether certain syndromes cause
or are associated with a change from parallel to serial processing has often
been a question of interest to clinical scientists (e.g., Knight, Manoach,
Elliott, & Hershenson, 2000; Magaro, 1983). Mental architecture is one
of a set of critical issues contained in our general theoretical approach
(e.g., Townsend, 1974; Townsend & Ashby, 1983; Townsend & Wenger,
2004a). Processing refers to some perceptual or cognitive operation such as
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search, comparison, evaluation, or the like. More specific examples are
given later.

As an apt example that relates to mental architecture, the dichotomy
of automatic versus controlled processing is virtually omnipresent
throughout cognitive science ( e.g., see review by Shiffrin, 1988) and has
been widely employed in clinical science (e.g., Carter, Robertson,
Chaderjian, Celaya, & Nordahl, 1992; Hartlage, Alloy, Vazquez, &
Dykman, 1993). Roughly, automatic processing is assumed to be effortless,
requiring little or no attention, whereas controlled processing is assumed
to be effortful with high attentional demands. In addition, all would agree
that automatic processing is parallel, but whether controlled processing
must be serial, rather than an inefficient form of parallel processing,
would in recent times be more controversial. Now as Shiffrin (1988) inti-
mates, it would be impossible to render the notion rigorous at the level of
generality that is commensurate with its ubiquity. Nonetheless, in delim-
ited settings it can often be interpreted in a rigorous and even mathe-
matical fashion. In fact, we show in a later section that automaticity
should be characterized, in each experimental milieu, in terms of the
other critical issues as well as the parallel versus serial distinction.
Although we treat the theme of mental architecture in a relatively gen-
eral way, we subsequently briefly indicate the relationship of our devel-
opments to the notion of automaticity. We stress that the major
dependent variable with which we labor in this exposition is that of
response times. -

The implementation of quantitative signatures of mental architecture
in clinical studies is much in the spirit of integrative psychological science,
a movement whose most forceful and articulate proponent has been
Richard McFall. His own work, in collaboration with students and
coworkers, has exemplified the merits of such synthesis (e.g., Treat,
MckFall, Viken, & Kruschke, 2001; Treat et al., 2002). Dick has indicted
an excessive reliance in clinical cognitive science on assemblies of off-
the-shelf measures, or tasks contrived essentially according to clinical
hunch, in lieu of choice cognitive-science developments, especially for-
mal versions. He has forcefully taken the discipline to task for what has
often amounted to reinvention of the clinical-science wheel, at best, or
discharging its scientific mandate with compromised measurement
methods, at worst.

Throughout, Dick has put the welfare of the ultimate consumer of
clinical science’s offerings, specifically clients with problems in living,
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first and foremost. Practice based on the best psychological science has to
offer, and impelled to prove itself in the court of outcome research (wit-
ness the prominence of evidence-based practice), has found its most

formidable advocate in Dick McFall.

IMPORTANCE OF DISCERNING STATUS OF MENTAL
ARCHITECTURE IN RELATION TO PSYCHOPATHOLOGY

Evaluative reviews of the literature on applications of cognitive psychol-
ogy’s information-processing models, most prominent in schizophrenia
research, have concluded that these models provide a valid framework for
interpreting performance deviations (e.g., Neufeld & Broga, 1981). It
follows that the structure of processing systems deemed to bear on cogni-
tive tasks is tantamount to a faculty that is spared with the advent of dis-
order. Such conclusions, however, have been based on verbal conjecture,
rather than mathematically derived diagnostics of processing-system
design. The importance of architectural aspects of processing in clinical
cognitive science beckons the use of contemporary quantitative signa-
tures, whose paradigms in principle can be appropriated in clinical studies
(e.g., Neufeld & McCarty, 1994; Vollick, 1994).

Integrity of mental architecture is of obvious interest in its own right.
It is important to know if psychopathology impinges on the usual opera-
tion of processing structure, including its apparent adaptation to selected
variations in task composition (Townsend & Fific, 2004).

As intimated already (and further elaborated later in this chapter),
cognitive architecture is but one component of the automatic-con-
trolled processing construct, ubiquitously invoked in clinical studies.
Any one or some combination of this construct’s components may effect
changes in observed performance. It therefore becomes important to
ascertain cognitive architecture’s contribution to performance devia-
tions through methods isolating the design of the processing system. If
evidently unaltered, for example, other sources can be scrutinized with
greater confidence in assumed architectural intactness. Alternatives
include overall processing capacity (Neufeld, Townsend, & Jetté, in press)
and its parametric constituents (Neufeld, Carter, Vollick, Boksman,
Levy, & Jetté, in press).

Evidence bearing on cognitive architecture furthermore is important
to complementing analyses of cognitive performance, when a certain
architecture (e.g., parallel, serial, or hybrid) is purported to prevail among
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normal and symptomatic participants alike (e.g., Carter & Neufeld,
1999). Moreover, Bayesian-based approaches to mediating group-level
findings to individual participants have deemed selected structures of
processing systems as common to the studied groups (Neufeld, Vollick,
Carter, Boksman, & Jetté, 2002; Neufeld, 2005).

Finally, in research on functional neurocircuitry (e.g., via functional
magnetic resonance imaging [fMRI]), it seems imperative to anchor
imputed cognitive functions, notably the temporal arrangement of con-
stituent operations, in mathematically illumined behavioral terms.
Apart from being armed with freestanding cognitive-behavioral signa-
tures of mental architecture, we become vulnerable to the circularity
inherent in inferring the functions that are at work from the investigated
neurocircuitry.

When it comes to treatment interventions aimed at improving infor-
mation processing, rigorous profiles of clients’ strengths and weaknesses
of cognitive faculties seem indispensable. The efficiency of biological and
psychological interventions in principle can be improved by targeting
and monitoring such profiles’ disorder-affected elements (e.g., Broga &
Neufeld, 1981). Psychological interventions ideally can exploit spared
elements, such as the parallel, serial, or other structural aspects of menta-
tion (Townsend & Wenger, 2004a, 2004b). Moreover, proposed cogni-
tive-science entrenched computational methods of assessing individuals’
functioning over the course of treatment, and plotting treatment
groups’ trajectories of response to pharmacological agents, invoke specific
parametric-model architectures that fall into the classes articulated here
(Neufeld, in press-a).

The preceding are but a sampling of reasons that should motivate
delving into quantitative developments for ascertaining cognitive archi-
tecture. The exposition that follows is devoted to the most prominent
division, parallel versus serial transaction of task elements.

BASIC PROCESSING CHARACTERISTICS
AND AVOIDING PITFALLS

Certain fundamental characteristics of human information processing
have been known for some time (Townsend, 1974, 1990a; Townsend &
Wenger, 2004a). These characteristics, although logically distinct, can
interact in ways that can dupe or confound unwary researchers. We briefly
outline the major concepts here and delve into more detail subsequently.
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In addition to (a) serial versus parallel processing, it is necessary to
consider (b) the decision or stopping rule, (c) the question of indepen-
dence versus dependence of item or channel processing times, and (d)
capacity, or how efficiently processes function, especially as the workload
is increased.

The major reason for the potential of going astray mentioned in the
first paragraph, is that different combinations of values of the listed char-
acteristics can mimic one another. For instance, one of the first outcomes
of mathematical research on parallel and serial processing was that lim-
ited-capacity parallel processing (i.e., each parallel channel is slowed as
more items are being processed in other channels) could so perfectly
mimic standard serial processing in the popular experimental designs
that the two forms were mathematically identical and thus could not be
distinguished in those designs (Townsend, 1969, 1971). Even today, one
finds confounding between capacity (efficiency of processing; more on
this soon) and architecture (e.g., parallel vs. serial processing; again, more
detail later).

It is of the utmost importance to observe that the mathematical
identity of certain parallel and serial models does not imply that the
underlying physical mechanisms, whether neural, electronic, or mechan-
ical, are equivalent! Rather, they simply look and act like one another (in
fact, like identical twins raised in the same environment!) in certain
experimental settings and under certain assumptions.

To avoid the sloughs of methodological despond threatening the psy-
chological scientist, it is necessary to consider all of the characteristics
together and in a rigorous framework. As clinical science moves inex-
orably into the realms of hard science, it would seem desirable that it not
repeat the same mistakes that cognitive psychology has already encoun-
tered and begun to surmount.

We must also pay heed to the fact that because mental functions are
probabilistic, not deterministic, even at the neural level, it is required
that theory and theory-driven methodology be couched in stochastic lan-
guage. Deterministic models can sometimes yield helpful intuition but
they must be engaged with great caution, because sometimes their
predictions are at odds with the true stochastic interpretations.

The next section builds up, or reminds the reader of, some needed
quantitative tools. Certain of the material may seem overly simple to
some readers, but we prefer to be as inclusive as possible. Any of it may
be skipped at the reader’s discretion.
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some Required Quantitative Tools

The first notion required is that of what the well-known probabilist
Emanuel Parzen refers to as a probability law (Parzen, 1960). The probabil-
ity law is a general term used to designate any of a number of formulas
that define how the underlying random aspects will appear. Many
investigators employ the alternate term distribution to refer to the prob-
ability law. We use distribution and probability law interchangeably. The
term distribution can also be employed in a more detailed form, as shown
later.

Perhaps the most common formula or designation of a probability law
is the frequency function, that is, the idea from elementary statistics that
counts up the times or relatively frequency that an event occurs (e.g.,
proportion of students testing at such-and-such an IQ, etc.). In the ideal
or theoretical case, these frequency functions may be continuous, such
as the normal curve or the exponential distribution. Probabilists and
modelers call the ideal frequency functions probability densities,
although the concept has nothing to do with the usual physical concept
of density. We write a probability density or frequency function (hereafter
density) f(t) where t is, of course, time because we are focusing on
response times, and naturally t is greater than (or equal to) 0 and less
than infinity.

Another useful designator of a probability law is the cumulative distri-
bution function (note the special use of distribution here), which is the
sum (in a discrete probability law) or integral (in a continudus probability
law) from the lower limit (usually O in reaction time models) to an arbi-
trary value of the independent variable (usually time = ¢t here). Thus, if
we wish to know the probability that the response time was less than or
equal to some t (rather than being exactly t), we calculate F(t) = J f(¢)dt’
integrating (summing in a continuous way) from 0 to the value of inter-
est, t. In response-time research, the so-called survivor function (from
actuarial theory) is of value, indicating the likelihood that the response
time or processing time is not yet finished. It is S(t) = 1 — F(¢)= [ {¢) dt’,
this time integrating from t to infinity.

There are an infinite number of probability laws and therefore densities
and quite a few useful ones, such as the normal and exponential. Everyone
is familiar with the normal. A figure of the exponential distribution is
shown in Figure 9.1. Let exp represent the exponential number 2.7182...
(like 7, exp goes on forever, without repeating). Then the formula for the
exponential density is f(t) = a exp(—at), where, as usual, two symbols being
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FIGURE 9.1 The exponential probability density function f(t) (left), its corre-
sponding survivor function S(t) (middle), and its hazard function h(t) (right).
Note that the hazard function of the exponential density has a constant value.

placed next to one another indicates multiplication. The variable a is
the rate of processing in a model of response times. In the case of the
exponential distribution, S(t) = exp(-at), and F(t) = 1 — exp(-at).

The mean of a distribution, also called the expectation, is just E(T) =
Jf(t")¢'dt’ this time integrating over all possible values from t=0 to infin-
ity. (Note that it is a convention to use capital T instead of lower case
here, to indicate that it stands for any possible value, being what is
known in the trade as a random variable.)

Finally, we need a finer grain statistic known as the hazard function.
The concept, like that of survivor function, comes from actuarial statistics,
where it gives the probability that, say, a person will die in the next short
time, given that the person has survived until the present moment. It is
written as the ratio of the density over the survivor function, which does,
indeed, condition on the event not yet having occurred. In response-time
theory, of course, it refers to, say, an item finishing in the next instant,
given it is not yet completed.

Its formula is h(t) = f(£)/S(t). The hazard function for the exponential
distribution is the elementally and unique h(t) = g, a constant. The fact
that it is a constant indicates that the instantaneous conditional rate of
completion neither increases nor-decreases. Figure 9.1 shows the various
formulae associated with the exponential probability law. The mean of the
exponential distribution is simply 1/a. We next outline the basic processing
characteristics involved in psychological systems.

Architecture: The Serial Versus
Parallel Issue

Serial processing means processing things one at a time or sequentially,
with no overlap among the successive processing times. Processing might
mean search for a target among a set of distractors in memory or in a display,
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FIGURE 9.2 (a) A serial system, and (b) a parallel system. The input is a source
of information for the system, for example a face or a nonface stimulus. “A” and
“B” denote two channels of processing, two processes, or two units. For example,
“A” and “B” could be face-feature detectors (responding to the presence of eyes

and lips). In a serial system both channels process the input information in a
nonoverlapping manner, whereas in a parallel system the channels operate simul-
taneously. After all channels finish processing (for example, the recognition of a
face feature) the decision is generated. In other words, upon the positive recogni-
tion of all face features the response “I see a face” is generated. Otherwise the
response “This is not a face” is generated.

solving facets of a problem, deciding among a set of objects, and so on.
Parallel processing means processing all things simultaneously, although
it is allowed that they may finish at different times.

Although the term architecture might seem to imply rigid structure, we
may employ it to refer to such, or to more flexible arrangements. Thus, it
might be asserted that certain neural systems are, at least by adulthood,
fairly wired in and that they act in parallel (or in some cases, in serial).
However, a person might scan the newspaper for, say, two terms, one at a
time, that, is serially or, by dint of will, might try to scan for them in par-
allel. Although parallel versus serial processing is in some sense the most
elemental pair of architectures, much more complexity can be imagined
and, indeed, investigated theoretically and empirically (e.g., Schweickert,
1978; Schweickert & Townsend, 1989). Figure 9.2 illustrates the flow
diagrams associated with serial and parallel processing.

If we are dealing with only one or two channels or items, we shall often
just refer to these as a or b, but if we must consider the general case of
arbitrary n items or channels, we list them as 1, 2,...,n~1,n. Soifn =
2, and a and b are stochastically independent (see later material for more
on this issue), then the density of the sum of the two serial times is the
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so-called convolution of the separate densities. We can’t go into the
details here (but see e.g., Townsend & Ashby, 1983), but simply note that
this new density is designated as f (t) * f,(t), where the asterisk denotes
convolution and a and b are processed serially. The mean or expectation
of the sum E[T, + T,] = E[T ] + E[T}], that is, the old result we were taught
in statistics that the mean of the sum is the sum of the means: The overall
completion time for serial processes is the sum of all the individual
means. The standard serial model requires that f (¢t) = f,(t), which in turn
implies that E[T ] = E[T,] = E[T], and E[T,+ T,] = 2 E[T]

In more general settings, one might need to allow for a or b to take
different amounts of time, depending on which is processed first. For sim-
plicity, we do not consider that situation here, but even so, it may matter,
depending on the stopping rule (see just below), which order is taken.
Hence, we can assume that with probability p, a is done first and with
probability 1 — p, b is done first. Figure 9.2 shows the simplest case where,
say, item a is always processed first.

In parallel processing, assuming again stochastic independence across
the items or channels, the overall completion time for both items has to
be the last, or maximum finishing time for either item. Thus, the density
that measures the last finishing time is f,__(¢t) = f (¢)F,(¢) + f,(t)F (¢). This
formula has an easy interpretation that either a finishes last at time t and
b is already done by then, ot b finishes last at time t and a is already done
by then. In this case, the mean is not so easy to write from first principles.
Nonetheless, we can use a trick to do it. It is a very nice fact that the
mean of a positive variable T is the integral of the survivor function:
E[T] = | S(¥') dt’, integrating from O to infinity. The survivor function in
the present situation is S(t) = 1 — F (t)F,(t) and the mean can be calculated
from there using the already given integral.

Stopping or Decision Rule: When Does
Processing Cease?

No predictions can be made about processing times ufitil the model
designer has a rule for when processing stops. In some high-accuracy sit-
uations, such as search tasks, it is usually possible to define a set of events,
any one of which will allow the processor to stop without etror. In search
for a set of targets then, the detection of any one of them can serve as a
signal to cease processing. A special case ensues when exactly one sought-
for target is present. In any task where a subset of the display or memory
items is sufficient to stop without error, and the system processor is capable
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of stopping (not all may be), the processor is said to be capable of self-
termination (like many terms of specialized argot, this one could perhaps
be more descriptive). Because many earlier (e.g., Sternberg, 1966) inves-
tigations studied exhaustive versus single-target search, self-termination
was often employed to refer to the latter, although it can also have
generic meaning and convey, say, first-termination when the completion of
any of the present items suffices to stop processing. The latter case is often
called an OR design because completion of any of a set of presented items
is sufficient to stop processing and ensure a correct response (e.g., Egeth,
1966; Townsend & Nozawa, 1995).

If all items or channels must be processed to ensure a correct response,
then exhaustive processing is entailed. For instance, on no-target (i.e.,
nothing present but distractors or noise) trials, every item must be exam-
ined to guarantee no targets are present. In an experiment where, say, all
n items in the search set must be a certain kind of target, called an AND
design, exhaustive processing is forced on the observer (e.g., Stemnberg,
1966; Townsend & Nozawa, 1995). Nevertheless, as intimated earlier,
some systems may by their very design have to process everything in the
search set, so the question is of interest even when, in principle, self-
termination is a possibility.

Hence, in summary, there are three cases of especial interest: (a) minimum
time, OR, or first-terminating processing, where the first item to com-
plete stops processing; (b) single-target self-termination, where there is
one target among n — 1 other items and processing can cease when it is
found; and (c) exhaustive or AND processing, where all items or channels
are processed. Figure 9.3 depicts AND (exhaustive) and OR (first-termi-
nating) processing in a serial system, whereas Figure 9.4 does the same for
a parallel system.

Suppose again there are just two items or channels to process, a and b,
and serial processing is being deployed. Assume that a is processed first.
Then the minimum time processing density is simply f,;,(t) = £ (t), that
is, naturally just the density of a itself. Assume now there is a single target
present in channel a and one distractor is in channel b, and self-termi-
nating (ST) serial processing is in force. Then the predicted density is
£.(t) = pf.(6) + (1 = p)fy(t) * f.(¢). That is, if a happens to be checked first,
which occurs with probability p, then the processing stops. On the other
hand, if b is processed first and a distractor is found (as it must be), then
a has to be processed also so the second term is the convolution of the a
and b densities. In the event that both items must be processed (or an
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FIGURE 9.3  Schematics of stopping rules in a serial system. (a) A diagram of
the standard serial system in the case of “AND” (exhaustive) processing. (b) The
stopping rule in the serial system is depicted as an additional arrow which goes
from the output of “A” directly to the decision box, allowing for the possibility of
bypassing process “B.” When the evidence accumulated by process “A” is enough
to make a decision then the processing can terminate, and additional processing
of “B” is unnecessary.

inflexible serial processor cannot do otherwise), then the prediction is
just that given earlier: f_ (t) = f.(¢) * f,(¢).

When processing is independent parallel, the minimum time rule
delivers a horse race to the finish, with the winning channel determin-
ing the processing time (Fig. 9.4a). The density is just f,, (t) = £,(£)S,(¢)
+ f,(t)S,(t). This formula possesses the nice interpretation that a can
finish at time ¢, but b is not yet done (indicated by b's survivor function),
or the reverse can happen. If processing is single-target self-terminating
with the target in channel a, parallel independence predicts that the
density is the simple f(t) = f,(¢)! Finally, if processing is exhaustive
(maximum fime) and independent, then processing is the same as shown
in the introduction to parallel processing, f,..(t) = f.(t)F,(¢) + f,(t)F ()
(Fig. 9.4b).

Independence Versus Dependence Of
Channel or Item Processing

The next important issue to discuss is that of independence versus depen-
dence of channels, stages, or subsystems (these terms can be used inter-
changeably although stages is sometimes restricted to serial systems and
channels to parallel systems).
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FIGURE 9.4 Schematics of stopping rules in a parallel system. (a) A diagram of
the standard parallel system in the case of “AND” (exhaustive) processing. (b) In
the “OR” case, the evidence accumulated by process “B” is enough to make a
decision and processing can terminate, even though “A” has not yet finished
processing (this is indicated by the short arrow).

We have been explicitly assuming independence of the processing
times, whether they are serial or parallel. For the present tutorial purposes,
somewhat limited space, and without assuming significantly more mathe-
matical background of the reader, we prefer to circumambulate this issue
as far as writing out the technical equations goes. Nonetheless, it may be
pertinent to give some indication of where it matters.

In serial processing, if the successive items are dependent then what
happens on a, say, can affect the processing time for b. Although it is still
true that the overall mean exhaustive time will be the sum of the two
‘means, the second, say b, will depend on a’s processing time. Hence, if, say,
a is speeded up, then ordinarily that will affect even the mean time of b.
Figure 9.5 indicates independence versus dependence in serial systems.

In parallel processing too, the processing times could be dependent.
For instance, because they are being processed simultaneously, ongoing
inhibition or facilitation (or both!) can take place during a single trial
and while processing is ongoing. Townsend and Wenger (2004b) discuss
this topic in detail. Figure 9.6 illustrates the concepts of independent
versus dependent processing in parallel systems.

It is interesting to note that the above prediction of independent parallel
processing in ST situations will no longer strictly hold. However, it will still
be true even if processing is dependent that the predicted ST density will
be the average or expected value (i.e., known in probability jargon as the
marginal) of the density in the channel where the sought-for target is
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FIGURE 9,5 Dependency between “A” and “B” in a serial system: {a) the standard
serial system, and (b) a positively dependent serial system: Duration of “B”
depends positively on duration of “A,” that is faster processing in “A” will produce
facilitation or faster processing in “B” and vice versa. For example, in a face-recog-
nition task faster recognition of the first face feature could give some “confidence”
to a second process to speed up processing of a second feature. (c) A negatively
dependent serial system: The processing time of “B” is inversely related to a pro-
cessing time of “A.” Faster processing of “A” produces slow processing of “B”; that
is, “A” inhibits “B,” and vice versa. Overall, a positively dependent system with
facilitation exhibits the fastest reaction time (500 msec), whereas a negative
dependent system with inhibition exhibits the slowest reaction time (1,000 msec).

located, E[T,]. Only in the nonindependent situation, this expectation has
to be taken over all the potential influences from the surrounding chan-
nels. The speed-ups or slow-downs shown in Figures 9.5 and 9.6 can be
interpreted in terms of the notion of capacity, which we discuss next.

Capacity: Various Speeds on a Speed
Continuum

Capacity refers generally to the speed of processing in response-time tasks.
We first provide an informal sketch of the major concepts and then turn
to a more rigorous exposition. For greater mathematical detail and in-
depth discussion see Townsend and Ashby (1978), Townsend and Nozawa
(1995), and Townsend and Wenger (2004b). Wenger and Townsend
(2000) offer an explicit tutorial and instructions on how to carry out a
capacity analysis.
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FIGURE 9.6 Dependency between “A” and “B” in a parallel system. (a) The stan-
dard parallel system, and (b) a positively dependent parallel system: The positive
sign arrow from “A” to “B” indicates positive facilitation. That is, faster processing
of one channel speeds up processing in the other channel (as depicted in the fig-
ure), and vice versa. {c) A negatively dependent parallel system: The processing
time of “A” is inversely related to the processing time of “B.” Faster processing of
“A” will produce longer processing of “B”; that is, “A” inhibits “B” (as depicted in
the figure), and vice versa. Overall, a positively dependent system with the facilita-
tion exhibits the fastest reaction time (500 msec), while a negatively dependent
system with the inhibition exhibits the slowest reaction time (1,000 msec).

Informally, the notion of unlimited capacity refers to the situation when
the finishing time of a subsystem (item, channel, etc.) is identical to that
of a standard parallel system (described in more detail later); that is, the
finishing times of the distinct subsystems are parallel, probabilistically
independent, and the finishing times of each do not depend on how
many others are engaged (e.g., in a search task the finishing time of one
item is invariant over the total number of items being searched). Limited
capacity refers to the situation when item or channel finishing times are
less than what would be expected in a standard parallel system.
Supercapacity indicates that individual channels are processing at a rate
even faster than standard parallel processing. Figure 9.7 illustrates the
general intuitions accorded these concepts, again in an informal manner.

We pause to observe that, although the stopping rule obviously affects
overall processing times, as indicated in Figure 9.8 for both serial and
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FIGURE 9.7 Graphical intuition of a system’s behavior under different capacity
bounds: limited capacity, unlimited capacity, and supercapacity. The total system’s
capacity resource remains the same across all conditions. (a) In the limited-capacity
case, the total capacity is split between two channels. (b) In the case of the unlim-
ited capacity, each channel receives the total capacity. (c) In the supercapacity
case, the capacity devoted to each channel exceeds the total system capacity. Note
that an increase in channel capacity produces faster processing for that channel.

parallel systems, we assess capacity (i.e., efficiency of processing speed)
in comparison with standard parallel processing with specification of a
particular stopping rule. Thus, although the minimum time (first-
terminating or OR processing) decreases as a function of the number of
items undergoing processing (because all items are targets), the system is
merely unlimited, not super, because the actual predictions are from a
standard parallel model (i.e., unlimited capacity with independent chan-
nels). But observe that each of the serial predictions would be measured
as limited capacity because for each stopping rule, they are slower than the
predictions from standard parallel processing. '

Figure 9.8 indicates mean response times as a function of workload.
Workload refers to the quantity of labor required in a task. Most often,
workload is given by the number of items that must be operated on in
some fashion. For instance, workload could refer to the number of items
in a visual display that must be compared with a target or memory item.
Although Figure 9.8 indicates speed of processing through the mean
response times, there are various ways of measuring this speed. The
mean = E[T] is a rather coarse level of capacity measurement. A stronger
gauge is found in the cumulative distribution function F(t), and the hazard
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FIGURE 9.8. Expected processing time as a function of load-set size for different
stopping rules (exhaustive, self-terminating, and minimum) for (a) the standard
serial model, and (b) the parallel unlimited capacity processing model. The load-
set size is defined as number of processing units of information: usually number of
memorized items or items in the visual filed that have to be searched.

function (to be discussed momentarily) is an even more powerful and
fine-grained measure. This kind of ordering is a special case of a hierarchy
on the strengths of a vital set of statistics (Townsend, 1990b; Townsend &
Ashby, 1978).

The ordering establishes a hierarchy of power because, say, if F,(t) >
F,(¢) then the mean of a is less than the mean of b. However, the reverse
implication does not hold (the means being ordered does not imply an
order of their cumulative distribution functions). Similarly if h(t) > h,(t)
then F (t) > F,(t), but not vice versa, and so on. Obviously, if the cumula-
tive distribution functions are ordered then so are the survivor functions.
That is, F,(t) > F,(t) implies S,(t) < S,(¢).

There is a useful measure that is at the same strength level as F or S.
This measure is defined as —log [S(t)], that is, minus one times the natural
logarithm of the survivor function. It turns out that this is actually the
integral of the hazard function h(t) from 0 to t (e.g, Wenger &
Townsend, 2000; illustrative uses of this and related measures, below, in
clinical science are presented in Neufeld, Townsend, & Jetté, in press).
We thus write the integrated hazard function as H(r) = -log[S(t)].
Although it is of the same level of strength as S(t), it has some very help-
ful properties not directly shared by S(t).

Now we are in a position to compare two or more experimental situations
by comparing their statistics. For example we might compare Condition 1
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to Condition 2 as in S,(t) versus S,(t), or say, H,(t) versus H,(t)—or,more
easily, consider H,(t)/H,(t). If this ratio is greater than 1 for all reasonable
values of t, then we know that the capacity (efficiency, speed) of Condition
1 is greater than that in Condition 2 and in a quite strong sense.

As a special case of great import, assume now that we change the num-
ber of channels or items that must be processed, in the present context,
say, n goes from 1 to 2. Suppose we wish to measure the effect of this
increase in workload in a situation where an efficient system can stop in
the first-terminating (minimum) time.

We require a measuring instrument, in a sense, because there is no
elementary ruler we can use for arbitrary capacity measurement. Qur
measuring instrument is that of the set of predictions by unlimited-capacity
independent parallel processing. Unlimited capacity means here that each
parallel channel processes its input (item, etc.) just as fast when there are
other surrounding channels working (i.e., with greater n) as when it is the
only channel being forced to process information.

Now it has been demonstrated that when processing is of this form,
then the sum of the integrated hazard functions for each item presented
alone is precisely the value, for all times ¢, of the integrated hazard function
when both items are presented together (Townsend & Nozawa, 1995).
That is, H (t) + H(¢t) = H,(¢). This intriguing fact suggests the formula-
tion of a new capacity measure, which the latter authors called the
capacity coefficient C(t) and set it equal to C(t) = H,(t)/[H (t) + H,(t)],
that is, the ratio of the double item condition over the sum of the single
item conditions.

If this ratio is identical to 1 for all ¢, then the processing is identical to
that of an unlimited capacity independent parallel model. If C(t) is less than
1 for some value of t, then we call processing limited. For instance, either ser-
ial processing of the ordinary kind or a fixed-capacity parallel model that
spreads the capacity equally across a and b predicts C(t) = % for all times
t > 0. If C(t) > 1 at a time (or any, or maybe all times t) ¢, then we call the
system supercapacity for those times. A tutorial on capacity and how to assess
it in experimental data is offered in Wenger and Townsend (2000), with
clinical-science applications being illustrated in Neufeld, Townsend, and
Jetté (in press). In a recent extension of these notions, we have shown that
if configural parallel processing is interpreted as positively interactive
parallel channels (thus being dependent or positively correlated rather
than independent), then configural processing can produce striking
supercapacity (Townsend & Wenger, 2004b).
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Up to this point, in addition to providing motivation and relevance to
clinical science, we have reviewed some required probability tools and,
more important, introduced a set of critical dimensions from our infor-
mation processing theory. These included the focus of this chapter:
parallel versus serial processing. It is possible to construct a huge variety
of processing systems simply by combining different values from each
dimension (e.g., moderately limited capacity parallel processing with neg-
atively dependent channels and with an exhaustive processing rule
imposed). Nonetheless, certain particular systems have gained almost
archetypal status in cognitive science. In fact, this is so much so that
many times investigators seem to operate as if they are the only available
or possible systems in nature. Of course, this is far from true, but these
prototypical models bear special consideration on our part. We next take
up these prominent models. After that,we return to a more in-depth
discussion of automatic versus controlled processing. This section is followed
by presentation of a relatively recent and powerful experimental
approach that permits assessment of the basic dimensions of information
processing, using response times.

PROMINENT ARCHITECTURES

The first of the major architectures comprises the standard serial class of
model. This class has been quantitatively well understood at least since
Sternberg’s (1966) initial papers. The standard parallel class of models
seems to be less well comprehended at large, although a number of psy-
chological notions, for instance, automaticity, can be captured by this
type of processing. The third architecture, coactive parallel processing, is
a relatively recent contender—as we show later, these models permit per-
formance that is superior even to standard parallel processing. These
models make distinct predictions even at the level of mean response
times, as a function of workload, as indicated in this section. However,
they are still open to problems with model mimicking at this level. A
later section, Experimental Testing of Parallel and Serial Architectures,
shows how to effectively circumvent the model-mimicking dilemma.

It is worth pointing out that none of these models’ characteristic pre-
dictions rely on any special kind of probability density—that is, the pre-
dictions are a quantitative form of qualitative, and are thus so-called
distribution-free and, of course, are parameter-free as well. The latter stip-
ulation simply means that the predictions do not depend on any particular
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mean or variance, say of the underlying distributions, although naturally
the actual means or variances would depend on the parameters.

Standard Serial Models

This type of model is what most people mean when they only say serial
unadorned. Thus, it is the model advocated by S. Sternberg in many of his
papers (e.g., Sternberg, 1966, 1969, 1975). To reach it in the case that
n = 2, simply let f(t) = f,(t) = f(t)—that is, the probability densities are
the same across items or positions and even n. The latter means that f(t)
defines the length of time taken on an item or channel no matter how big
or little the entire set of operating items or channels is. Furthermore, it is
assumed in the standard serial model that each successive processing time
is independent of all others. So, if a is second, say, its time does not depend
on how long the preceding item (e.g., b) took to complete its processing.

Note, however, that we still allow in general that different paths
through the items might be followed. We also do not confine the stopping
rule to a single variety. Now, S. Sternberg’s preferred model did assume
that exhaustive processing was used even in target-present trials. But
because this seems like a secondary issue we allow the standard model to
follow other, sometimes more optimal, rules of cessation. Because all the n
densities are now the same we can simply write the nth order convolution
for exhaustive processing in symbolic form as f,_(t) = f™(t). The exhaus-
tive mean processing time is then E_ [T, + T, + ... + T ] = n E[T].

Next consider the situation where exactly one target is present among
n — 1 distractors and the system is self-terminating. Again, it is assumed
that the target is placed with probability 1/n in any of the n locations.
Then it follows that £ (t) = (1/n) X f¥ where the summation goes from
i=ltoi=n The mean processing time in this case is the well-known
E [T] = (n + 1)E[T}/2. This formula can be interpreted that on average,
it takes the searcher approximately one-half of the set of items to find the
target and cease processing. Finally, when processing stops as soon as
the first item is finished, then we have the result f , (t) = f(t) and the
elemental E_, [T] = E[T].

Standard Parallel Models

The standard parallel model assumes independence again among the
processing items, but this time in a simultaneous sense. At this point, we
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nake the decision of whether to force all the channels to process
‘he same (stochastic) speed. Why not? After all, we did just that
standard serial model. However, the standard serial model could
uce so-called position effects. Position effects are produced when
ocations of a target produce different mean processing times and,
‘e associated with distinct densities (e.g., Sternberg, 1966; Van
Townsend, 1993). Standard serial models can do this by letting
processing paths through the items occur with different proba-
‘or instance, if n = 3, the path <a, b, ¢> might be taken with
ty 1/3, the path <c, a, b> with probability 1/6, the path <aq, c, b>
»ability ¥, and all the other paths never occur. This distribution
-would make shorter times on average of a over b and c and the
‘ould tend to be shorter than those of b.
nly way an independent parallel model can generate position
f the distinct channels or items have different densities, as in f (t)
>nce, this provision is usually allowed in standard parallel models.
event, because we always assumed independence in the above
t of parallel models, the formulas for n = 2 stay the same.
, for simplicity, take the special case where the densities are all
- Then EIMAX(T,, T),...,T )] = I 1 = Fr(©)] dt with the inte-
z taken from O to infinity. It is straightforward to show that in
the curve of mean processing times (and therefore response
always increasing but with a concave-down shape. In this espe-
ple case, the single self-terminating target case, among n — 1 dis-
s just E[T], the time required for any single item to complete.
, the time required for the minimum or first-terminating time,
1e time of the winning horse, is EIMIN(T, , T,,...,T,) = fi-
and again the integral is from O to infinity. Here, it can be demon-
at the mean times in this kind of model (and this is true even if
e distributions are identical), the curve of mean times is always
g, concave up. Egeth (1966) employed this characteristic fre-
» argue for parallel processing because it is an unnatural prediction

nodels. The proofs of the theorems on concavity of reaction time
a function of load are provided by Townsend and Ashby (1983).

e Parallel Models

n the late 1980s, J. Miller (1982, 1986) began to produce data
2d to indicate that processing could be even better, more capacious
than even ordinary (or we would now say, standard parallel
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FIGURE 9.9 Schematics of (a) a parallel independent system, and (b) a coac-
tive multiple channels processing systems. A coactive model assumes that an
input from separate parallel channels is consolidated into a resultant common

processor before a decision is made.

action). His main line of argument used a clever probability inequality
that ordinary parallel processing would have to satisfy but that extra-
ordinary or, as we might say today, supercapacity operations could violate.
Before long, a number of investigators, including Miller, commenced to
develop actual nonstandard parallel models that indeed would violate the
inequality (e.g., Diederich, 1992, 1995; Diederich & Colonius, 1991;
Schwarz, 1994; Townsend & Nozawa, 1995; Townsend & Wenger, 2004b).
All these models possess the property that activity in the separate channels
was summated or pooled into a final common channel before a detection
decision was made. In standard and in fact, any parallel model where sepa-
rate detection decisions are made in their individual channels, this pooling
does not occu. Figure 9.9 exhibits a comparison between ordinary parallel
processing where separate decisions (detections, etc.) are made on the dis-
tinct channels as opposed to coactive processing where the activations on
the several channels are combined, for instance, summed arithmetically.
Subsequently, a general theory of capacity was formulated that permitted
the measurement of processing efficiency for all times during a trial
(Townsend & Nozawa, 1995). Employing standard parallel processing as a
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cornerstone, the theory defined unlimited capacity as efficiency identical to
that of standard parallel processing in which case the measure is C(t) = 1.
It defined limited capacity as efficiency slower than standard parallel pro-
cessing. For instance, standard serial processing produces a measure of
capacity of C(t) = .5. And finally, the theory defined supercapacity as pro-
cessing with greater efficiency than standard parallel models could produce,
that is, C(t) > 1. It was then proven that a very broad class of coactive
parallel models, which included all the special ones constructed before
that, would imply C(t) > 1 and would inevitably violate Miller’s inequality.

Because our focus here must be on architecture, we have not been able
to expend much space on capacity, but the reader is referred to Wenger
and Townsend (2000) for a tutorial on capacity measurement, Townsend
and Ashby (1978) for the early work on this concept, and Townsend and
Wenger (2004b) for the latest theoretical results on capacity in interac-
tive (i.e., not independent) parallel systems.

Note that the capacity construct has been prominent in clinical cognitive
science. Initial extensions of mathematical treatments of the construct to
this arena of study are reported in Neufeld, Vollick, and Highgate (1993).
Subsequent developments are enumerated in Neufeld (in press-a) and
Neufeld, Carter, Vollick, Boksman, Levy, and Jetté (in press), and inaugural
implementations in this field of the integrated hazard function H(t) and
the capacity coefficient appear in Neufeld, Townsend, and Jetté (in press).

We have provided a succinct overview of three highly important kinds
of processing models: standard serial, standard parallel, and coactive par-
allel. The standard serial model is least efficient because it entails sequen-
tial processing of each item with average processing times on each always
being the same. Standard parallel processing implies quite efficient pro-
cessing because each item can be processed at the same rate, regardless of
how many others are being operated on, and all are processed simultane-
ously. Coactive parallel processing can be exceedingly fast by virtue of all
of the item channels pouring their activation into a single final conduit.
The next section revisits the very popular topic of automatic processing.

AUTOMATICITY: INTERPRETATION VIA
ARCHITECTURE AND CAPACITY

The notion of automaticity has rarely, if ever, been given a rigorous math-
ematical definition. One primary correlate has been superior efficiency of
processing as expressed in response times.
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In fact, often, the criterion investigators use to ascribe processing as
automatic, is simply that a mean response-time function of workload be
flat. Because, as we have seen, response speed depends on all the major
characteristics of a system, the investigator must be wary when drawing
conclusions about automaticity even from this simple standard. Thus,
even a standard serial model predicts a flat response-time function for a
first-terminating stopping rule. Furthermore, a standard parallel model
with its independent, unlimited capacity, will predict a flat response-time
curve when the system is searching for a single target among n — 1 dis-
tractors. We further witnessed that with first-termination, such a model
will actually predict a decrease in mean response times.

It is not .clear to the authors whether the class of standard parallel
models are sufficiently free of capacity limitations to qualify as automatic
processing in the minds of most investigators of this topic. It would seem
that a coactive model, with channels left undegraded as workload n
increases, should merit that assessment. This question is primarily one of
convention, but it would be propitious if agreement on a rigorous set of
criteria could be reached.

We also have to take account of the differing experimental paradigms
where the phenomenon is concluded to exist. The modern instantiation of
this concept stems from the Schneider and Shiffrin (1977) studies on visual
and memory search mentioned in the introduction. We haven’t the space
to consider the wide array of experimental conditions they ran and in
particular must ignore their results on accuracy in favor of the response-
time dependent variable under very high accuracy. Their basic findings,
replicated scores of times, were that both the single target present (i.e.,
potentially single-target self-terminating) and target absent (forced exhaus-
tive processing) response times were flat or almost flat. Standard parallel
processing models easily predict the first result but not the second. If mean
response times for exhaustive processing are flat, then processing is highly
supercapacity. For instance, Townsend and Ashby (1983) show that a
model whose channels are unlimited capacity at the start of a trial, but that
is capable of reallocating capacity from completed channels to uncom-
pleted ones, predicts flat exhaustive mean response-time curves. However,
either processing is also exhaustive on the target present trials, or is less
super in capacity on the latter—an unlimited capacity parallel model with
reallocation would predict decreasing mean response-time functions.

A similar but not identical topic arises when one speaks of gestalt
figures or holistic processing. A unified Gestalt or holistic percept might
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be more or less wired in, or at least installed early in life, as in face
perception, or learned for some purpose later on. One expression for the
welding of several initially separate parts into a whole is unitization, 3
term employed by Czerwinski, Lightfoot, and Shiffrin (1992) in their
study of this kind of learning. Another example stems from Goldstone’s
(2000) experiments, where observers learned to weld together a set of
originally meaningless squiggles into a perceptually holistic object. All of
the squiggle features in the designated object had to be perceived in order
to be correct, forcing exhaustive processing. Employing concepts from
cognitive stochastic process theory (e.g., Townsend & Ashby, 1983), he
showed that the various parts of the holistic object were perceived in a
supercapacity (i.e., better than standard parallel processing) fashion.
Subsequent replicative experiments employing new measures of capacity
by Blaha and Townsend (2004a) have confirmed and strengthened
Goldstone’s conclusions. Blaha and Townsend (2004b) have further
developed a neuralistic model based on a dynamic system instantiation of
Hebbian concepts, which produces the massive supercapacity found in
these investigations.

Another experimental example of a kind of automatization may be
that of the well-known and documented pop-out effect. This effect occurs
whenever a target that is sufficiently distinct from all the distractors is
used, as, for instance, when a colored object is placed among a set of gray
distractors or a green object is placed among a set of red distractors (e.g.,
Treisman & Gormican, 1988; see also Van Zandt & Townsend, 1993).
Here the emphasis is obviously on the target present case. Response times
on these trials are flat across set size n. Hence, standard parallel process-
ing can account for these results without having to posit super capacity.

In summary, as noted before, the literature and phenomena of autom-
atization are vast. Nonetheless, it appears that at least in certain publi-
cized cases, and in particular where a small set of targets is identified with
the same speed across increasing workload n (i.e., increasing the number
of present distractors), standard parallel processing is a sufficient expla-
nation for automatization. However, when processing has to be exhaus-
tive and yet the response-time curves are flat across n, the system has to
be exceedingly supercapacity. Such cases appear in the Schneider and
Shiffrin (1977) target absent data as well as the Goldstone (2000) and
later the Townsend and Blaha (2004a, 2004b) investigation. Positively
interactive parallel processing or coactive parallel processing can readily

produce such findings (Townsend & Wenger, 2004b).
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It is apparent that a simple and universal isomorphism between the
concept of automaticity and rigorous information-processing dimensions
is a chimera. It is especially vital to understand that there may be more
than one way to skin the cat, so to speak—that is, to avoid confusing suf-
ficiency of a model with its necessity. For instance, Kahneman (1973)
promoted the idea that systems might in some situations be capable of
drawing on extra resources when workload is increased. Such extra
resources could transform standard parallel processing into supercapacity
(and apparently automatic) parallel processing.

In any event, in each individual research area, our taxonomy can be
applied to endow this exceedingly efficient type of processing with pre-
cise meaning and experimental implications.

EXPERIMENTAL TESTING OF PARALLEL VERSUS
SERIAL ARCHITECTURES

There now exist several experimental assays of mental architecture. Most
of these circumvent the major impediment of the ability of limited capac-
ity parallel models to mimic the behavior of standard serial models.
However, before embarking on the primary target of this section, we
observe that serial models that can mimic unlimited or supercapacity par-
allel models are typically quite unintuitive, so that evidence of such
behavior can be taken as falsifying serial architectures (e.g., Townsend,
1971, 1974). For more complete reviews of, and references to, the avail-
able panoply of serial-parallel assessment techniques, the reader is
pointed to Townsend and Wenger (2004a), Townsend (1990a), and
Townsend and Ashby (1983).

One major set of strategies has sprung from S. Sternberg’s (1969) addi-
tive factors method. This method and its descendents, rests on the
assumption of selective influence. Selective influence assumes that speci-
fied experimental variables separably affect distinct processing systems. In
the additive factors method, the subsystems are often called stages. The
stages consume some random amount of time and it is postulated that
these processing times do not overlap, although it could be that switching
times between stages could add some additional time.

Suppose we are concerned with just two subsystems (stages for serial
processing). Let us refer to these as a and b as usual and name the exper-
imental factors that selectively affect them A and B. Then the next step
is to perform a factorial experiment with factors A; X B;, where i and j
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FIGURE 9.10  The time course of processing of two items (left column), the corresponding
deterministic (middle column), and stochastic (right column) mean interaction contrast
(MIC), across different architectures and stopping rules (rows). The time course of processing
depicts the change in total processing time for different factorial conditions (HH, HL, LH,
LL) for different architectures. Each upright bold arrow in the graph corresponds to total pro-
cessing of one unit (in the left column), which could be at the H (high) or L (low) level. A
dotted upright arrow indicates a process that did not complete because the processing termi-
nated on a completion of the previous process. The deterministic MIC, in the middle column,
represents the duration or the sum of process times (as indicated on the y-axis in the first col-
umn). Note that we are not able to directly observe the deterministic MIC in experiments
because in a real system processing components will add some variability or noise. The sto-
chastic MIC is an observable measure and is obtained when some variability or noise is added
to the overall processing. Error bars around each mean condition represent standard error sta-
tistic (added here arbitrarily for the sake of presentation). Also observe also that each archi-
tecture combined with a different stopping rule exhibits a different MIC value.
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indexes run over the various levels of each factor (e.g., i or j = 1, 2).
Because of selective influence and the successive nonoverlapping times
from the stages, it is then predicted that the two (or more) experimental
factors will exhibit additive effects in the mean response times garnered
in the factorial experiment.

Let the random times for the two stages be named T (A)) and T(B)),
respectively, and set the overall mean (=expected) exhaustive processing
time under condition A; X B;as E[T;]. Then this overall mean exhaustive
processing time for condition A X B;in this serial model is E[T,] =
E[T(A) + Tb(B].)] and by virtue of the aforementioned elementary sta-
tistical fact that the mean of the sum equals the sum of the means we
arrive at E[T(A) + T,(B)] = E[T,(A)] + E[T,(B)].

By adopting the convention that E[T,(A)] = t(A), it is straightfor-
ward to compute the mean interaction contrast (MIC) as MIC = E[T, |
- E[T12] - {E[TZI] - E[Tzz]} = E[T“] - E[Tu] - E[TZJ] + E[Tzzl = ta(AI) +
tb(Bl) - [ta(Az) + tb(Bl)] - [t,,(A;) + tb(Bz)] + [ta(Az) + tb(Bz)] = 0. This
little operation demonstrates the additivity, and therefore the zero MIC,
of the serial model under selective influence.

Figure 9.10 shows mean reaction time predictions for each mental
architecture combined with different stopping rules. For each model time,
course of activation is depicted in the first column. Second and third
columns of Figure 9.10 show both additive and stochastic MIC predictions
for each model, while the stochastic MIC is empirically observed only. For
the aforementioned serial exhaustive processing, it is evident that indeed
E[T,] - EIT,] = E[T,} - EIT},], eventuating in the MIC of zero.

Interestingly, first- and single-target terminating stopping rules also
result in additive (implying MIC = 0) response-time factors. However, we
show later that a more penetrating statistic is able to distinguish the stop-
ping rules.

To a number of theorists, the appearance of the original method in
1969 raised a vital question: What kinds of predictions would nonserial
architectures make? Schweickert (1978, 1983), in his latent mental net-
work theory, contributed the first major extension of the additive factors
method, involving more complex architectures under the assumption of
selective influence. This theory was very general, including serial and
parallel systems as special cases.

Taking a different approach, Townsend and Ashby (1983) found that
the mean interaction contrast distinguished parallel and serial stochastic
models when selective influence was assumed. Stopping rule matters here,
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too. Interestingly, the sign of the mean interaction contrast depends not
only on the architecture, but also on the stopping rule. Thus, paralle]
exhaustive processing exhibits a negative contrast, whereas a parallel race
model (i.e., first-terminating parallel processing) will evidence a positive
contrast (see Townsend & Nozawa, 1995).

The case of single-target termination has not been much discussed
or applied, but it is easy to demonstrate that, intriguingly enough, this
case implies additive factors. Thus, parallel predictions are shown in
Figure 9.10. Note that if only a single target condition were employed,
the serial and parallel predictions are the same. The general set of
experimental strategies that include nonserial architecture and also
statistics other than the mean (discussed next) has been called systems
factorial technology.

Systems Technology Response-Time
Factorial Distributions

As suggested by Townsend (1990a, 1990b), certain aspects of probability
distributions are more powerful than others. That is, knowledge of some
aspects always implies knowledge of others, but not vice versa. In partic-
ular, the entire cumulative probability distribution (i.e., the integral of
the density from O to t) function on response times is more powerful than
the means alone.

We observe that statistics at the distributional level deliver much
deeper and more conclusive information about processing architecture
and stopping rules than was possible with mean response times. For
instance, a test case presents itself in the question as to whether coactive
- parallel processing can be distinguished, using factorial methods, from
ordinary parallel processing. It turns out that at the level of mean response
times (RTs) and within an OR design, coactive parallel processing
cannot be distinguished from ordinary parallel processing with an OR
stopping rule (i.e., with a race between the two channels determining
when the process is completed). Specifically, the MIC is positive just as
in a parallel horse race. However, if the factorial interaction concept is
extended to the entire RT distribution (as in Townsend & Nozawa,
1995), it turns out that it is possible to distinguish a coactive model from
a standard parallel model with an OR gate. In principle, either the cumu-
lative probability distribution [P(T < ¢) = F(t)] or the survivor function
[S(t) = 1 — F(t)] can be used (e.g., Schweickert, Giorgini, & Dzhafarov,

2000). Because the original derivations were in terms of the survivor
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FIGURE 9.11 An ordering of joint survivor functions for different factorial con-
ditions (HH, HL, LH, LL) (left column) and the survivor interaction contrast
(SIC) (right column) across different architectures and stopping rules (rows). Note
that each SIC function is calculated using SIC(t) = Sti(t) — Slh(t) - Shl{t) +
Shh(t). Each joint survivor function on the right-hand side is estimated from data
(displayed in the left column). Note that each combination of architecture and
stopping rule exhibits a unique SIC function. The shapes of these different SIC
functions are independent of the form of the probability density function.
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function (Townsend & Nozawa, 1995), we employ that one here, with
the interaction contrast for the survivor function (SIC):

SIC(D) = Sy(6) — Sy(0) = [Sy(6) — SO = S,(0) = S,(0) = Sy(t) + S, 0)

Figure 9.11 displays the predictions for the various models. Observe that
ordinary parallel-processing SICs reveal total positivity in the case of
OR conditions, but total negativity in the case of AND conditions,
Furthermore, OR parallel and coactive parallel processing now are distin-
guished by their respective SICs: The contrast for OR parallel processing is
consistently positive, whereas the contrast for the coactive model possesses
a small negative blip at the earliest times before going positive. Because
MIC must be positive in coactivation, the positive portion of the SIC
always has to exceed the negative portion. Calculation of the SIC function
in reaction time experiments could be a laborious job when using some
standard statistical packages. In the appendix, we provide guidelines for cal-
culating SIC function. Two scripts that calculate and display the survivor
interaction contrast function are available for download on the Psychology
Press Web site (http://www.psypress.com/brainscans-etc), written for the
Mathematica and Matlab environments. Details of implementations are
displayed as the comment sections within each script.

The advantages associated with the use of both the SIC and the MIC
go beyond the ability to distinguish coactive from parallel processing. It
is also intriguing that the OR and the AND serial stopping rules are now
experimentally distinguishable, because in the OR case SIC = 0 always,
but in the AND case there is a large negative portion of the SIC, followed
by an equally large positive portion. Thus, both the architecture and the
stopping rule are experimentally determinable by the factorial tests
carried out at the distributional level. The general applicability of the
distributional approach has benefited from theoretical extensions by
Schweickert and colleagues (2000) to general feedforward architectures,
which contain parallel and serial subsystems, and from advances in
methods of estimating entire RT distributions (see in particular, Van
Zandt, 2000, 2002).

CONCLUSION

In this brief space, we have come all the way from underscoring the
importance of discerning mental architecture in clinical cognitive sci-
ence, through enumeration of the chief issues encountered in engaging
this challenge, to mathematical-theory spawned technology for resolution.

9. ASSESSMENT OF MENTAL ARCHITECTURE 253

Developments in contemporary mathematical cognitive science represent
compelling supplements, and even alternatives, to currently proffered
batteries of measures aimed at mapping cognitive functioning among
clinical samples (e.g., Heinrichs, 2005), or monitoring response to treat-
ment (Nuechterlein, Barch, Gold, Goldberg, Green & Heaton, 2004; cf.
McFall & Townsend, 1998). Application in clinical science is not with-
out its problems (Neufeld, 2001). In-depth analyses of clinical-setting
exigencies, and tacks to overcoming them, whose exposition is beyond
the present scope and space, are available in auxiliary sources (Carter,
Neufeld, & Benn 1998; Neufeld, in press-b). We anticipate that advances
in quantitative cognitive science will continue to make inroads on the
clinical scene, eventuating in significant improvements in cognitive
assessment and intervention, and that tutorials of this nature will serve to
accelerate the process.

APPENDIX: A GUIDE TO CONSTRUCTING AND USING
THE SURVIVOR INTERACTION CONTRAST FUNCTION

1. For each condition, remove the RTs that correspond to errors,
equipment failures, anticipatory reactions, and lapses of observer
attention.

2. Determine the reaction time bin size. Usually we use 10 msec bin
size. The range and the size of the bins vary according to the
nature of the task.

3. Count the number of observations in each bin. This step generates
a frequency distribution function.

4. Divide each counted frequency (bin) by the total number of
observations. This produces relative frequency function (i.e., an
empirical probability density function). _

5. Calculate the empirical cumulative distribution function (CDF)
F(t) for each stimulus condition (HH, HL, LH, LL) by accumu-
lating the empirical probabilities from the lowest to the highest
valued bin. This will produce four vectors of data, each describing
empirical cumulative distribution function for particular condi-
tion (Fy(t), F,(t), Fi(t), F,(t)).

6. Calculate an empirical survivor function for each condition by
subtracting the value of F(t) for each condition from 1; that is, cal-
culate 1 — F(t). Do this for four data sets that correspond to each
factorial condition. This step will produce four vectors of data,
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each describing empirical survivor distribution function for each
condition (Sy(t), S,(t), S, (e}, S, (1)).

7. Calculate the survivor interaction function (SIC) by taking the
double difference between survivor data vectors, SIC(t) = Sy(t) -

Siult) = §,(t) + §,,(t), and form the final SIC data vector.
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