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Information-Processing Architectures in Multidimensional Classification: A
Validation Test of the Systems Factorial Technology
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A growing methodology, known as the systems factorial technology (SFT), is being developed to
diagnose the types of information-processing architectures (serial, parallel, or coactive) and stopping
rules (exhaustive or self-terminating) that operate in tasks of multidimensional perception. Whereas most
previous applications of SFT have been in domains of simple detection and visual-memory search, this
research extends the applications to foundational issues in multidimensional classification. Experiments
are conducted in which subjects are required to classify objects into a conjunctive-rule category structure.
In one case the stimuli vary along highly separable dimensions, whereas in another case they vary along
integral dimensions. For the separable-dimension stimuli, the SFT methodology revealed a serial or
parallel architecture with an exhaustive stopping rule. By contrast, for the integral-dimension stimuli, the
SFT methodology provided clear evidence of coactivation. The research provides a validation of the SFT
in the domain of classification and adds to the list of converging operations for distinguishing between
separable-dimension and integral-dimension interactions.
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A fundamental issue in the psychology of perception concerns
how information from multiple dimensions is processed in tasks
such as detection, recognition, and classification (e.g., Ashby,
1992; Garner, 1974; Kantowitz, 1974; Lockhead, 1972; Schweick-
ert, 1992; Sternberg, 1969; Townsend, 1984). Consider, for exam-
ple, a simple detection paradigm in which there is a potential target
in the left visual field and one in the right visual field. On each
trial, the observer’s task is to simply detect whether one of the
targets is present. One basic question is whether the processing of
the information operates in serial fashion or in parallel fashion. In
serial processing, information from each visual field is gathered
sequentially, one field at a time. By contrast, in parallel processing,
information from both visual fields is gathered simultaneously. A
second question is whether the processing is exhaustive or self-
terminating. In the self-terminating case, processing would stop as
soon as a single target is detected. By contrast, in the exhaustive
case, processing would continue until the information has been
gathered from both visual fields, regardless of whether a target had
already been detected in one of them. A third question of interest
in the present research is whether the processing may be coactive.
In the present example, the intuition is that information from the
separate visual fields may summate or be pooled into a common
channel prior to an eventual decision-making stage (Colonius &
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Townsend, 1997; Diederich & Colonius, 1991; Miller, 1982;
Townsend & Nozawa, 1995). This summed perceptual information
may lead to more efficient decisions than if separate decisions are
made for each individual field.

A growing methodology, known as the systems factorial tech-
nology (SFT), is being developed to diagnose the type of process-
ing architecture that underlies performance in tasks of multidimen-
sional perception, for example, whether processing is serial or
parallel, exhaustive or self-terminating, and whether coactivation
has occurred (e.g., Egeth & Dagenbach, 1991; Schweickert, 1985;
Schweickert, Giorgini, & Dzhafarov, 2000; Townsend & Ashby,
1983; Townsend & Nozawa, 1995; Townsend & Wenger, 2004a).!
For the most part, however, applications of the SFT have taken
place in the context of simple detection and visual- and memory-
search paradigms. One purpose of the present research was to
extend the applications of SFT to multidimensional perceptual
classification (cf. Fific, 2006; Thomas, 2006; Wenger &
Townsend, 2001). In classification, the task is not to determine the
presence or absence of targets. Rather, stimulus information is
always present, and the task is to use the presented information to
classify objects into categories.

An equally important goal of the present research was to use the
classification paradigm to provide validation tests of the SFT
methodology, particularly with regard to foundational issues in
multidimensional perception. A fundamental distinction in multi-

! The SFT methodology can also be used to diagnose another aspect of
information-processing architecture, namely, capacity. For example, in a
limited-capacity parallel-processing architecture, the rate at which infor-
mation is gathered along each individual processing channel is reduced as
the total number of processing channels increases. We do not investigate
issues involving capacity in the present research, however.
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dimensional perceptual classification involves the contrast be-
tween integral and separable dimensions (Ashby & Maddox, 1994;
Garner, 1974; Shepard, 1964). Integral dimensions are those that
combine into relatively unanalyzable, unitary wholes. Examples
are colors varying along dimensions of brightness, saturation, and
hue. There is extensive converging evidence that observers process
such stimuli in holistic fashion. Such evidence leads to the hy-
pothesis that classification decision making for integral-dimension
stimuli involves coactive processing of the dimensions. Our rea-
soning is that in the case of integral-dimension stimuli, the per-
ceptual system apparently glues the individual dimensions into
whole objects at an early stage of processing. Thus, rather than the
information-processing system making decisions along separate
channels, it seems more natural to conceive of the system as
operating on a pooled, coactive source of perceptual evidence.

By contrast, separable dimensions are those that remain psycho-
logically distinct when in combination. Examples of stimuli com-
posed of separable dimensions are geometric forms that vary in
their shape and in their color. For highly separable-dimension
stimuli, it seems far less likely that coactive processing of the
individual dimensions takes place. The key question that we pur-
sued in the present research was whether the SFT methodology
would reveal the signatures of the expected processing architec-
tures for integral-dimension and separable-dimension stimuli in
our classification experiments.

We believe that this goal of providing validation tests for the
SFT in the domain of multidimensional perceptual classification is
a highly significant one. First, note that much of the previous
evidence for the integral-separable processing distinction comes
from the results of Garner’s (1974) well-known speeded classifi-
cation tasks. In these tasks, subjects are required to name the level
of a single component of a multidimensional stimulus. In the
filtering task, the level of a second irrelevant dimension varies
orthogonally across trials, whereas in the correlated task, the
second dimension provides redundant information. For integral-
dimension stimuli, one observes interference in response times
(RTs) in the filtering task but facilitation in RTs in the correlated
task (compared with a control condition in which the second
dimension is held fixed across trials). By contrast, for separable-
dimension stimuli, there is no interference in the filtering task and
no facilitation in the correlated task. As noted by Ashby and
Maddox (1994), although these speeded classification tests have a
good deal of intuitive appeal, the resulting integral-separable dis-
tinction is only operationally defined. It is only recently that
rigorous theoretical explanations have been sought for the empir-
ical pattern of results in these tasks (e.g., Ashby & Maddox, 1994;
Nosofsky & Palmeri, 1997a). The present applications of the SFT
join in this effort to seek firm theoretical foundations for the
integral-separable distinction by testing whether distinct mental-
processing architectures are involved.

Second, in our view, the search for converging operations and
validation methods is the sign of a maturing science. The SFT has
thus far been applied mainly in stimulus-detection and visual—
memory search domains, whereas the hypothesis that the classifi-
cation of integral-dimension stimuli involves coactive processing
of the dimensions was derived from independent sources of evi-
dence. In our view, if the present validation tests succeed, they
would provide strong converging evidence in favor of the SFT and
for past theorizing involving the integral-separable distinction.

Given such converging evidence and validation, the SFT could
then be applied with even greater confidence to investigate more
open-ended issues in perceptual classification. For example, Fific
(2006) has initiated investigations with the SFT to determine
whether the perceptual classification of face stimuli involves co-
activation of individual features and whether such coactive pro-
cessing may develop with extended practice in the task.

In the remainder of this article, we first briefly review the SFT
as applied in the domain of simple detection. We then extend it to
the domain of multidimensional classification and proceed to
describing the validation tests.

SFT

Applications of SFT make use of the double-factorial paradigm
(Townsend & Nozawa, 1995). Using stimulus detection as an
example, we illustrate the structure of the paradigm in Figure 1.
The stimuli vary along two dimensions. In our detection example,
Dimension 1 might correspond to the left visual field, and Dimen-
sion 2 might correspond to the right visual field. In the present
example, we will suppose that the task is to detect whether a target
is present in either field. As illustrated in the figure, on each trial,
there may be no target present in either field, a target present in one
field but not in the other, or a target present in both fields.

A key aspect of the paradigm is that a second variable, say the
brightness of the targets, is manipulated factorially in each visual
field. So, for example, a target that is present in the left visual field
may be of either low or high intensity and likewise for a target that
is present in the right visual field. It is assumed that the manipu-
lations of light intensity “selectively influence” the processing of
the targets in each field (e.g., Dzhafarov, 1999; Schweickert et al.,
2000; Sternberg, 1969; Townsend, 1984; Townsend & Schweick-
ert, 1989; Townsend & Thomas, 1994), with faster and more
efficient processing of high-intensity targets than low-intensity
targets. The selective-influence assumption means that increasing
the light intensity in, say, the left visual field increases the pro-
cessing rate in the left field but would not influence the processing
rate in the right visual field.

Mean Interaction Contrasts

For present purposes, the key data of interest involve the trials
in which both targets are present. As illustrated in Figure 1, there
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Figure 1. Schematic illustration of the double factorial paradigm in the
domain of visual detection. Boldface symbols denote cases in which targets
are present in both visual fields.
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are four possible target combinations: LL, LH, HL, and HH (where
L refers to low intensity and H refers to high intensity). We denote
the mean RT for responding to each combination as RT(LL),
RT(LH), RT(HL), and RT(HH), respectively. Again, assuming
that high intensity leads to faster responding than does low inten-
sity in each separate field, there are three main candidate patterns
of mean RTs that one might observe. These patterns are illustrated
schematically in Figure 2. The patterns have in common that HH
trials lead to the fastest RTs, LH and HL trials lead to intermediate
RTs, and LL trials lead to the slowest RTs.

The mean RT patterns illustrated in Figure 2 can be summarized
in terms of an expression known as the mean interaction contrast
(MIC):

MIC = [RT(LL) — RT(LH)] — [RT(HL) — RT(HH)]
= RT(LL) — RT(LH) — RT(HL) + RT(HH).

Note that the MIC simply computes the difference between the
vertical distance between the leftmost points on each line, RT(LL)
— RT(LH), and the vertical distance between the rightmost points
on each line, RT(HL) — RT(HH). It is straightforward to see that
the pattern of additivity (see Figure 2) is reflected by an MIC value
equal to zero. Likewise, underadditivity is reflected by MIC < 0 (a
negative MIC), and overadditivity is reflected by MIC > 0 (a
positive MIC).
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Figure 2. Schematic illustration of three main patterns of mean response
times (RTs) and mean interaction contrasts (MICs). L = low-intensity
target; H = high-intensity target.

Under quite general assumptions, the patterns of additivity,
underadditivity, and overadditivity provide important clues con-
cerning the processing architecture and stopping rules that underlie
detection performance. The key results are summarized in Table 1.
Formal proofs of the results (together with statements of more
detailed technical assumptions) are provided by Townsend and
Nozawa (1995). Here we provide only a brief review along with
informal, intuitive explanations.

If processing is strictly serial, then regardless of whether a
self-terminating or exhaustive stopping rule is used, the MIC value
will equal zero (i.e., the pattern of mean RTs will show additivity).
The intuition here is straightforward. For example, for serial-
exhaustive processing, LH trials will show some slowing relative
to HH trials due to slower processing of the target in the left visual
field. Likewise, HL trials will show some slowing relative to HH
trials due to slower processing in the right visual field. If process-
ing is serial exhaustive, then the increase in mean RTs for LL trials
relative to HH trials will simply be the sum of the two individual
sources of slowing, resulting in the pattern of additivity that is
illustrated in Figure 2.

As indicated in Table 1, parallel exhaustive processing will
result in a pattern of underadditivity of the mean RTs (MIC < 0).
If processing is parallel exhaustive, then processing of both targets
will occur simultaneously; however, a final response will not be
provided until detection decisions have been made for both visual
fields. Thus, the RT will be determined by the slower (i.e., max-
imum time) of the two individual detection decisions. Clearly, LH
and HL trials will lead to slower mean RTs than will HH trials,
because processing will tend to be slower if either visual field has
a low-intensity target, leading to a slower final response. LL trials
will lead to the slowest mean RTs of all, because the more
opportunities for an individual detection decision to be slow, the
slower on average the final response. The intuition, however, is
that detection responses for the individual visual fields begin to run
out of room for further slowing. That is, although the RT distri-
butions are unbounded, once one channel has been slowed the
probability of sampling a still slower response on the second
channel diminishes. Thus, one observes the underadditive increase
in mean RTs in this parallel exhaustive case.

Finally, both parallel self-terminating processing and coactive
processing will lead to a pattern of overadditivity of the mean RTs
(MIC > 0). For example, for parallel self-terminating processing,
the speed of the final response will be determined by the faster
(i.e., minimum time) of the two individual detection decisions.?
Thus, if either visual field has a high-intensity target, responding
will tend to be fast, because the decision maker does not need to
wait for a potentially slow detection process to complete. There-
fore, although LH and HL trials will tend to be somewhat slower
on average than will HH trials, the overall slowing will not be very
pronounced. By contrast, for LL trials, neither individual detection
response will tend to be fast. Thus, the slowing for LL trials will
be quite pronounced, leading to the pattern of overadditivity

2In contexts such as the present one, which involve the presence of
multiple targets each of which allows a correct response, self-terminating
processing is often referred to as first-terminating or minimum-time pro-
cessing.
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(MIC > 0) that is illustrated in Figure 2. A similar intuition can be
developed for the case of coactive processing.?

SICs

Although results involving the MIC already provide important
clues as to the processing architecture, this approach has limits in
terms of its diagnosticity. For example, the MIC does not distin-
guish between the cases of serial exhaustive and serial self-
terminating processing nor does it distinguish between the cases of
parallel self-terminating processing and coactive processing (see
Table 1).

More diagnostic power is provided when RTs are examined at
the full distribution level. The survivor function, S, for a random
variable 7" (which, in the present case, corresponds to the time of
processing) is defined as the probability that the process T takes
greater than ¢ time units to complete, S(r) = p(T > t). Note that, for
time-based random variables, when ¢ = 0, it is the case that S(r) =
1; and as t approaches infinity, it is the case that S(7) approaches 0.
Slower processing is associated with greater values of the survivor
function across the time domain.

In a manner analogous to the mean RTs, one can compute the
survivor functions associated with each of the four main types of
target combinations, which we will denote S}, (1), Sy 4(®), Sy (D,
and Sy;(7). Naturally, because processing is presumably slower for
low-intensity targets than for high-intensity targets, the survivor
function for LL targets will tend to be of the highest magnitude, the
survivor functions for LH and HL targets will tend to be of
intermediate magnitude, and the survivor function for HH targets
will be of the lowest magnitude. A schematic illustration is pro-
vided in Figure 3.

The precise quantitative relations among the four survivor func-
tions provide diagnostic information concerning the underlying
processing architecture. In a manner analogous to the MIC, one
can compute the quantity known as the survivor interaction con-
trast (SIC). Specifically, at each value of 7, one computes

SIC(1) = [Se(®) — Su(®] = [Sun(?) — Sun(0)]

= S(6) = Spu(®) — S (1) + Syuu(t)

As illustrated in Figure 4 (and summarized in Table 1), the
different processing architectures under consideration yield dis-
tinct predictions of the form of the SIC function. There is a close
relation with the results from the MIC, because the value of the

Table 1

Summary of Mean and Survivor Interaction Contrast Predictions
for Some Alternative Information-Processing Architectures and
Stopping Rules

Architecture  Stopping rule MIC SIC(2)

Serial Self-terminating 0, Additive Zero (flat)

Serial Exhaustive 0, Additive Negative — Positive
Parallel Self-terminating >0, Overadditive Positive

Parallel Exhaustive <0, Underadditive Negative

Coactive >0, Overadditive Negative — Positive
Note. MIC = mean interaction contrast; SIC = survivor interaction

contrast; t = time units.
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Figure 3. Schematic illustration of the expected ordering of survivor
functions associated with each of the four main types of target combina-
tions (HH, HL, LH, and LL). L = low-intensity target; H = high-intensity
target; T = time of processing; t = time units.

MIC is simply the integral of the SIC.* However, the SIC also
yields more fine-grained information. It would require extensive
discussion to develop intuitions for the mathematical derivations
of the predicted form of the SIC functions and so here we simply
summarize the bottom-line results.

For serial self-terminating processing, the value of the SIC is
equal to zero at all time values 7 (see Figure 4A). If processing is
serial exhaustive, the SIC is negative at early values of 7 but
positive thereafter, with the total area spanned by the negative
portion of the function equal to the total area spanned by the
positive portion (see Figure 4B). Note that for both the serial
self-terminating and serial exhaustive cases, the integral of the SIC
function (i.e., the MIC) is equal to zero (i.e., the case of mean RT
additivity).

If processing is parallel self-terminating, then the value of the
SIC is positive at all values of 7 (see Figure 4C). The integral of the
SIC in this case is positive, corresponding to a pattern of mean RT
overadditivity. By contrast, for parallel exhaustive processing, the
SIC is negative at all values of ¢ (see Figure 4D). The negative
integral corresponds to the pattern of mean RT underadditivity.

Finally, for present research purposes, the most critical case
involves the signature for coactive processing (see Figure 4E). In
this case, the SIC shows a small negative blip at early values of ¢
but then shifts to being strongly positive thereafter. The predicted

3 The class of coactive models originally covered by Townsend and
Nozawa (1995) was confined to the set of parallel Poisson channels that
feed into a single activation channel. However, in ongoing theoretical
work, we have enlarged that class to a much more general class of parallel
channels. The MIC and SIC theorems summarized here pertain to that more
general class. However, there are two limitations: A relatively innocent
constraint is that prior to pooling, the channels are stochastically indepen-
dent. The other constraint, which we hope to generalize, is that the
activations in each channel are purely increasing. This constraint unfortu-
nately excludes the popular random-walk and diffusion models, although
those with relatively small variances should be covered by our logic.

#The integral of the survivor function for a random variable yields the
mean of that random variable. Because the SIC is simply a linear contrast
of individual survivor functions, the integral of the SIC is a linear contrast
of the means of the corresponding random variables (i.e., the MIC).
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Figure 4. Schematic illustration of the survivor interaction contrast (SIC)
functions associated with the different processing architectures and stop-
ping rules. t = time units.

pattern of overadditivity in the mean RTs is the same as for parallel
self-terminating processing, but these two processing architectures
are now sharply distinguished in terms of the form of their pre-
dicted SIC functions.

Making Provision for Error Responses

The formal results for the MIC and SIC that we have summa-
rized are based on mathematical derivations that assume error-free
processing of the multidimensional information. However, on the

basis of simulation work that we have conducted, in which the
component processes of the mental architectures are represented in
terms of random-walk models that give rise to errors, we find that
the pattern of predictions is robust (see also Townsend & Wenger,
2004b). We provide a presentation of this simulation work in
Appendix A. In a nutshell, the simulations indicate that the serial
and parallel architectures yield the expected MIC and SIC signa-
tures even when error rates are very high (e.g., >.30 for the LL
stimulus). The coactive architecture yields the expected MIC and
SIC signatures for low and moderate error rates. However, de-
pending on detailed parametric assumptions, the predicted pattern
of overadditive RTs sometimes disappears when error rates are
very high (i.e., >.30 for the LL stimulus). Our ultimate goal is to
develop and test detailed processing models that account for the
complete sets of RT-distribution and choice-probability data col-
lected in the ensuing experiments. In this initial research, however,
the focus was on the main qualitative pattern of predictions stem-
ming from the SFT methodology. On the basis of our simulation
work, these qualitative predictions appear to hold for the serial and
parallel models even when error rates are very high and for the
coactive model when error rates are low to moderate. We discuss
the results from individual subjects with these caveats in mind.

Experiment 1: Classification of Separable-Dimension
Stimuli

In the classification experiments that we conducted, the stimuli
were arranged in the same double-factorial structure as in the
detection example from our introduction. As will be seen, the
paradigm thereby allowed application of the MIC and SIC tests to
determine the type of information-processing architecture under-
lying classification decisions.

In both experiments, we used stimuli varying along two contin-
uous dimensions, with three possible values along each dimension,
as illustrated in Figure 5. In the present Experiment 1, the stimuli
were composed of highly separable dimensions (color and position
of a vertical line). To further increase psychological separability,
for 5 of the subjects, we presented the component dimensions in
distinct spatial locations. Specifically, each stimulus consisted of
two spatially separated rectangular regions. The rectangle on the

Category A
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= > (e} LL HL
B | hee————
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Category B
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s, S Ss

Saturation

Figure 5. Schematic illustration of the conjunctive-rule category struc-
ture tested in Experiments 1 and 2. L = low-intensity target; H =
high-intensity target.
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left had a red hue that varied in its saturation. The rectangular
region on the right was framed by two long vertical lines, and there
was a shorter vertical line that varied in its left-right placement
within the interior of the region. For purposes of generality, we
also tested two subjects in which the component dimensions were
presented in an overlapping spatial location in a single rectangle.
For ease of description, we denote the three possible values of
saturation as S1, S2, and S3 and the three possible values of the
vertical line as V1, V2, and V3.

The category structure is illustrated in Figure 5. Membership in
Category A is defined by a conjunctive rule. A stimulus is a
member of the category if it has a saturation value greater than or
equal to S2 and has a vertical line value greater than or equal to
V2. The remaining stimuli are members of Category B.

The four members of Category A have the same structure as
illustrated previously for the double-target stimuli of the detection
paradigm (cf. Figures 1 and 5). Values of S3 and V3 are easier to
discriminate from the contrast category than are values of S2 and
V2. Thus, values of S3 and V3 correspond to the high-salience
values in the factorial manipulation, whereas values of S2 and V2
correspond to the low-salience values. The four stimuli S2-V2,
S2-V3, S3-V2, and S3-V3 correspond to the LL, LH, HL, and HH
stimuli, respectively.

Note that in the example in our introduction, the visual detection
task had the form of an or paradigm. The task was to detect
whether a target was present in either the left visual field or in the
right visual field. By contrast, with respect to the category of LL,
LH, HL, and HH stimuli, the present classification task involves
use of an and paradigm. A stimulus is a member of Category A
only if it has a sufficiently large magnitude on the saturation
dimension and a sufficiently large magnitude on the vertical line
dimension.” Given the nature of the and paradigm, only a subset of
the processing architectures discussed previously are plausible
candidates for a classification strategy. In particular, it would be
implausible to see evidence of any form of self-terminating pro-
cessing in the present case. For example, classifying an item as
having a saturation value of greater than or equal to S2 does not
provide sufficient information to determine that it is a member of
Category A. The item must also have a vertical line value of
greater than or equal to V2. Both dimensions must be processed to
allow appropriate Category A membership decisions. Thus, in the
present case, the candidate processing architectures correspond to
serial-exhaustive, parallel-exhaustive, or coactive processing of
the dimensions. Because of the highly separable nature of the
stimulus dimensions, however, our key hypothesis was that we
would not see evidence of coactive processing in the present
experiment.

Method

Subjects. The subjects were 7 graduate and undergraduate
students associated with Indiana University. All subjects were
under 40 years of age and had normal or corrected-to-normal
vision. The subjects were paid $8 per session plus up to a $3 bonus
per session depending on performance.

Stimuli. In the nonoverlapping condition, each stimulus con-
sisted of two spatially separated rectangular regions. The left
rectangle had a red hue that varied in its saturation, and the right
rectangular region had an interior vertical line that varied in its

left-right positioning. In the overlapping condition, the hue and the
line were presented in a single rectangle.

As illustrated in Figure 5, there were eight stimuli composed of

the factorial combination of three values of saturation and three
values of vertical line position (with Stimulus S1-V1 deleted from
the set). The saturation values were derived from the Munsell color
system, and we generated them on the computer by using the
Munsell color conversion program (WallkillColor, Version 6.5.1;
Van Aken, 2006). According to the Munsell system, the colors
were of a constant red hue (5R) and of a constant lightness (Value
5) but had saturation (chromas) equal to 10, 8, and 6, respectively.
The resulting red—green—blue (RGB) values for the colors are
reported in Table 2. Likewise, the distances of the vertical line
relative to the leftmost side of the right rectangle are also presented
in Table 2. The size of each rectangle was 133 X 122 pixels. In the
nonoverlapping condition, the rectangles were separated by 45
pixels, and each pair of rectangles subtended a horizontal visual
angle of about 6.4° and a vertical visual angle of about 2.3°. In the
overlapping condition, the single rectangle subtended a horizontal
visual angle of about 2.5° and a vertical angle of about 2.3°. We
used a Pentium PC to run the study on a CRC monitor, with
display resolution 1024 X 768 pixels.
The stimuli were divided into two categories, A
and B, as illustrated in Figure 5. On each trial, a single stimulus
was presented, the subject was instructed to classify it into Cate-
gory A or B as rapidly as possible without making errors, and
corrective feedback was then provided.

At the start of the experiment, subjects were shown a picture of
the complete stimulus set (in the form illustrated in Figure 5,
except with the actual stimuli displayed). The subjects were pro-
vided with explicit instructions concerning the nature of the cate-
gory structure. The instructions pointed out that the members of
Category B each possessed one of two extreme values: They were
either the most saturated with red or contained a vertical line that
was positioned farthest to the left. By contrast, Category A con-
sisted of items that had less extreme values on both dimensions.
The reason for illustrating the full stimulus set and for providing
explicit instructions about the category structure was to speed
classification learning and to make the data collection process
more efficient.

The experiment was conducted over five sessions, one session
per day, with each session lasting approximately 45 min. In each
session, subjects received 24 practice trials and then were pre-
sented with 744 experimental trials. Trials were grouped into six
blocks, with rest breaks in between each block. Each stimulus was
presented the same number of times within each session. Thus, for
each subject, each stimulus was presented 93 times per session and
465 times over the course of the experiment. The order of presen-

Procedure.

5In extensive pilot work, we attempted MIC and SIC tests in an
alternative or classification paradigm. We found it exceedingly difficult to
find stimulus parameter settings, however, that led to clear separations in
the speed of processing of all relevant pairs of the LL, LH, HL, and HH
stimuli. Without such clear separation, the MIC and SIC tests fail to
provide diagnostic information for distinguishing between the alternative
processing architectures. As will be seen, the present and paradigm led to
much more success in this regard.



362 FIFIC, NOSOFSKY, AND TOWNSEND

Table 2

Experiment 1: Red, Green, and Blue Values and Vertical-Line
Distance (Measured in Pixels) for Each of the Stimuli in the
Separable-Dimension Experiment

Stimulus Red Green Blue Distance
S1-V2 194 90 87 40
S1-V3 194 90 87 50
S2-V1 181 98 94 30
S2-V2 181 98 94 40
S2-V3 181 98 94 50
S3-V1 168 105 101 30
S3-V2 168 105 101 40
S3-V3 168 105 101 50

Note. S = saturation; V = vertical-line position.

tation of the stimuli was randomized anew for each subject and
session.

Subjects made their responses by pressing the right (Category
A) and left (Category B) buttons on a computer mouse. The
subjects were instructed to rest their index fingers on the mouse
buttons throughout the testing session. RTs were recorded from the
onset of a stimulus display up to the time of a response. Each trial
consisted of the presentation of a central fixation point (crosshair)
and a high-pitched warning tone for 1,770 ms, with the onset of the
tone coming 1,070 ms after the fixation point (i.e., the duration of
the tone was 700 ms). The stimulus was then presented on the
screen and remained visible until the subject’s response was re-
corded. In the case of an error, corrective feedback was provided
for 2 s. The intertrial interval was 1,870 ms.

Results

Session 1 was considered practice, and these data were not
included in the analyses. In addition, conditionalized on each

individual subject and stimulus condition (HH, LH, HL, and LL),
we removed from the analysis RTs greater than three standard
deviations above the mean and also RTs of less than 100 ms. This
procedure led to dropping less than 1.4% of the trials from anal-
ysis.

We examined the mean RTs for the individual subjects as a
function of sessions of testing. Although there was a general
speeding of RTs (see Figure 6), the basic pattern for the HH, HL,
LH, and LL stimuli remained constant across sessions. Therefore,
we combine the data across sessions in illustrating the results.

The mean RTs for the HH, HL, LH, and LL stimuli are shown
for the individual subjects in the leftmost column of Figure 7, and
the error rates are reported in Table 3. It is clear from inspection
that, for all 7 subjects, the manipulations of saturation and vertical-
line position had the expected effects on the overall pattern of
mean RTs, in the sense that the high-salience values led to faster
RTs than did the low-salience values. The pattern of errors mir-
rored the RT results. That is, higher error rates were associated
with slower mean RTs.

The critical question concerns the results for the MIC. Inspec-
tion of Figure 7 suggests an additive pattern for Subjects 1, 2, 3, 5,
and 7 and an underadditive pattern for Subject 4 and perhaps
Subject 6. This impression is confirmed by statistical test. Specif-
ically, for each individual subject, we conducted three-way anal-
yses of variance (ANOVAs) on the RT data using as factors
session (2-5), level of saturation (H or L), and level of vertical-line
position (H or L). The results of the ANOVAs are summarized in
Table 4. The main effects of saturation and line position (not
reported in the table) were highly significant for all subjects. The
interaction between saturation and line position did not approach
statistical significance for Subjects 1, 2, 3, 5, or 7, supporting the
conclusion of an additive pattern of mean RTs (MIC = 0) for these
subjects. This result suggests that these subjects engaged in serial

1000
800 -
—
g
— 600 -
|_
o
400 - —@——  Sub 1 Non-Overlapping
"""" Q¢++2+++ Sub 2 Non-Overlapping
—=——@ ——  Sub 3 Non-Overlapping
—rem(Qr s Sub 4 Non-Overlapping
— —@— —  Sub 5 Non-Overlapping
200 4| ——<———  Sub 6 Overlapping
........ XFewennren Sub 7 Over|apping
T T
1 2

T T T

3 4 5

Sessions

Figure 6. Experiment 1: Mean response times (RTs) for the individual subjects (Sub) plotted as a function of

sessions of testing.
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Experiment 1: The systems factorial technology (SFT) results for the separable-dimension

stimuli. Shown are mean response times (RTs; left), survivor functions (middle), and survivor interaction
contrast (SIC) function (right). L = low-intensity target; H = high-intensity target; T = time of processing; t =

time units.

processing of the dimensions (see Table 1). By contrast, the
interaction between saturation and line position was statistically
significant for Subject 4 and was marginally significant for Subject
6. The underadditive pattern of mean RTs suggests that Subject 4
and perhaps Subject 6 engaged in parallel-exhaustive processing to
classify the Category A stimuli (see Table 1). The most critical
result is that there is no evidence of an overadditive MIC for any
of the subjects, indicating the absence of coactive processing of the
dimensions. Because Subjects 4 and 5 had high error rates on the

Table 3

Experiment 1 (Separable Dimensions): Proportion of
Classification Errors Observed for Each Subject in Each
Factorial Condition

Condition
Subject HH HL LH LL
Nonoverlapping spatial positions
1 .02 .06 .05 12
2 .00 01 .01 04
3 .00 04 .03 07
4 .01 09 .08 39
5 .03 11 11 27
Overlapping spatial positions
6 .00 .04 .01 .06
7 .00 .05 .03 .10

Note. H = high-intensity target; L = low-intensity target.

LL stimulus (see Table 3), we need to express caution about the
processing architecture that we infer for them (see Appendix A).
However, the remaining 5 subjects all had relatively low error rates
for all of the stimuli, and these subjects too show no evidence of
coactive processing.

The main effect of sessions was statistically significant for all
subjects, reflecting a generalized speeding of performance (for
most of the subjects) as a function of practice in the task (see
Figure 6). However, with the exception of Subject 4, there were no
interactions of session with the other factors, reflecting the fact that
the overall pattern of RTs was fairly stable throughout testing.
Closer inspection of Subject 4’s data suggested that a pattern of RT
underadditivity during the early sessions gave way to a pattern of
additivity during the later ones.

The next step in the analysis was to compute the survivor
functions associated with each of the stimuli as well as the SIC
function. We computed these functions by dividing the full
distribution of RT data into 10-ms bins and computing the
probability that RT exceeded the upper limit of each bin value.
The survivor functions for the individual HH, LH, HL, and LL
stimuli are shown for each individual subject in the middle
column of Figure 7, and the computed SIC functions are shown
in the right column. A requirement for meaningful application
of the SIC test is that the survivor functions be ordered in a
nonoverlapping manner such that, for all time values ¢, S ; (f) >
Seu(®), Sy (1) > Syu(0). For details, see Townsend and Nozawa
(1995). As can be seen in Figure 7, this requirement is satisfied
for all subjects.
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Table 4
Experiment 1 (Separable Dimension Stimuli): Individual Subject ANOVA Results
Subject and factor df F 4 npz
Nonoverlapping spatial positions

Subject 1
Session 3 9.789 .000 .022
Saturation X Line Position 1 962 327 .001
Saturation X Line Position X Session 3 614 .606 .001
Error 1317

Subject 2
Session 3 85.491 .000 156
Saturation X Line Position 1 102 749 .000
Saturation X Line Position X Session 3 766 S13 .002
Error 1388

Subject 3
Session 3 210.501 .000 318
Saturation X Line Position 1 738 391 .001
Saturation X Line Position X Session 3 522 .667 .001
Error 1355

Subject 4
Session 3 143.022 .000 264
Saturation X Line Position 1 6.477 011 .005
Saturation X Line Position X Session 3 3.707 011 .009
Error 1197

Subject 5
Session 3 107.128 .000 .208
Saturation X Line Position 1 .038 .846 .000
Saturation X Line Position X Session 3 1.565 .196 .004
Error 1222

Overlapping spatial positions

Subject 6
Session 3 5.287 .001 .012
Saturation X Line Position 1 2.989 .084 .002
Saturation X Line Position X Session 3 1.436 230 .003
Error 1361

Subject 7
Session 3 7.916 .000 .017
Saturation X Line Position 1 191 .662 .000
Saturation X Line Position X Session 3 572 .633 .001
Error 1338

Note. The error row defines the degrees of freedom for the F test error term, for that subject. Each F test value has two degrees of freedom: one from

its corresponding row, and the other from the error row.

The SIC functions, shown in the far right column of Figure 7,
have the signature of serial-exhaustive processing for Subjects 1,
2, 3, 5, and 7 (cf. Figure 4B). At early time values, the SIC
functions are negative, and they switch to positive for larger time
values. Furthermore, the areas of the negative and positive regions
are approximately equal to one another, as already indicated by our
previous statistical tests showing that the MIC values did not differ
significantly from zero.® For Subjects 4 and 6, the SIC functions
have the signature of parallel-exhaustive processing (cf. Figure
4D). In particular, the SIC functions are negative essentially
throughout, consistent with the previous statistical tests showing a
negative (underadditive) value of the MIC for those subjects.

To address the possibility that the forms of the SIC functions
were contaminated by the general speeding that was observed
across sessions, we conducted additional analyses in which the RT
distributions were detrended. Specifically, for each individual sub-
ject, we subtracted the mean RT for a given session from all
individual RTs obtained in that session. We then recomputed the
survivor and SIC functions from these detrended data. The com-

puted functions were essentially identical in form to those that we
have already displayed in Figure 7.

In summary, taken together, the MIC and SIC results show
evidence of use of an exhaustive stopping rule for all subjects,
which appears to be a necessary processing strategy for classifying
the members of the conjunctive-rule (and) structure associated
with Category A. Furthermore, 5 of the subjects showed clear
evidence of serial processing of the dimensions, whereas 2 subjects
showed some evidence of parallel processing. Most important, the
MIC and SIC results provide no evidence of coactive processing of
the dimensions, as we would expect given the highly separable
nature of the present stimulus dimensions. We turn now to an
analogous experiment involving the use of integral-dimension

® We acknowledge, however, that despite the MIC results, visual inspec-
tion of the SIC functions for Subjects 1, 3, and 5 suggests a small trend
toward positivity. In our General Discussion, we mention briefly other
process-based models that could perhaps account for these trends.
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stimuli, where we expect a dramatic turnaround. In particular, in
conditions involving the classification of integral-dimension stim-
uli, the SFT methodology should instead provide clear-cut evi-
dence of coactive processing of the dimensions.

Experiment 2: Classification of Integral-Dimension
Stimuli

In Experiment 2, we used the same type of category structure
and task as in Experiment 1. The only difference is that the stimuli
now varied along integral dimensions (Munsell colors varying in
brightness and saturation) instead of separable dimensions. There
were three equally spaced saturation values (S1, S2, and S3)
combined factorially with three equally spaced brightness values
(B1, B2, and B3) to yield a stimulus structure directly analogous to
the separable-dimension structure illustrated previously in Fig-
ure 5. Members of Category A were defined by the same type of
conjunctive rule as used in the previous experiment, thereby cre-
ating the LL, LH, HL, and HH stimulus types.

One limitation in the testing of integral-dimension stimuli is that
it is impossible to produce a configuration with a perfectly gridlike
structure in an individual’s psychological space. That is, given the
nature of integral-dimension stimuli, a person’s perception, say, of
level of brightness may be influenced by level of saturation and
vice versa (Ashby & Townsend, 1986). We conducted independent
similarity-scaling studies for the colors and used the similarity data
to derive multidimensional scaling (MDS) solutions. As reported
in Appendix B, the resulting MDS solutions well approximated the
intended 3 X 3 factorial structure of the stimulus sets, but of course
some distortions were present. In an attempt to address the role that
such distortions may have on the computed MIC values and SIC
functions, we instantiated the abstract experimental design with
two different sets of Munsell colors. To the extent that the same
patterns of results are observed across sets, we gain confidence that
the results are due to the integral nature of the perceptual dimen-
sions and not to artifacts involving specific individual stimuli or
sets.

Method

Subjects. The subjects were 8 graduate and undergraduate
students associated with Indiana University. All subjects were
under 40 years of age and had normal or corrected-to-normal
vision. The subjects were paid $8 per session plus up to a $3 bonus
per session depending on performance.

Stimuli. According to the Munsell system, for both sets of
stimuli, the colors were of a constant red hue (5R). Set 1 was
constructed by combining orthogonally Saturation (chroma) Val-
ues 10, 8, and 6 with Brightness Values 4, 5, and 6 (but with the
combination Saturation-10/Brightness-4 deleted from the set). Set
2 was the same, except we used Brightness Values 5, 6, and 7
instead. (All nine stimuli were presented in the conditions involv-
ing Set 2.) According to the Munsell system, all adjacent stimuli
were equally spaced along the brightness and saturation dimen-
sions. The resulting stimulus configurations and category struc-
tures therefore had the same schematic structure as illustrated
previously in Figure 5.

We generated the stimuli by using the Munsell color conversion
program (WallkillColor, Version 6.5.1) and conducted MDS stud-

ies to verify that the generated colors provided a good approxima-
tion of the intended 3 X 3 factorial structure (see Appendix B).
The RGB values for each stimulus are presented in Table 5. The
colors were presented as rectangular shapes, 133 X 122 pixels in
size, centered on the computer screen with a white background.
Each stimulus subtended a horizontal visual angle of about 2.5°
and a vertical visual angle of about 2.3°. The same apparatus was
used as in Experiment 1.

Procedure. The procedure was the same as in Experiment 1.

Results

We analyzed only the data from Sessions 2-5. We again deleted
from analysis all trials in which the RT was greater than three
standard deviations above the mean for each given subject—
stimulus combination. We also deleted trials in which the RT was
less than 100 ms. This procedure led to deleting less than 1.8% of
the trials.

Visual inspection of the data indicated that the pattern of mean
RTs was the same across sessions. Therefore, in illustrating the
summary results, we present mean RTs that are combined across
the sessions.

The mean RTs for the HH, HL, LH, and LL stimuli are shown
for the individual subjects in the leftmost column of Figure 8, and
the error rates are reported in Table 6. As was the case for the
separable-dimension stimuli, the high-salience dimension values
always led to faster RTs than did the low-salience ones, and the
error rates mirrored the RTs.

In dramatic contrast to the results from Experiment 1, however,
inspection of Figure 8 reveals a strongly overadditive pattern of
mean RTs for almost all subjects. To confirm this observation, we
conducted three-way ANOVAs on the individual subjects’ RT
data, using session, saturation level, and brightness level as factors.
The results are reported in Table 7. The most important result is

Table 5
Experiment 2: Red, Green, and Blue Values for Each Stimulus
in the Integral-Dimension Experiment

Stimulus Red Green Blue
Set 1
S1-B2 194 90 87
S1-B3 154 72 71
S2-B1 141 80 77
S2-B2 181 98 94
S2-B3 208 125 119
S3-Bl 222 117 112
S3-B2 168 105 101
S3-B3 195 131 126
Set 2
S1-B1 194 90 87
S1-B2 222 117 112
S1-B3 253 143 136
S2-Bl 181 98 94
S2-B2 208 125 119
S2-B3 238 151 144
S3-Bl 168 105 101
S3-B2 195 131 126
S3-B3 223 157 151

Note. S = saturation; B = brightness.
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Experiment 2: The systems factorial technology (SFT) results for the integral-dimension

stimuli. Shown are mean response times (RTs; left), survivor functions (middle), and survivor interaction
contrast (SIC) function (right). L = low-intensity target; H = high-intensity target; T = time of processing; t =

time units.

that, for all subjects except for Subject 1 in the Set 1 condition, there
was a statistically significant interaction between saturation level and
brightness level. That is, the MIC value was significantly greater than
zero. Thus, the overadditive pattern of mean RTs observed in Figure 8
is statistically significant at the level of individual subjects. This
overadditive pattern in the mean RTs provides a signature that pro-
cessing is either parallel self-terminating or coactive (see Table 1).
Because the logical structure of the conjunctive-rule classification
eliminates the possibility of a self-terminating decision strategy, how-
ever, we expect the subsequent SIC tests to point clearly to a coactive
processing architecture.

The mean RTs, averaged across all stimuli, are shown as a
function of sessions of testing in Figure 9. As can be seen in the
figure, for most subjects there was again a generalized speed-up as
a function of sessions. This main effect of sessions was statistically
significant for all subjects (see Table 7). There was also a statis-
tically significant interaction among sessions, saturation, and

brightness for many of the individual subjects (see Table 7). Visual
inspection of the individual-session data suggests, however, that
the basic form of the overadditive MIC was reasonably consistent
throughout, with only its quantitative magnitude varying across the
sessions of testing. We did not observe any systematic increase or
decrease in the magnitude of the overadditivity as a function of
sessions.

The survivor functions for the individual HH, LH, HL, and LL
stimuli, as well as the SIC functions, are shown in Figure 8. With
the exception of Subject 1 in the Set 1 condition, the SIC functions
possess an obvious signature of a coactive processing architecture.
In all of these cases, there is an initial time period in which the SIC
functions are negative, followed by a longer time period in which
the SIC functions are positive. The area under the positive regions
exceeds the area in the negative regions, which corresponds to the
overadditive pattern in the mean RTs seen earlier. In additional
analyses in which we detrended the individual RTs to remove any
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Table 6

Experiment 2 (Integral Dimensions): Proportion of
Classification Errors Observed for Each Subject in Each
Factorial Condition

Condition
Subject HH HL LH LL
Set 1
1 .00 .09 .03 31
2 .00 02 .00 04
3 .00 01 00 11
4 .01 .06 04 16
5 .00 .01 01 17
Set 2
6 01 .03 .08 39
7 00 .01 01 09
8 00 .02 03 23

Note. H = high-intensity target; L = low-intensity target.

overall effect of sessions, the form of the computed SIC functions
remained the same.

Interestingly, the single subject who failed to show an overad-
ditive MIC (Subject 1) had a high error rate (.31) on the LL
stimulus, whereas almost all other subjects had low to moderate
error rates. As indicated by our simulations in Appendix A, a high
error rate can cause the overadditive signature of coactive process-
ing to disappear, which provides a potential explanation for Sub-
ject 1’s results.

In summary, the results from the present experiment provide a
dramatic turnaround compared with the results from Experiment 1.
As expected, for the present case involving integral-dimension
stimuli, the MIC and SIC results provide compelling evidence of
coactive processing of the dimensions.

General Discussion
Summary

In summary, the purpose of this work was to provide a valida-
tion test of the SFT applied in the domain of multidimensional
classification. The SFT has been developed to diagnose the nature
of the information-processing architectures that underlie multidi-
mensional perception and cognition. Most previous applications of
the SFT have taken place in the domains of detection and visual
and short-term memory search. In the present research, we ex-
tended the applications to classification decision making.

Specifically, in the present tests, subjects classified objects into a
conjunctive-rule category structure. Furthermore, in one experiment,
the stimuli varied along highly separable dimensions, whereas in a
second experiment the stimuli varied along integral dimensions. On
the basis of a long history of converging evidence, we reasoned that
coactive processing takes place when observers classify integral-
dimension stimuli, whereas there should be no coactive processing in
the classification of highly separable-dimension stimuli. The present
tests yielded strong positive evidence in accord with this line of
reasoning. In the experiment involving highly separable-dimension
stimuli, the SFT tests involving the computation of the MIC and SIC
indicated that coactive processing of dimensions did not occur. By

contrast, clear evidence for the presence of coactive processing was
obtained in the experiment involving integral-dimension stimuli. The
results thereby provide a striking validation of the SFT as an instru-
ment for diagnosing information-processing architectures in the do-
main of multidimensional perceptual classification.

Relation to Miller’s (1982) Inequality

One of the major past approaches to testing for coactivation in the
processing of multidimensional stimuli involves the application of
Miller’s (1982) inequality. Although this approach provides an ex-
tremely useful diagnostic, the current SFT methodology offers some
significant advances. In an application of Miller’s inequality, the

Table 7
Experiment 2 (Integral Dimension Stimuli): ANOVA Results for
the Individual Subjects

Subject and factor df F P s
Set 1
Subject 1
Session 3 9.082 .000 .021
Saturation X Brightness 1 586 444 .000
Saturation X Brightness X Session 3 5.046 .002 .012
Error 1252
Subject 2
Session 3 53.063 .000 .104
Saturation X Brightness 1 17.825 .000 .013
Saturation X Brightness X Session 3 2312 .074  .005
Error 1377
Subject 3
Session 3 165519 .000 .268
Saturation X Brightness 1 13.798 .000 .010
Saturation X Brightness X Session 3 1.836  .139  .004
Error 1358
Subject 4
Session 3 26932 .000 .058
Saturation X Brightness 1 51.606 .000 .038
Saturation X Brightness X Session 3 3.150 .024  .007
Error 1307
Subject 5
Session 3 15.022  .000 .033
Saturation X Brightness 1 23.169 .000 .017
Saturation X Brightness X Session 3 520 669  .001
Error 1340
Set 2
Subject 6
Session 3 13.278 .000 .031
Saturation X Brightness 1 7.553 .006 .006
Saturation X Brightness X Session 3 1.668 .172  .004
Error 1227
Subject 7
Session 3 35791 .000 .073
Saturation X Brightness 1 10.684 .001 .008
Saturation X Brightness X Session 3 182 909  .000
Error 1367
Subject 8
Session 3 18305 .000 .040
Saturation X Brightness 1 13.750 .000 .010
Saturation X Brightness X Session 3 2.161 .091 .005
Error 1304

Note. The error row defines the degrees of freedom for the F test error
term, for that subject. Each F test value has two degrees of freedom: one
from its corresponding row, and the other from the error row.
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complete set of stimuli has a structure analogous to the LL, LH, HL,
and HH stimuli that compose the target category of the double
factorial paradigm. The subject’s task is to determine whether either
dimension of a presented stimulus has a high-salience value. (In most
previous applications of the test, L and H have corresponded to
absence versus presence of a stimulus component, but other applica-
tions have involved different levels of an always-present component).
Thus, with respect to the target category of LH, HL, and HH stimuli,
this paradigm involves use of an or task. The question addressed by
tests of Miller’s inequality is whether the facilitation observed for the
redundant-signals HH stimulus compared with the single-signals LH
and HL stimuli goes beyond the pure statistical facilitation that is
predicted by an unlimited-capacity parallel self-terminating model. As
noted by Miller, the parallel self-terminating model predicts that for
all time values 7,

Pun(RT <1) = pry(RT < 1) + pu (RT < 1),

where p(RT < 1) is the probability that the RT for determining
that stimulus i/ has Level H on one of its dimensions is less than
or equal to z. Note that for large values of ¢, the inequality is
satisfied in trivial fashion, because as t — o, p,(RT < ) — 1.
However, for small values of ¢, it is logically possible for the
inequality to be violated (i.e., that the redundant-signals cumula-
tive probability on the left exceeds the sum of the single-signals
cumulative probabilities on the right). Such a violation of Miller’s
inequality is often interpreted as providing evidence in favor of
coactive processing of the dimensions.

Although a violation of Miller’s (1982) inequality does rule out the
parallel self-terminating model (assuming that various technical as-
sumptions are satisfied), other processing architectures can produce
such a violation without any coactivation occurring. For example,
Townsend and Nozawa (1997) pointed out that in cases in which

high-intensity values are processed much faster than are low-intensity
values, serial exhaustive models predict violations of the inequality.
To see this intuitively, note that if high-intensity values are processed
very rapidly, then serial exhaustive models predict that py;(RT < 1)
can be very large even for small values of 7. And if low-intensity
values are processed very slowly, then p; (RT < ¢) and pyy; (RT <1)
can both be very small at these same values of ¢. This combination of
events would lead to a violation of the inequality. Furthermore,
serial-exhaustive processing is a logical possibility for the redundant-
signals (or) paradigm (even though intuition suggests that a self-
terminating stopping rule might govern performance; cf. Sternberg,
1969). The significant advance provided by the SFT methodology is
that it provides a simultaneous diagnosis of questions involving ar-
chitecture, stopping rule, and capacity, thereby allowing stronger
conclusions as to whether coactive processing of dimensions has
actually occurred.

Converging Operations

The focus of this research was to provide validation tests of the SFT
methodology in the domain of multidimensional perceptual classifi-
cation. Viewed from another perspective, however, this research adds
to the list of converging operations that have been used to distinguish
between integral dimensions and separable dimensions. In Garner’s
(1974) speeded classification tasks, for example, it is well docu-
mented that, relative to a baseline condition, integral dimensions yield
interference in the filtering task and facilitation in the correlated task,
whereas separable dimensions do not yield interference or facilitation.
Similarity-scaling research suggests an approximate Euclidean metric
underlying distance relations among integral-dimension stimuli but a
more nearly city-block metric underlying distance relations among
separable-dimension stimuli (Garner, 1974; Shepard, 1964). Work in
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multidimensional categorization suggests that, in the case of highly
separable dimensions, observers selectively attend to component di-
mensions both in learning and in generalizing to novel transfer stimuli
(Kruschke, 1993; Nosofsky, 1989; Shepard, Hovland, & Jenkins,
1961). By contrast, this type of selective attention process is far less
efficient in the case of integral-dimension stimuli (McKinley &
Nosofsky, 1996; Nosofsky & Palmeri, 1996; Shepard & Chang,
1963).

Now added to this list of converging operations are the present
SFT results that test for the presence of coactive processing.
Integral-dimension stimuli give rise to an overadditive pattern of
mean RTs in the double-factorial paradigm. Furthermore, the SIC
function shows a clear negative blip at early time periods, followed
by more extensive positivity at later time periods. By contrast,
separable-dimension stimuli give rise to an additive or underaddi-
tive pattern of mean RTs in the double-factorial paradigm. In
addition, the SIC function has a form that is clearly distinct from
the one yielded by integral-dimension stimuli.

Future Research Directions

An important topic for future research is to consider other process-
ing architectures that might account for the pattern of results observed
in our experiments. One possibility involves a very general class of
models in which separate dimensions facilitate one another through
parallel channel interactions. In this case, information might be
shared, or activation on one channel might cross over and help
activate a separate channel (Mordkoff & Yantis, 1991; Townsend &
Wenger, 2004b). Unlike true coactivation models, this kind of pro-
cessing still involves separate detection criteria operating in each
channel. Nevertheless, we know that an extreme special case of
interactive parallel models is the class of coactivation models,” so
interactive parallel models must be able to produce coactivation
predictions. Nonetheless, at present, we understand very little about
their generic predictions or if, say, the coactive type of prediction
comes naturally to the overall class.

Yet another target for future research is to consider the predictions
from modern process-based models of multidimensional classification
(e.g., Ashby, 2000; Lamberts, 2000; Nosofsky & Palmeri, 1997b;
Ratcliff & Rouder, 1998; Thomas, 2006). For example, according to
Nosofsky and Palmeri’s (1997b) exemplar-based random-walk
model, people classify objects by retrieving individual category ex-
emplars from memory. The retrieved exemplars drive a random-walk
process that leads to classification decisions. Preliminary simulation
work suggests that, for the present double-factorial classification
paradigm, the exemplar-based random-walk model yields MIC and
SIC signatures of coactive processing across a wide range of its
parameter space. (For closely related investigations of process-model
signatures in cases in which other experimental variables are manip-
ulated, see Thomas, 2006.) It is an open question whether such
models can account jointly for the patterns of RT results seen in the
present experiments involving separable-dimension and integral-
dimension stimuli.

7 In this extreme special case, the activations or counts from one channel
are simply sent in full and pooled with those of the other channel, so it as
if there were just a single coactive channel.
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Appendix A

Simulations of Serial, Parallel, and Coactive Process Models

In this appendix, we report simulations of serial, parallel, and
coactive architectures in which the component processes are rep-
resented in terms of random-walk models that give rise to errors.
The simulations are conducted with respect to the conjunctive-rule
(and) structure depicted in Figure 5. Thus, we consider the case of
only an exhaustive stopping rule and derive simulated predictions
for the LL, LH, HL, and HH stimuli (where L refers to low
intensity and H refers to high intensity). From these simulated
predictions, we then compute the predicted mean interaction con-
trast (MIC) and survivor interaction contrast (SIC) signatures for
the different processing architectures.

According to the serial and parallel models, separate decisions
are made along each of dimensions x and y, and these decisions are
then combined in making the overall response. The decision along
each individual dimension is governed by a separate random-walk
process (for a detailed description, see Nosofsky & Stanton, 2005,
pp. 609-611, 625). In brief, for each dimension, there is a random-
walk counter with initial value zero. The observer establishes
criteria, +A and —B, representing the amount of evidence needed
for making a Category A or Category B decision. Given presen-
tation of stimulus 7, on each step of the random walk there is a
probability p; that the counter is incremented by unit value in the
direction of Criterion +A, whereas with probability 1- p, the
counter is decremented by unit value in the direction of Criterion
—B. (We describe below how the stimulus-specific step probabil-
ities p; are computed.) If the counter reaches Criterion +A, then a
Category A decision is made on that dimension, whereas if the
counter reaches Criterion —B, then a Category B decision is made.
The time to make a decision for each dimension is determined by
the number of steps required to complete each random walk. Note

that for the present conjunctive-rule and structure, a correct Cat-
egory A response is made only if the decisions on both individual
dimensions point to A. If the decision on either individual dimen-
sion points to Category B, then an incorrect Category B response
is made. The random-walk decision processes along each dimen-
sion are assumed to operate independently.

For the serial-exhaustive model, the time to make a correct Cate-
gory A response is given by the sum of the two individual random-
walk times on each trial. For the parallel-exhaustive model, the time
to make a correct Category A response is given by the maximum of
the two individual random-walk times on each trial. The simulations
also included a log-normally distributed base time that was added to
the decision time described above. The distribution of base times was
identical for the LL, LH, HL, and HH stimuli.

The stimulus-specific step probabilities ( p;) for each random walk
are computed as follows. Along each individual dimension, the H, L,
and nontarget (0) stimuli are assumed to be arrayed in the form shown
in Figure Al. In accord with standard signal-detection theory, we
assume that there is a normal distribution of perceptual effects asso-
ciated with each stimulus. As shown in the figure, the stimulus levels
are assumed to be equally spaced with means p; = 3, p;, = 2, and
Lo = 1. Each stimulus distribution is assumed to have a common
perceptual variance crpz. The observer establishes a decision boundary
between the L and the O stimuli to partition the space into decision
regions. On each step of the random walk, a perceptual effect is
sampled from the relevant stimulus distribution. If the perceptual
effect falls in Region A, then the random-walk counter is incremented
toward Criterion + A, whereas if the perceptual effect falls in Region
B, then the counter is decremented toward Criterion —B. Thus, on
each step, the probability p; that the random walk is incremented in
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Figure Al.  Schematic illustration of the perceptual sampling process that
determines the step probabilities in the random-walk versions of the
simulated serial, parallel, and coactive models. L = low-intensity target;
H = high-intensity target.

the direction of Criterion +A is given by the proportion of the
stimulus i distribution that falls in Region A. Note that this step
probability will be higher for H stimuli than for L stimuli, so re-
sponses for stimuli with high-salience dimension values will tend to
be faster and less error prone than for those with low-salience values.
To simulate the coactive model, we assumed that the perceptual
sampling processes along each dimension operated in tandem and
contributed counts to a common random walk. On each step, if the
sampled perceptual effects on both dimensions x and y fell in their
respective Region As, then the common random-walk counter was
incremented by unit value in the direction of Criterion +A. If both
sampled perceptual effects fell in their respective Region Bs, then the
counter was decremented by unit value in the direction of Criterion
—B. Finally, we investigated two different versions of the coactive
model for the case in which the sampled perceptual effects provided
conflicting information. In Version 1, if the sampled perceptual effect
for one dimension fell in Region A but the sampled perceptual effect
for the second dimension fell in Region B, then the random-walk
counter was not incremented or decremented on that step. In Version
2, we assumed that the random-walk counter was decremented by unit
value toward —B if either perceptual effect fell in Region B. In all
other respects, the random-walk process for the coactive model was
the same as for the serial and parallel models described previously.
The results from representative versions of these simulations are
reported in Tables A1-A4 for the serial, parallel, and coactive models.
Each result is based on 30,000 simulations for each individual LL,
LH, HL, and HH stimulus. In these representative simulations, for all
of the random-walk processes, we set [+Al = |-Bl = 5. Also, we set
the decision boundary for each perceptual sampling process midway
between the means of the L and nontarget stimuli shown in Figure A1.
To simulate the base time from a log-normal distribution, we chose a
random value from a normal distribution with mean . = 6 and
standard deviation o = .3, and this random value was exponentiated.
Also, the number of steps in each random walk was multiplied by an
arbitrary scaling constant k = 10. We chose these parameter values to
place the simulated response times from the models in roughly the
same range as observed for the subjects, but the fundamental quali-
tative predictions from the models do not depend on these choices.
Finally, to study the behavior of the models in the face of increasing

error rates, we varied the magnitude of the perceptual variance pa-
rameter O'pz. As the magnitude of the perceptual variance increases,
there is a higher probability that the random walks take steps in the
wrong direction, so error rates increase. Simulated response times
were computed conditional on correct responses only, as was the case
in our reports of the observed data.
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O 00 o —
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Figure A2. Simulated survivor interaction contrast functions for serial,
parallel, and coactive models (30.000 simulations per condition) for cases
in which the error rate on the LL stimulus is approximately .20. SIC =
survivor interaction contrast; t = time units; L = low-intensity target; H =
high-intensity target; RT = response time.

(Appendixes continue)
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Inspection of Table Al reveals that, for the serial exhaustive model,
the simulated MICs hover around zero (additivity) throughout, even
as error rates get very high. Table A2 reveals that, for the parallel
exhaustive model, the simulated MICs are decidedly negative (under-
additive) throughout, even as error rates get very high. For Version 1
of the coactive model (see Table A3), the simulated MICs are clearly
positive (overadditive) for low and moderate error rates. However, as
error rates get very high (roughly .30 for the LL stimulus), the
overadditivity disappears and the MIC instead falls back to near zero.
Finally, for Version 2 of the coactive model (see Table A4), the MICs
are clearly positive even for very high error rates.

In Figure A2, we show the simulated SIC functions for the serial,
parallel, and coactive models for cases in which the error rate on the
LL stimulus is approximately .20. As can be seen, even for this
relatively high error rate, the SIC signatures retain the shapes that are
derived from the formal theorems. The same was true, of course, in all
cases involving lower error rates. Finally, we conducted numerous
other simulations involving parameter values that varied around the
settings assumed in the representative simulations from Tables
A1-A4 and observed the same pattern of results.

Table Al

Serial Model Simulations

Stimulus type

HH HL LH LL

o, RT pE) RT pE RT pE) RT pE MIC

P

.50 522 .00 546 .00 545 .00 568 .00 —.6
15 527 .00 575 .00 574 .00 622 .01 N
1.00 538 .00 605 .02 605 02 675 .04 2.2
125 552 .00 635 .04 637 .04 720 .08 .0
1.50 568 .00 662 .07 662 .06 754 .13 —1.1
175 58 .00 685 .09 68 .09 78 .17 -5

200 604 .00 708 .12 708 .12 808 .23 —1.8
225 622 .01 725 .15 724 15 828 .27 1.6
250 640 .02 741 A7 742 17 841 31 —17
275 657 .03 755 20 754 20 852 34
3.00 674 .03 769 22 766 22 862 .37 1
325 691 05 781 24 718 24 870 .40 1.

Note. H = high-intensity target; L = low-intensity target; RT = mean
response time; p(E) = proportion of errors; MIC = mean interaction
contrast.

Table A2

Parallel Model Simulations

Stimulus type

HH HL LH LL

o, RT pE RT pE) RT pE RT pE MIC

.50 473 .00 495 .00 495 .00 509 .00 —83
75 478 .00 522 .01 523 .01 550 .01 —18.1
1.00 48 .00 550 .02 550 .02 587 .04 —27.6
125 497 .00 574 .04 574 04 621 .08 —31.0
150 510 .00 594 .07 594 06 647 13 =307
175 523 .00 610 .09 610 .09 670 .17 —27.1
200 535 .00 627 .12 625 .12 688 .22 —29.1

Stimulus type

HH HL LH LL

o, RT pE RT pE) RT pE RT pE MIC

P

225 549 01 639 15 637 15 699 27 2713
250 563 .02 648 .18 647 .18 712 30 —208
275 574 .02 657 20 658 20 720 34 208
300 58 .03 668 22 666 .22 727 37 —184
325 601 .05 676 25 674 25 733 40 —154

Note. H = high-intensity target; L = low-intensity target; RT = mean
response time; p(E) = proportion of errors; MIC = mean interaction
contrast.

Table A3

Coactive Model Simulations, Version 1

Stimulus type

HH HL LH LL
o, RT pE) RT pE RT pE) RT pE) MIC
1 48 .00 502 .00 503 .00 554 00 288
2 512 .00 557 .00 556 .00 666 .02 655
3552 00 615 00 614 00 752 07 747
4 592 00 666 .02 667 .02 804 .12 63.1
5 631 .01 714 04 715 04 87 .17 395
6 667 .02 751 .07 752 06 861 21 249
7 698 .03 780 .09 780 .09 875 25 124
8 728 .05 806 .12 805 .12 887 27 35
9 751 .07 83 .15 81 .15 893 29 -9

10 772 .08 839 17 836 17 900 31 34
11 789 .10 850 .19 852 .19 902 32
12 807 12 863 21 857 21 909 34 —42

Note. H = high-intensity target; L = low-intensity target; RT = mean
response time; p(E) = proportion of errors; MIC = mean interaction
contrast.

Table A4

Coactive Model Simulations, Version 2

Stimulus type

HH HL LH LL

o, RT pE RT pE RT pE RT pE MIC

S50 472 .00 495 .00 49 .00 539 .01 20.0
55 473 .00 502 .00 501 .00 561 .03 30.0
.60 473 .00 507 .00 507 .00 584 .06 434
.65 475 .00 514 .00 515 .00 609 .10 552
70 474 .00 521 00 520 .00 629 .16 623
15 478 .00 529 .01 529 .01 646 .23 65.7
.80 479 .00 538 .01 539 .01 661 31 62.7
85 481 .00 546 .02 547 .02 669 40 573
90 483 00 556 .02 557 02 672 48 427

Note. H = high-intensity target; L = low-intensity target; RT = mean
response time; p(E) = proportion of errors; MIC = mean interaction
contrast.
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Appendix B

Multidimensional-Scaling Studies for the Color Stimuli

In this appendix, we describe the results of the similarity-scaling
studies that we conducted for the color stimuli used in Experiment
2. Separate similarity-scaling studies were conducted for the Set 1
and Set 2 colors.

Method
Subjects

There were 15 subjects who participated in the Set 1 scaling
study and 20 subjects who participated in the Set 2 scaling study.
The subjects were undergraduates at Indiana University who re-
ceived credit toward an introductory psychology course require-
ment.

Stimuli

The stimuli were the eight colors from Set 1 and the nine colors
from Set 2 that were tested in Experiment 2. The colors were
presented in pairs on the center of the computer screen against a
white background. The members of each pair were separated by
approximately 25 pixels.

Procedure

In both the Set 1 and Set 2 studies, the subjects were presented
with 1 block of practice similarity-judgment trials (24 pairs for Set
1 and Set 2) and 3 blocks of experimental similarity judgments (56
pairs for Set 1 and 72 pairs for Set 2). Within each block, all
distinct pairs of the stimuli were presented two times (28 pairs for
Set 1 and 36 pairs for Set 2). On each trial, subjects rated the
similarity of the pair of colors on a scale from 1 (very dissimilar)
to 9 (very similar). The order of presentation of the pairs within
each block, as well as the left-right placement of the members of
each pair, were randomized anew for each subject and block.

Results

We analyzed the mean similarity judgments for the pairs of
colors by using the standard Euclidean model from the ALSCAL
program of the SPSS statistical package. For the Set 1 stimuli, the
two-dimensional scaling solution yielded stress equal to .013 and
accounted for 99.87% of the variance in the data. For the Set 2
stimuli, the two-dimensional scaling solution yielded stress equal
to .036 and accounted for 98.90% of the variance in the data.
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Figure BI.  Multidimensional scaling (MDS) solutions for the color stim-
uli used in Experiment 2 along with the positions of the colors according
to the Munsell system. A: Set 1 colors; B: Set 2 colors.

The scaling solutions are displayed graphically in Figure B1. It
is evident from inspection that the intended 3 X 3 factorial struc-
ture of the experimental design is well approximated for each set.
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